การออกแบบและประเมินผลเครื่องให้น้ำระหว่างแปลงพืชไร่ DESIGN AND EVALUATION OF CROP WATERING MACHINE BETWEEN FIELD PLOTS

เสมอขวัญ ตันติกุล SAMERKHWAN TANTIKUL

ภาควิชาวิศวกรรมเกษตรและอาหาร คณะวิศวกรรมและอุตสาหกรรมเกษตร มหาวิทยาลัยแม่โจ้

บทคัดย่อ

กระเทียมเป็นพืชเศรษฐกิจชนิดหนึ่งที่มีความสำคัญต่ออาชีพเกษตรกรชาวภาคเหนือตอน บน พันธุ์กระเทียมที่เกษตรกรนิยมนำมาปลูกคือพันธุ์พื้นเมืองเชียงใหม่และพันธุ์จีน สำหรับปัญหา ที่สำคัญในการผลิตกระเทียมได้แก่ การขาดแคลนพันธุ์กระเทียมที่ดี ปุ๋ย ยาป้องกันเชื้อรา ยาฆ่า แมลงซึ่งมีราคาค่อนข้างสูง และสิ่งที่ถือว่ามีความสำคัญอันดับสูงที่ควรนำมาพิจารณาคือ ค่าจ้าง แรงงานที่ใช้ในกระบวนการการเพาะปลูกจนถึงการเก็บเกี่ยว สิ่งต่าง ๆ เหล่านี้มีผลทำให้ต้นทุนการ ผลิตกระเทียมสูงถึง 21,340 บาท/ไร่ หรือ 5.34-6.10 บาท/กิโลกรัม

กระเทียมเป็นพืชที่ต้องการน้ำมาก ปกติจะให้น้ำ 7 วัน/ครั้ง รวมการให้น้ำ ตลอดอายุการ เพาะปลูกประมาณ 17 ครั้ง ส่วนวิธีการให้น้ำของเกษตรกรโดยทั่ว ๆ ไปคือ การวิดน้ำจากร่อง แปลงสาดลงบนแปลงปลูกกระเทียม แต่วิธีการดังกล่าวทำให้คนทำงานเกิดความเมื่อยล้าสูง และ ใช้เวลาในการทำงานมาก จากปัญหาดังกล่าวข้างต้นเกษตรกรผู้ผลิตกระเทียมจึงได้ประดิษฐ์ เครื่องให้น้ำกระเทียมขึ้น โดยมีหลักการง่าย ๆ ไม่ยุ่งยากซับซ้อน เครื่องดังกล่าวสามารถในการ ทำงานได้ 5 ไร่/คน/วัน ถึงอย่างไรก็ตามการทำงานของเครื่องยังคงมีข้อจำกัดอยู่หลายประการ ดัง นั้นเพื่อลดข้อจำกัดดังกล่าว ประกอบกับแนวความคิดที่จะต้องส่งเสริมภูมิปัญญาของชาวบ้าน ผู้ วิจัยจึงได้ออกแบบและสร้างเครื่องให้น้ำกระเทียมต้นแบบขึ้น โดยมีโครงสร้างคล้ายกับรถไถเดิน ตาม มีระบบขับเคลื่อนเป็นของตัวเอง มีล้อขับเคลื่อน 2 ล้อ สำหรับต้นกำลังให้เครื่องยนต์เล็ก

เบนซิน 3.8 แรงม้า ความเร็วในการขับเคลื่อนขณะปฏิบัติงาน 12.6 เมตร/นาที ความสามารถใน การให้น้ำ 11.19 ลิตร/ตารางเมตร

ผลจากการทดสอบปรากฏว่า ประสิทธิภาพในการทำงานเท่ากับ 85.1 เปอร์เซ็นต์ มีความ สามารถในการทำงาน 1.77 ไร่/ชั่วโมง (14.16 ไร่/วัน) ส่วนอัตราการสิ้นเปลืองน้ำมันเชื้อเพลิง 0.7 ลิตร/ไร่ ข้อมูลที่ได้จากการวิเคราะห์ทางเศรษฐศาสตร์แล้วจะเห็นได้ว่า ถ้านำเครื่องไปรับจ้างให้น้ำ กระเทียมในราคาไร่ละ 100 บาท โดยให้มีการใช้งาน 150 วัน/ปี จะให้ผลตอบแทนสุทธิเท่ากับ 171,698 บาท/ปี และมีระยะเวลาคืนทุนที่ 42 วัน

Abstract

Garlic is one type of economic crop that is important to farmers in upper northern Thailand where the most popular garlic varieties cultivated consist of local Chiang Mai and Chinese varieties. Problems encountered by farmers during production include the lack of good garlic variety, high cost of fertilizer and pesticide but high labor cost from cultivation to harvesting has proven to be the problem that needs the highest consideration. The above-mentioned problems have caused the over increase in investment for garlic production to reach 21,340 baht/rai or 5.34-6.10 baht/kilogram.

Garlic is a crop that needs abundant supply of water. Ordinarily, water is provided 7 days/time and 17 times during the whole period. To provide water, farmers generally scoop water from a ditch and apply to the garlic plants, however, this method has proven to be too laborious and time wasting. To solve these obstacles, farmers devised a more simple and easy-to-use watering machine specifically for garlic plants. Although this particular machine could water an area of 5 rai/person/day, it has also some disadvantages. In order to reduce the limitations of this machine while maintaining the concept of promoting the local wisdom of the villagers, this research was conducted specifically to design and create a basic model of a watering machine. While being quite similar to a plow, this machine has its own self-driving system with 2 wheels and has a gasoline small engine of 3.8 horsepower. The speed of its driving motion is 12.6 meter/minute while the watering capacity is 11.19 liter/square meter.

The results of the trial showed that the efficiency of the machine was equivalent to 85.1 percent with a work capacity of 1.77 rai/hour (14.16 rai/day) and fuel consumption rate of 0.7 liter/rai. The data resulting from economic analysis of the machine indicated that if the machine is used to water garlic plants at 100 baht/rai during a period of 150 days/year, it produces an equivalent cost of of 171,698 baht/year with a 42-year investment period.