ผลของการปล่อยสนามไฟฟ้าเป็นจังหวะต่อการเกิดออกซิเตชันในอาหาร Effect of Pulsed Electric Fields on Oxidation in Foods

กรผกา อรรคนิตย์ และ เสมอขวัญ ตันติกุล Kornpaka Arkanit and Samerkhwan Tantikul

คณะวิศวกรรมและอุตสาหกรรมเกษตร มหาวิทยาลัยแม่โจ้

บทคัดย่อ

ศึกษาผลของการปล่อยสนามไฟฟ้าเป็นจังหวะ (pulsed electric fields, PEF) ที่ความเข้ม 53 kV/cm 500 ครั้ง ต่อคุณภาพของอาหาร 2 ชนิค คือ นมโคและน้ำกะทิ โคยวิเคราะห์การเกิด ออกซิเคชัน ได้แก่ ค่า conjugated dienes (CD) ค่า peroxide (PV) และค่า thiobarbituric acid reactive substances (TBARS) และวิเคราะห์ปริมาณจุลินทรีย์ทั้งหมด พบว่านมที่ผ่าน PEF และ น้ำนมที่ผ่านพาสเจอร์ไรเซชัน โคยการให้ความร้อนที่ 72.5 องศาเซลเซียส 15 วินาที มีค่า CD และ PV เพิ่มขึ้นในระหว่างการเก็บรักษาที่อุณหภูมิ 4 องศาเซลเซียส โคยค่า CD และ PV จะสูงที่สุคเมื่อ เก็บรักษา 6 วัน หลังจากนั้นจะค่อยๆ ลคลง ซึ่งไม่ต่างจากตัวอย่างนมคิบควบคุมที่ไม่ผ่าน กระบวนการใคๆ ส่วนค่า TBARS ของนมทุกตัวอย่างจะมีแนวโน้มลดลงคลอดในระหว่างการเก็บ รักษา 8 วัน กระบวนการ PEF และพาสเจอร์ไรเซชัน สามารถลดปริมาณจุลินทรีย์ทั้งหมดในนมติบ ได้ 2 และ 5 log cycles ตามลำคับ โดยนมคิบและนมที่ผ่าน PEF จะมีปริมาณจลินทรีย์ทั้งหมดเกิน 10° CFU/ml เมื่อเก็บรักษา 6 วัน เมื่อศึกษาผลของ PEF ต่อน้ำกะทิที่ทำให้คงตัวโคยใช้อิมัลซิไฟ เออร์ 3 ชนิค ได้แก่ sodium dodecyl sulfate (SDS) polyoxyethylene (20) sorbitan monolaurate (Tween 20) และ polyoxyethylene (23) lauryl ether (Brij 35) พบว่าระหว่างการเก็บรักษาที่อุณหภูมิ 4 องศาเซลเซียส ค่า CD ของน้ำกะทิจะเพิ่มขึ้น และจะสูงสุคเมื่อเก็บรักษา 0 5 และ 2 วัน ตามลำคับ ส่วนค่า PV ของน้ำกะทิทุกตัวอย่างจะมีค่าสูงสุดเมื่อเก็บรักษา 3-4 วัน ในขณะที่ค่า TBARS ของ น้ำกะทิที่ใช้ SDS จะเพิ่มขึ้นมากที่สุดในวันที่ 5 ส่วนน้ำกะทิที่ใช้ Tween 20 และ Brij 35 มีแนวโน้ม ใกล้เคียงกับคัวอย่างควบคุม กระบวนการ PEF สามารถลคปริมาณ จุลินทรีย์ทั้งหมคในน้ำกะทิได้ 0.5 log cycles โดยน้ำกะทิที่ใช้ SDS และผ่าน PEF จะมีอัคราการเพิ่มขึ้นของจุลินทรีย์น้อยกว่า น้ำกะทิที่ไม่ได้ผ่าน PEF ในระหว่างการเก็บรักษา ส่วนน้ำกะทิที่ใช้ Tween 20 และ Brii 35 ที่ผ่าน และไม่ผ่าน PEF มีแนวโน้มไปในทิศทางเคียวกัน

คำสำคัญ: นมโค น้ำกะทิ การปล่อยสนามไฟฟ้าเป็นจังหวะ ออกซิเคชัน อิมัลซิไฟเออร์

Abstract

The effect of pulsed electric fields (PEF) at 53 kV/cm 500 pulses on the quality of cow's milk and coconut milk was investigated. The oxidation reaction indices: conjugated dienes (CD), peroxide value (PV), and thiobarbituric acid reactive substances (TBARS), and total microbial counts were analyzed. It was found that CD and PV of PEF treated milk, pasteurized milk (72.5 °C 15 sec), and unprocessed raw milk increased during storage at 4 °C and reached the maximum value on day 6 before gradually decreasing. TBARS of all milk samples tended to decrease during 8 days of storage. PEF and pasteurization treatment reduced the microbial count of raw milk by 2 and 5 log cycles, respectively. The microbial count of raw milk and PEF treated milk were more than 109 CFU/ml after storage for 6 days. The PEF treated coconut milk was stabilized using 3 different emulsifiers. During storage at 4 °C, CD of PEF treated coconut milk prepared with sodium dodecyl sulfate (SDS), polyoxyethylene (20) sorbitan monolaurate (Tween 20), and polyoxyethylene (23) lauryl ether (Brij 35) increased and reached the maximum value on day 0, 5, and 2, respectively. The PV of all coconut milk samples reached the greatest value on day 3-4. TBARS of PEF treated coconut milk prepared with SDS had the highest value on day 5. The course of TBARS of PEF treated coconut milk prepared by Tween 20 or Brij 35 was similar to that of the control. PEF treatment reduced the microbial count of coconut milk by 0.5 log cycle. The PEF treated coconut milk prepared with SDS had lower microbial growth rate than untreated samples during storage. When prepared with Tween 20 or Brij 35, the microbial growth rate of PEF treated and untreated coconut milks were similar.

Key words: cow's milk, coconut milk, pulsed electric fields, oxidation, emulsifier