แนวทางการลดต้นทุนการผลิตปลานิล โดยใช้สาหร่ายและ แพลงก์ตอนพืชที่ความหนาแน่นต่างกัน

Decrease cost production of Tilapia (Oreochromis niloticus) for use Algae and Phytoplankton density different..

จงกล พรมยะ เทพรัตน์ อึ้งเศรษฐพันธ์ ชนกันต์ จิตมนัส ขจรเกียรติ์ แช่ตัน JONGKON PROMYA THEPPARATH UNGSETHAPHAN CHANAGUN CHITMANAT KAJORNGIED CHAETON

คณะเทคโนโลยีการประมงและทรัพยากรทางน้ำ มหาวิทยาลัยแม่ใจ้

บทคัดย่อ

แนวทางการลดต้นทุนการผลิตปลานิล โดยใช้สาหร่ายและแพลงก์ตอนพืชที่ความ หนาแน่นต่างกันโดยในปีงบประมาณ 2548 และ2549 เริ่มจากการอนุบาลลูกปลานิลแดงในคู้ กระจก ณ มหาวิทยาลัย แม่โจ้ ในคู้กระจกแบ่งการทดลอง เป็น 4 หน่วยการทดลอง ดังนี้ T_1 อาหารผงโปรตีน 40 % (20 % ของน้ำหนักตัว) , T_2 แพลงก์ตอนพืชที่ระดับความหนาแน่นของ เซลล์ เท่ากับ 0.3 (20 % ของน้ำหนักตัว) T_3 แพลงก์ตอนพืชที่ระดับความหนาแน่นของเซลล์ เท่ากับ 0.5 (30 % ของน้ำหนักตัว) T_4 แพลงก์ตอนพืชที่ระดับความหนาแน่นของเซลล์ เท่ากับ 0.7 (40 % ของน้ำหนักตัว) ทำการสุมน้ำหนัก ทุก ๆ 15 วัน ระยะเวลา 45 วัน เมื่อนำข้อมูลไป วิเคราะห์ทางสถิติ ที่ระดับความเชื่อมั่น (p < 0.05) พบว่า T_4 และ T_5 อย่างมีนัยสำคัญทางสถิติตามลำดับ แต่อัตราการแลกเนื้อ T_6 ดีกว่าหน่วยทดลองที่ T_7 , และ T_8 ตามลำดับ คุณภาพน้ำทางกายภาพ และทางเคมี ค่า pH, Conductivity และ TDS หน่วยทดลองที่ 2, 3และ 4 มากกว่า หน่วยทดลองที่ 1 อย่างมีนัยสำคัญทางสถิติ

การศึกษาผลของการใช้สาหร่าย อนุบาลลูกปลานิลแดง ในบ่อดิน แบ่งการทดลอง เป็น 4 หน่วย ดังนี้ T_1 อาหารผง 20 % , T_2 สาหร่ายสด 20 % , T_3 สาหร่ายสด 30 % และ T_4 สาหร่ายสด 40 % ของน้ำหนักตัวปลา สุ่มน้ำหนัก ทุก 15 วัน ระยะเวลา 90 วัน เมื่อวิเคราะห์ทางสถิติที่ความ เชื่อมั่น (p < 0.05) พบว่า การอนุบาลในบ่อดิน พบว่า อัตราการเจริญเติบโตจำเพาะ และอัตรา

การเจริญเติบโต/วัน T_4 และ T_1 มากกว่า T_2 และ T_3 แต่ อัตราการรอดที่ T_4 มากกว่า T_3 , T_2 และ T_1 อัตราการแลกเนื้อที่ T_3 ดีกว่า T_4 , T_2 และ T_4 ต้นทุนลูกปลาต่อตัว และศักยภาพทางเศรษฐศาสตร์ ที่ T_3 ดีกว่า T_2 , T_1 และ T_4 คุณภาพน้ำค่าออกซิเจนที่ละลายน้ำ และแอมโมเนียม-ไนโตรเจนที่ T_4 มากกว่าที่ T_4 , T_3 และ T_4 ค่าความเป็นด่าง และค่าออร์โธฟอสเฟตฟอสฟอร์ส ที่ T_3 และ T_4 มากกว่า T_4 และ T_4 ตามลำดับ

การทดลองเลี้ยงปลานิลแดงที่มีน้ำหนักเฉลี่ยต่อตัวประมาณ 27 กรัม โดยใช้บ่อดิน ขนาด 5 x 5 x 1 เมตร สูตรอาหารทดลองมี 4 สูตร แต่ละสูตรมี 3 ซ้ำ โดยอาหารสูตรที่ 1 – 4 มีส่วนผสมของ สาหร่ายสดที่ระดับ 0 , 45 , 50 และ 55 % ตามลำดับ ปรับอาหารทุกสูตรให้มี ระดับของโปรตีนใกล้เคียงกันเท่ากับ 30 % ใช้เวลาการเลี้ยงเป็นเวลา 5 เดือน จากผลการ ทดลองพบว่า ปลาที่ได้รับอาหารที่มีส่วนผสมของสาหร่ายสด 55 % มีอัตราการรอดตาย และ ประสิทธิภาพการใช้โปรตีนดีที่สุด นอกจากนี้ยังพบว่า อาหารผสมสาหร่ายสด ทำให้คุณค่าทาง โภชนาการ และปริมาณของคาโรทีนอยด์รวม (total carotenoid) ในเนื้อปลาเพิ่มขึ้นตามระดับ ของสาหร่ายที่ผสมในอาหาร ค่าแอมโมเนีย-ในโตรเจน ในบ่อที่ปลากินอาหารผสมสาหร่าย 55 % ไม่แตกต่างจากซุดควบคุม แต่มากกว่าบ่อที่ปลากินสาหร่ายสด 50 % และ 45 % ตามลำดับ ค่าออร์โธฟอสเฟตฟอสฟอร์ส ในบ่อปลากินอาหารไม่ผสมสาหร่าย มีค่ามากกว่าในบ่อที่ปลากิน อาหารผสมสาหร่ายสด 55 % , 45 % และ 50 % ตามลำดับ และมีความแตกต่างกันทางสถิติ (p < 0.05)

คำสำคัญ : ปลานิลแดง แพลงก์ตอนพืช สาหร่าย ต้นทุน

Abstract

Decrease cost production of Tilapia (*Oreochromis niloticus*) for use Algae and Phytoplankton density different in 2005 was studied. The experiment was larval nursery in aquarium at Maejo University. Four treatments CRD was designed for T_1 20 % commercial diet T_2 20 % raw phytoplankton (0.3 $OD_{560 \text{ nm}}$) T_3 30 % raw phytoplankton (0.5 $OD_{560 \text{ nm}}$) and T_4 40 % raw phytoplankton (0.7 $OD_{560 \text{ nm}}$). The random samples form nursery of larval red tilapia were monitored every 5 day for the period of 45 days. Results showed that the survival rate with T_1 and T_3 had significantly

higher than T_4 and T_2 (p < 0.05) respectively but FCR T_2 had significantly lower than T_3 , T_1 and T_4 (p < 0.05) respectively. Water quality of pH, conductivity and TDS with T_2 , T_3 and T_4 had significantly higher than T_1 (p < 0.05) respectively.

The nursery of larval Tilapia (*Oreochromis niloticus*) for use raw algae density different in soil pond. Four treatments CRD was designed for T_1 20 % commercial diet, T_2 20 % raw algae, T_3 30 % raw algae and T_4 40 % raw algae. The random samples form nursery of larval red tilapia were monitored every 15 day in soil pond for the period of 90 days. Results showed in soil pond (p < 0.05) that, the larval nursery of fish in soil pond. Results showed that the specific growth rate and average day growth with T_4 and T_5 had significant higher than T_2 and T_3 but the survival rate with T_4 had significantly higher than T_3 , T_2 and T_3 . Feed conversion rate T_3 had better than T_4 , T_2 and T_3 . The cost produced of fish larval and marginal rate of net return with T_3 had better than T_2 , T_3 and T_4 . Water quality of DO and NH₃-N with T_4 had significantly higher than T_2 , T_3 and T_4 . PO₄-P with T_3 and T_4 had significantly higher than T_4 (p < 0.05) respectively.

A 5 - month feeding trail was carried out for red Tilapia (*Oreochromis* sp.) with an initial average weight of 27 g for size $5 \times 5 \times 1$ m. in soil ponds. Feeds containing varying percentages of raw algae 0 , 45 , 50 and 55 % were tested with three replications for each treatment. All the feeds were formulated to contain dietary requirement for the Tilapia 30 % protein. The results showed that the feed with 55 % raw algae achieved the best performance survival rate and protein efficiency ratio. The nutritional value and total carotenoid contents in fish increased with the level of raw algae in feed. Water quality of NH₃-N with T₁ and T₄ had significantly higher than T₃ and T₂. PO₄-P with T₁ had significantly higher than T₄, T₂and T₃ (p < 0.05) respectively.

Keywords: Red Tilapia, phytoplankton, Algae, Cost