

ชื่อเรื่อง	การศึกษาวิธีการลดปริมาณสารซัลเฟอร์ไดออกไซด์ตอกถังในผลลำไยสด
ชื่อผู้เขียน	นางสาวสุชาดา ทองศรี
ชื่อปริญญา	วิทยาศาสตรมหาบัณฑิต สาขาวิชาพืชสวน
ประธานกรรมการที่ปรึกษา	ผู้ช่วยศาสตราจารย์ ดร.ธีรนุช เจริญกิจ

บทคัดย่อ

การสำรวจปริมาณสารซัลเฟอร์ไดออกไซด์ (SO_2) ตอกถัง ในผลลำไยสดของสถานประกอบการ รวมลำไยสดในจังหวัดเชียงใหม่ และลำพูน โดยการสุ่มตัวอย่างจากโรงรมลำไยจำนวน 10 แห่ง ผลจากการสำรวจ พบว่า ปริมาณ SO_2 ตอกถัง ในเปลือกผลเฉลี่ย 2,039.93 ppm และในเนื้อผล 227.84 ppm เมื่อนำมาเปรียบเทียบกับปริมาณ SO_2 ตอกถังจากการรมที่ถูกวิธีของสถาบันอาหาร ซึ่งกำหนดค่าปริมาณ SO_2 ตอกถัง ในเปลือกผล 1,700 ppm และในเนื้อผล ไม่เกิน 10 ppm (อนวช, 2540) พบว่า สถานประกอบการรมลำไยที่มีปริมาณ SO_2 ตอกถัง ในเปลือกผลสูงเกินกว่าค่าที่ได้กำหนดไว้ดังกล่าว มีจำนวน 8 แห่ง (ร้อยละ 80) ส่วนปริมาณ SO_2 ตอกถัง ในเนื้อผลนั้น พบว่า ทุกสถานประกอบการ (ร้อยละ 100) มีปริมาณ SO_2 ตอกถัง สูงเกินกว่าที่กำหนดไว้

จากการศึกษาวิธีการลดปริมาณ SO_2 ตอกถัง ในผลลำไยสด โดยการนำผลลำไยสดที่รั่มด้วย SO_2 มาล้าง โดยการแช่น้ำที่มีระดับอุณหภูมิและระยะเวลาต่างๆ พบว่า อุณหภูมิของน้ำไม่มีผลต่อการลดลงของปริมาณ SO_2 ตอกถัง บนเปลือกผลและในเนื้อผล แต่เวลาในการแช่น้ำมีผลต่อการลดลงของปริมาณ SO_2 ตอกถัง ในเปลือกผล การแช่ผลลำไยนาน 15 นาที สามารถลดปริมาณ SO_2 ตอกถัง ได้ 37.57 เปอร์เซ็นต์ สูงกว่าการแช่น้ำที่ระยะเวลา 10 นาที และ 5 นาที ซึ่งสามารถลดปริมาณ SO_2 ตอกถัง ได้ 26.99 และ 23.37 เปอร์เซ็นต์ ตามลำดับ ส่วนในเนื้อผล พบว่า อุณหภูมิ และระยะเวลาในการแช่ไม่มีผลต่อการลดลงของปริมาณ SO_2 ตอกถัง ในขณะเดียวกัน ไม่พนความสัมพันธ์ระหว่างอุณหภูมิและระยะเวลาในการแช่น้ำต่อการลดลงของปริมาณ SO_2 ตอกถัง ทั้งในเปลือกและในเนื้อผล ล้ำไปกว่านี้ สำหรับการลดปริมาณ SO_2 ตอกถัง ในผลลำไยสด โดยการล้างด้วยน้ำไหล ที่อุณหภูมิและระยะเวลาต่างๆ พบว่า อุณหภูมิของน้ำไม่มีผลต่อการลดลงของปริมาณ SO_2 ตอกถัง ในเปลือกผล และระยะเวลาในการล้างน้ำไหล มีผลต่อการลดลงของปริมาณ SO_2 ตอกถัง ใกล้เคียงกัน คือ 32.25 – 35.46 เปอร์เซ็นต์ ส่วนในเนื้อผล พบว่า อุณหภูมิของน้ำไหล ไม่มีผลต่อการลดลงของปริมาณ SO_2 ตอกถัง แต่ระยะเวลาในการล้างน้ำไหล มีผลต่อการลดลงของปริมาณ SO_2 ตอกถัง โดยการล้างน้ำไหล เป็นเวลา 15 นาที สามารถลดปริมาณ SO_2 ตอกถัง ได้ 47.89 เปอร์เซ็นต์ ดีกว่า

การล้างน้ำ宦ที่ 10 และ 5 นาที ซึ่งสามารถลดปริมาณ SO_2 ต่อก้าวได้ 38.70 และ 35.46 เปอร์เซ็นต์ ตามลำดับ โดยไม่พนความสัมพันธ์ระหว่างอุณหภูมิและระยะเวลาในการล้างน้ำ宦ต่อการลดลงของปริมาณ SO_2 ต่อก้าว และจากการวิเคราะห์สมการเชิงเส้นระหว่าง x และ y ตามระยะเวลาตั้ง ก่อว่า ($5 - 15$ นาที) พบว่า ระยะเวลาการล้างที่นานขึ้นสามารถลด SO_2 ต่อก้าวได้มากขึ้นตาม สมการ $y = 0.783x + 34.035$ โดยที่ x คือระยะเวลาการล้างน้ำ宦 และ y คือ เปอร์เซ็นต์การ ลดลงของปริมาณ SO_2 ต่อก้าว ซึ่งมีค่า $R^2 = 0.8211$

Title	A study of the method to reduce SO ₂ residue on fresh Longan (<i>Dimocarpus longan</i> Lour.)
Author	Miss Suchada Tongsri
Degree of	Master of Science in Horticulture
Advisory Committee Chairperson	Assistant Professor Dr.Theeranuch Jaroenkit

ABSTRACT

The survey on the amount of SO₂ residues on fresh longan in Lumphun and Chiang Mai was conducted through samples taken from 10 longan factories. Results showed that SO₂ residues were found in rind at an average of 2,039.93 ppm and 227.84 ppm in the aril. When compared to the residues from standard gassing system, SO₂ residues found in rind was 1,700 ppm and not more than 10 ppm in aril (Anawat, 1997). Results showed that 80 percent (8 sites) were found to have higher SO₂ residues in the rinds which was much higher than the recommended amount. On the other hand SO₂ residues in the aril was also higher than recommended amount in 10 sites. In this study, fresh longan was soaked in water at several temperature and soaking periods. Results showed that the water temperature was found to have no effect towards the reduction of SO₂ residues on the rind and the aril but the period of time for soaking was shown to cause reduction in SO₂ residues in the rind. During 15 minutes soaking, SO₂ was decreased (37.57%) and much higher than 10 minutes soaking (26.99%) and 5 minutes soaking (23.37%), whereas in the aril, the soaking time and water temperature did not affect SO₂ residue reduction. Meanwhile, there was no relationship between temperature and soaking with reduction of SO₂ residues in the rind and the aril. On the other hand, for the reduction of SO₂ residue on fresh longan caused by rinsing with flowing water at several temperature and soaking times, results showed that temperature did not affect SO₂ residue reduction but in the rind, rinsing time with flowing water produced nearly 32.25 – 35.46%. In the aril, it was found that SO₂ residue was more reduced by rinsing in flowing water for 15 minutes (47.89%) than 10 (38.70%) and 5 (35.46%) minutes, respectively. However, there was no interaction between temperature and time toward reduction of SO₂ residues. Meanwhile, analysis of regression between x and y at a certain time (5 – 15 minutes) found that more SO₂ reduction occurred time when rinsing was extended as

(7)

indicated in the equation $y = 0.783x + 34.035$, with x as rinsing time to using with flowing water and y as the percentage of SO_2 residue reduction, $R^2 = 0.8211$.

