

การศึกษาผลของปัจจัยบางประการต่อการเลี้ยงปลาบีก ในกระชังเชิงพาณิชย์

STUDY ON THE INFLUENCE OF SOME FACTORS AFFECTING ON ENHANCING THE POTENTIAL OF MAEKONG GIANT CATFISH (*Pangasianodon gigas*) COMMERCIAL REARING IN CAGES

ทิพสุคนธ์ พิมพ์พิมล

TIPSUKHON PIMPIMOL

ชนกันต์ จิตมนัส

CHANAGUN CHITMANAT

คณะเทคโนโลยีการประมงและทรัพยากรทางน้ำ มหาวิทยาลัยแม่โจ้ เชียงใหม่ 50290

บทคัดย่อ

การศึกษาผลของปัจจัยบางประการต่อการเลี้ยงปลาบีกในกระชังเชิงพาณิชย์ โดยแบ่งออกเป็น 2 การทดลอง การทดลองที่ 1 ศึกษาผลของอาหารเสริมวิตามินซี (0, 250, 500 และ 750 มก. ต่ออาหาร 1 กก.) ต่อการเจริญเติบโต อัตราการดูดซึม และการตอบสนองของระบบภูมิคุ้มกันโรคของปลาบีกขนาด 60 ± 0.01 กรัม ในกระชังขนาด $2.4 \times 3 \times 1.5$ เมตร (กว้าง \times ยาว \times สูง) วางในบ่อ din เป็นระยะเวลา 213 วัน พบร่วมกันว่าการเสริมวิตามินซีให้ผลการเจริญเติบโตทั้งน้ำหนักสั้นสุด และน้ำหนักที่เพิ่มขึ้น อัตราการเจริญเติบโตจำเพาะ (SGR) อัตราการแตกเนื้อ (FCR) และผลผลิตที่ได้รับดีกว่ากลุ่มปลาที่ไม่ได้รับอาหารเสริมวิตามินซีอย่างมีนัยสำคัญทางสถิติ ($P < 0.05$) แต่การเสริมวิตามินซี 250 มก. ต่ออาหาร 1 กก. มีต้นทุนต่ำกว่าจึงมีอัตราส่วนผลตอบแทนต่อต้นทุน (B/C Ratio) สูงกว่าระดับอื่นๆ อย่างมีนัยสำคัญทางสถิติ ($P < 0.05$) นอกจากนี้การเสริมวิตามินซี 500 และ 750 มก. ต่ออาหาร 1 กก. ทำให้ค่าไฮม่าตอคริต เชลล์เม็ดเลือดแดง ชีรัมไลเซิร์ม ชีรัมโปรตีน และ ชีรัมกลูโคส เพิ่มสูงขึ้นจากกลุ่มที่ไม่ได้รับอาหารเสริมวิตามินซีอย่างมีนัยสำคัญทางสถิติ ($P < 0.05$) แต่การเสริมวิตามินซีที่ 750 มก. ต่ออาหาร 1 กก. ทำให้ต้นทุนเพิ่ม และผลที่ได้มีเพิ่มมากกว่าการเสริมวิตามินซีที่ 250 และ 500 มก. ต่ออาหาร 1 กก.

การทดลองที่ 2 ศึกษาการทดสอบแพนปลาป่นบางส่วนด้วยถั่วเหลือง ($0, 15, 30$ และ 45%) ในสูตรอาหารสำหรับเลี้ยงปลาบีกขนาด 550 ± 0.01 กรัม เป็นระยะเวลา 130 วัน พบว่า ปลาบีกกลุ่มที่ได้รับอาหารทดสอบแพนปลาป่นบางส่วนด้วยถั่วเหลือง 15 และ 45% มีน้ำหนักสิ้นสุด อัตราการ

แลกเนื้อ (FCR) และผลผลิต (Total Biomass) ดีกว่าปลากลุ่มที่ได้รับอาหารทดแทนปลาป่นบางส่วนด้วยถั่วเหลือง 30% อย่างมีนัยสำคัญทางสถิติ ($P < 0.05$) แต่ไม่มีความแตกต่างทางสถิติ ($P > 0.05$) กับกลุ่มที่ได้รับอาหารไม่ผสมถั่วเหลือง และกลุ่มที่ได้รับอาหารทดแทนปลาป่นบางส่วนด้วยถั่วเหลือง 45% มีต้นทุนการผลิตต่ำกว่า ซึ่งมีอัตราส่วนผลตอบแทนต่อต้นทุน (B/C Ratio) สูงกว่ากลุ่มทดแทนปลาป่นบางส่วนด้วยถั่วเหลืองประมาณอีก 7% อย่างมีนัยสำคัญทางสถิติ ($P < 0.05$) แต่ไม่มีความแตกต่างทางสถิติ ($P > 0.05$) กับกลุ่มที่ได้รับอาหารไม่ผสมถั่วเหลือง

ดังนั้นการเลี้ยงปลาบึกในกระชังเชิงพาณิชย์ควรเสริมวิตามินซีในปริมาณ 250 มก. ต่ออาหาร 1 กก. ลงในอาหารเม็ดสำเร็จรูปเพื่อเพิ่มการตอบสนองต่อระบบภูมิคุ้มกันให้อยู่ในเกณฑ์ดี สำหรับการผลิตอาหารเม็ดขึ้นเองสำหรับการเลี้ยงปลาบึก สามารถทดแทนปลาป่นบางส่วนด้วยถั่วเหลืองได้ถึง 45% ซึ่งเป็นการช่วยลดต้นทุนการผลิตและให้ผลการเจริญเติบโตอยู่ในเกณฑ์ที่ดี นอกจากนี้การลดการใช้ปลาป่นยังเป็นแนวทางที่สอดคล้องกับการอนุรักษ์ทรัพยากรีสурсัลที่สำคัญจับก่อนวัยเจริญพันธุ์ได้ด้วย

ABSTRACT

Study on the influence of some factors affecting on enhancing the potential of Maekong Giant Catfish (*Pangasianodon gigas*) commercial rearing in cages. Two experiments. Experiment 1, The purpose of this research was to test the efficacy of vitamin C levels (0, 250, 500 and 750 mg/kg) on growth, survival rate and immune response of the Maekong giant catfish (*Pangasianodon gigas*, Chevey). Catfish with an initial average of 60 ± 0.01 g were raised cages with density of $2.4 \times 3 \times 1.5$ m in earthen pond. After 213 days, the Maekong giant catfish fed a basal diet supplemented with vitamin C showed the better weight, specific growth rate, feed conversion ratio, and final production. There was a significant difference between fish fed a basal diet without vitamin C supplementation ($P < 0.05$). The catfish received 250 mg/kg vitamin C supplementary diets showed the lower cost and higher B/C Ratio. The catfish received 500 and 750 mg/kg vitamin C supplementary diets showed the best hematocrit, red blood cell count, serum lysozyme, serum protein and serum glucose. There was a significant difference between fish fed a basal diet without vitamin C supplementation ($P < 0.05$). But basal diet supplemented with 750 mg/kg vitamin C feeding increased the cost.

Experiment 2, The effects of feeds containing various levels of soybean (0, 15, 30 នៃ 45%) as a replacement for fishmeal of Maekong giant catfish (*Pangasianodon gigas*, Chevey). Catfish with an initial average of 550 ± 0.01 g. After 130 days, the Maekong giant catfish fed with replacement for fishmeal of 15 and 45% soybean diets showed the best final weight, specific growth rate, feed conversion ratio, and final production. There were significant difference between fish fed with replacement for fishmeal of 30% soybean diets ($P < 0.05$). But there was no significant difference between fish fed a basal diet without soybean ($P > 0.05$). The catfish fed with replacement for fishmeal of 45% soybean diets showed the lowest cost and highest B/C Ratio. There was a no significant difference between fish fed a basal diet without soybean ($P > 0.05$).

It was concluded that for the commercial rearing of Maekong Giant Catfish in cages, the minimum level of 250 mg/kg vitamin C is the most suitable to be supplemented in diet for immune response. In order to reduce the cost of fish feed, 45% of fishmeal level which replaced by soybean showed the similar growth performances as fish fed by 100% fishmeal.