รายงานผลการวิจัย
มหาวิทยาลัยแม่โจ้

เรื่อง

การศึกษาคุณสมบัติของสารต้านอนุมูลอิสระในพระพิลิ

FREE-RADICAL SCAVENGING ACTIVITY OF PROPOLIS

โดย

ภัทรพร ยุทธศิริ ชัยภูริวัฒน์ เรื่องละวาด

2553
รายงานผลการวิจัย
มหาวิทยาลัยแม่โจ้
เรื่อง การศึกษาคุณสมบัติของสารด้านอนุมูลอิสระในพระพลิศ
FREE-RADICAL SCAVENGING ACTIVITY OF PROPOLIS

ได้รับการจัดสรรงบประมาณวิจัย ประจำปี 2551
จำนวน 120,000 บาท

หัวหน้าโครงการ นางสาวก๊กพร ภูภักดี
ผู้ร่วมโครงการ นางสาวธัญญาภิรัตน์ เรืองสะอาด

งานวิจัยเสร็จสิ้นสมบูรณ์
31 พฤษภาคม 2553

ราย 547.23 ม.375ก
ภัทรพล มุกติบุตร
การศึกษาคุณสมบัติของสารด้านอนุมูลอิสระในพระพลิศ
35001002258770
FREE-RADICAL SCAVENGING ACTIVITY OF PROPOLIS

PATTARAPORN PUKKLAY AND THANYARAT CHUESAARD

ABSTRACT

Propolis is a resinous substance collected by honeybees from various plant sources. The composition of propolis depends upon the vegetation at the site of collection. In Thailand, propolis research is still limited. The objective of this study investigates the biological properties and chemical components of Thai propolis from Phrae Province. The result showed that ethanolic extract propolis consists of polyphenols and flavonoids which is 1.295 and 0.35 mg/g EEP, respectively. The components of EEP were separated into 10 spots by TLC technique in mobile phase hexane : ethyl acetate : acetic acid (60:40:1%). Ethanolic extract of Thai propolis showed the ability to scavenge DPPH and hydrogen peroxide but cannot to scavenge superoxide anion and hydroxyl radicals.
กิ่ดกิจกรรมประกาศ

งานวิจัยนี้ได้รับการสนับสนุนทุนอุดหนุนการวิจัยจากสำนักงานวิจัยและส่งเสริมวิชาชีพการเกษตร ประจำปี 2551 และกองบุคคลมหาวิทยาลัยแม่แพร่ เลิมพระเกียรติ ที่ให้การสนับสนุนในเรื่องอุปกรณ์และสถานที่ในการวิจัย

รองอธิบดีอาจารย์วัฒน์ศักดิ์ แสงศรี อาจารย์ประจำสาขาวิชาศึกษาพื้นฐาน มหาวิทยาลัยแม่แพร่ เลิมพระเกียรติ ที่ให้คำปรึกษาทั่วไปทางด้านทินและเอกย์มหาวิทยาลัย

รองคณบดีคณัตวิทยา ศรีฉัตรหิน นักวิชาการส่งเสริมการเกษตร 6 ต. สำนักงานแนะ 0. ท้องม่วงไข่ 1. แพร่ ที่ช่วยในการเก็บผลิตสิ่งเพื่อใช้ในการศึกษาครั้งนี้

รองคณบดีคุณน้อย วิริยะกุล อาจารย์ พาช่าง คุณวุฒิ คุณทหาร ทหารmime คุณวุฒินามา การจัดการ คุณทรัพย์สวัสดิ์ ติสเสีย คุณกัลยา พระณี พระณีและคุณทิพย์นี พระณีสุกุล นักศึกษาสาขาวิชาเทคโนโลยีชีวภาพ ที่มีส่วนร่วมศึกษาเทคนิคการเกษตร การทดลองพืชพันธุ์ต้านทานปัญหาโรค และเทคนิคด้านในเครื่องมือในการศึกษาครั้งนี้

รองคณบดีนักวิทยาศาสตร์ นักวิชาการส่งเสริมปฏิบัติการ ประจำอาจารย์สาขาวิชาศาสตร์และเทคโนโลยี มหาวิทยาลัยแม่แพร่ เลิมพระเกียรติ ที่มีส่วนช่วยในการเตรียมทีมงาน เครื่องมือ ตลอดจนสาระที่ใช้ในการทำวิจัย

ร้อยทั้งร้อยของคุณอาจารย์ศรีสุข ทวีทาวง อาจารย์ประจำสาขาวิชาศึกษาพื้นฐาน มหาวิทยาลัยแม่แพร่ เลิมพระเกียรติ ที่ช่วยให้ติดต่อสื่อสารและประสานงานกับมหาวิทยาลัยแม่แพร่ พร้อมทั้งเป็นผู้ที่สำคัญที่ส่งสัญญาให้ผู้อ่านเรื่องนี้สามารถติดต่อได้ด้วย

คณะผู้จัดทำ
สารบัญ

<table>
<thead>
<tr>
<th>บทที่</th>
<th>จำนวนหน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>บทคัดย่อ</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>บทที่ 1 คำนำ (Introduction)</td>
<td>1</td>
</tr>
<tr>
<td>1.1 ที่มาของปัญหา</td>
<td>1</td>
</tr>
<tr>
<td>1.2 วัตถุประสงค์</td>
<td>2</td>
</tr>
<tr>
<td>1.3 ประโยชน์ที่คาดว่าจะได้รับ</td>
<td>2</td>
</tr>
<tr>
<td>1.4 ขอบเขตของโครงการวิจัย</td>
<td>2</td>
</tr>
<tr>
<td>บทที่ 2 การตรวจเอกสาร (Literature Review)</td>
<td>3</td>
</tr>
<tr>
<td>2.1 พรอポเจลิต</td>
<td>3</td>
</tr>
<tr>
<td>2.2 กลิ่นกีฬาและตัวทำละลายที่สำคัญ</td>
<td>6</td>
</tr>
<tr>
<td>2.3 วิธีการผลิต</td>
<td>7</td>
</tr>
<tr>
<td>2.4 การทำให้สารสกัดจากตัวอย่างให้เข้มข้น</td>
<td>9</td>
</tr>
<tr>
<td>2.5 การกักจับไว</td>
<td>11</td>
</tr>
<tr>
<td>2.6 โครงสร้างทรัพยาค</td>
<td>11</td>
</tr>
<tr>
<td>2.7 คุณสมบัติและสรรพคุณของพรอเจลิต</td>
<td>14</td>
</tr>
<tr>
<td>2.8 อนุมูลอิสระ</td>
<td>15</td>
</tr>
<tr>
<td>2.9 สารประกอบฟิวโซลิกและฟิวโซนอยด์ในพรอเจลิต</td>
<td>27</td>
</tr>
<tr>
<td>บทที่ 3 ขั้นตอนและวิธีการ (Materials and Methods)</td>
<td>29</td>
</tr>
<tr>
<td>3.1 ชุดกรรมการทดลอง</td>
<td>29</td>
</tr>
<tr>
<td>3.2 วิธีการทดลอง</td>
<td>31</td>
</tr>
<tr>
<td>3.3 การศึกษาขบวนการนำที่มีคุณสมบัติในการดักอนมูลอิสระ</td>
<td>33</td>
</tr>
<tr>
<td>ได้แก่ ฟลเวอโนยด์ (flavonoid) และโพลีฟีนอล (polyphenol) ในพรอเจลิต</td>
<td>33</td>
</tr>
<tr>
<td>3.4 การศึกษาค่าประกอบทางเคมีของพรอเจลิต โดยเทคนิค TLC</td>
<td>33</td>
</tr>
<tr>
<td>3.5 การทดสอบทางสิทธิ</td>
<td>34</td>
</tr>
<tr>
<td>3.6 สถานที่ทำการทดลองหรือเก็บข้อมูล</td>
<td>34</td>
</tr>
<tr>
<td>3.7 ระยะเวลาทำการวิจัย</td>
<td>34</td>
</tr>
</tbody>
</table>
สารบัญ (ต่อ)

บทที่ 4 ผลการทดลอง (Results)

4.1 ลักษณะของพรอตรงและสารสกัดพรอตรงในตัวที่ละลายในอนดู
4.2 การศึกษาพิษภัยสารโพลีฟีนอล (polyphenol) และพวกไวโนยด์ (flavonoid)

4.3 การศึกษาค่ากระบวนการของสารสกัดพรอตรงด้วยวิธี TLC
4.4 การศึกษาดูฤทธิ์ในกิจกรรมผสมคลอเรส DPPH ของสารสกัดพรอตรง
4.5 การศึกษาดูฤทธิ์ในการยับยั้งไตรกิจเรียบของเอนไซม์สารสกัดพรอตรง
4.6 การศึกษาดูฤทธิ์ในการยับยั้ง superoxide anion ของสารสกัดพรอตรง
4.7 การศึกษาดูฤทธิ์ในการยับยั้ง hydroxyl radical ของสารสกัดพรอตรง

บทที่ 5 วิเคราะห์ผลการทดลอง (Discussion)

เอกสารอ้างอิง
ตารางที่ 1 สารบัญตาราง

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>หัวข้อ</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>ขั้นตอนการผลิตน้ำมันพืชและสารสกัดกัมภีร์ในโครงการผลิตน้ำมันพืช</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>แผนการดำเนินงานผลิตโครงการวิจัย</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>ผลผลิตและคุณภาพของน้ำมันพืชและสารสกัดกัมภีร์ในโครงการผลิตน้ำมันพืช</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>ในโครงการผลิตน้ำมันพืช</td>
<td></td>
</tr>
</tbody>
</table>
ตาราง

<table>
<thead>
<tr>
<th>หมายเลข</th>
<th>หัวข้อ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>พรอพิลิโวลัทชั่นซึ่งเพิ่มช่วงชีวิตของเปปไทด์ในกลองเลือดหนึ้ง</td>
</tr>
<tr>
<td>2.2</td>
<td>หลอดกีมาร์ของมันในการแก้ไขส่วนของพิษเพื่อใช้ในการสร้างพรอพิลิโวลัทชั่น</td>
</tr>
<tr>
<td>2.3</td>
<td>การสกัดแบบมาเซเรชัน (maceration)</td>
</tr>
<tr>
<td>2.4</td>
<td>ดอกสีแดงเอกแทกเตอร์ (soxhlet extractor)</td>
</tr>
<tr>
<td>2.5</td>
<td>การสกัดแบบใช้เครื่องสั่นความดิ่ง (ultrasound sonicator extraction, UE)</td>
</tr>
<tr>
<td>2.6</td>
<td>เครื่องโรตารีวิวโคะแทแตร์ (rotary evaporator)</td>
</tr>
<tr>
<td>2.7</td>
<td>อนุมูลอิสระ (free radicals)</td>
</tr>
<tr>
<td>2.8</td>
<td>อนุมูลอิสระที่เกิดขึ้นในเกล็ดเสมหะ</td>
</tr>
<tr>
<td>2.9</td>
<td>อนุมูลอิสระของกอสกิลเพื่อคัดแยกออกเป็นอนุมูลอิสระส่วนของอนุมูลอิสระอื่นๆ</td>
</tr>
<tr>
<td>2.10</td>
<td>โคเรสซั่งวิตามินซี (vitamin C)</td>
</tr>
<tr>
<td>2.11</td>
<td>โคเรสซั่งวิตามินอี (vitamin E)</td>
</tr>
<tr>
<td>2.12</td>
<td>โคเรสซั่งกลูเทาไทน์ (glutathione)</td>
</tr>
<tr>
<td>4.1</td>
<td>ลักษณะของพรอพิลิโวลัทชั่นได้จากการตัดกระพงทางจังหวัดประเทศ</td>
</tr>
<tr>
<td>4.2</td>
<td>โคโรมาโตแกรมของสารกลัทพรอพิลิโวลัทชั่นที่ทำโดยละเอียดของอนุมูลแม่ใน TLC</td>
</tr>
<tr>
<td>4.3</td>
<td>ความสามารถในการบblemิล์ DPPH ของสารกลัทพรอพิลิโวลัทช์</td>
</tr>
<tr>
<td>4.4</td>
<td>ความสามารถในการป้องกันโดยโคโรมาโตแกรมของสารกลัทพรอพิลิโวลัทช์</td>
</tr>
</tbody>
</table>
บทที่ 1
ค่านา (Introduction)

1.1 ที่มาของปัญหา

ประเทศไทยเป็นประเทศหนึ่งซึ่งมีทรัพยากรธรรมชาติที่หลากหลาย อาทิพืชลักษณะคุณ
ไอจีและน้ำในการใช้ประโยชน์จากทรัพยากรที่มีอยู่ นั้นคือการทําเกษตรกรรม โดยเฉพาะทาง
ภาคเหนือจากการปลูกข้าว หรือทําสวนผลไม้แล้วนั้น อาทิพืชเลื้อยฝ้อย บางเป็นพืชพื้นเมือง
สร้างรายได้ให้กับเกษตรกรได้เช่นกัน การเลี้ยงสัตว์ในประเทศไทยเกิดขึ้นในปี พ.ศ. 2483 พบว่า
การเลี้ยงสัตว์อย่างพลิกโฉมในหลายจังหวัด ทั้งนี้เพราะเงินลงทุนในการเลี้ยงสัตว์อย่างมีผลมาก
ไม่มาก และประหยัดค่าดิน ผลิตภัณฑ์ในสัตว์ที่ได้จากการเลี้ยงสัตว์มีหลายชั้น เช่น น้ำมัน ไข่ต่าง
ร้อยละของมีดีเป็นต้น แต่การเลี้ยงสัตว์อย่างพลิกโฉมนั้นในยุคสังคมของไทย มีมีการ
ผลิตและมีความเจริญก้าวหน้าอย่างรวดเร็วหลายชั้นเกินและส่งผลให้ผลผลิตมีราคาต่ำ เนื่องจากปัญหาดังกล่าวนี้ เกิดข้อ
ต่ําที่จําเป็นต้องการผลิตนั้นมีความสูงขึ้นตามลำดับ นอกจากปัญหาดังกล่าว การขาดความรู้
ความเข้าใจในผลผลิตจากการเลี้ยงสัตว์ของเกษตรกรมีปัญหาที่สําคัญที่สุดที่นี่ ให้ความรู้
พยาบาลการเลี้ยงสัตว์อย่างถูกต้องหรือพราวโพลิส (propolis) ที่มีความสําคัญทางด้าน
การแพทย์ ซึ่งพบในเกษตรกรที่อยู่ในรูปใครไม่ให้ความสำคัญกับการเลี้ยงสัตว์นี้ เพราะขาดความรู้
ความเข้าใจว่าสัตว์ได้รับประโยชน์จากการเลี้ยงสัตว์และมีขันตอนในการเก็บปุ๋ยจาก แต่เมื่อเปรียบเทียบ
ท้องถิ่นในขั้นตอนการผลิตนี้ให้กับเกษตรกรอย่างถูกต้อง ซึ่งในต่างประเทศมีการนำพราวโพลิสมาใช้
in คุ้มครองทางการแพทย์และป้องกันการติดเชื้อในปัจจุบัน นากษิดิตนี้เป็นประโยชน์ อาการปุ๋ยสุขภาพ
ชนิดที่ประเทศในแปลงใหญ่ นำมาเป็นส่วนประกอบของการป้องกันสิ่ง คร่าทางนา อาหริ์การ
และโลชั่น เพื่อป้องกันสิ่งที่อุ้มต้นจากขั้นตอนการขับขันปุ๋ย อาจใช้เพื่อการด้านอนุรักษ์
วิชาการ ด้านการอัยการสัตว์ เป็นต้น

จากเหตุผลของการขาดความรู้เกี่ยวกับความเข้าใจในการเลี้ยงสัตว์ มีความต้องการของเกษตรกรที่ต้องการ
การศึกษาทางพราวโพลิสจากประเทศไทย นอกจากนี้แล้ว องค์การประเมินและตรวจสอบในการลุยที่ทางชีวภาพของ
พราวโพลิสในแต่ละที่ ที่นั้นแตกต่างกันตามสภาพภูมิประเทศ ภูมิอากาศ และพืชพรรณ (Burdock
et al., 1998) ปัจจัยดังกล่าวเป็นต้นโดยพืชพรรณ ทั้งนี้เพราะว่าสัตว์สัตว์ได้รับการทํา
ดีไม่และน้ามาระสูงหรือเปลี่ยนแปลงไปไม่ได้เป็นพราวโพลิส (Marcucci et al., 1995)
เนื่องจากพืชมีความหลากหลายของพราวโพลิสไม่อาจเป็นไปได้ว่าพราวโพลิสของไทยอาจมี
องค์ประกอบและสรรพคุณแตกต่างจากพราวโพลิสในบริภารพืชหรือวิวัฒนาการก็เป็นได้
ดังนั้นการศึกษาได้สนใจศึกษาองค์ประกอบและสารพันควบคุมโดยเฉพาะถึงตัวแปรอนุภัพโมเลกุลของพรอพอลิสจากประเทศไทย เพื่อเกิดเป็นองค์ความรู้ใหม่และฐานข้อมูลทางความรู้ ทำให้ทราบถึง
องค์ประกอบและสารพันควบคุม และส่งผลช่วยกระตุ้นความสนใจของเกษตรกร เพิ่มผลิตภัณฑ์จากการ
เดินสาย นอกจากนี้ยังอาจทำต่อการผลิตเครื่องดื่มจากพรอพอลิสตามราย

1.2 วัตถุประสงค์
 1. เพื่อศึกษาถูกรู้ในการต้านอนุภัพโมเลกุลของสารกลั่นจากพรอพอลิส
 2. เพื่อศึกษาองค์ประกอบทางเคมีของสารกลั่นจากพรอพอลิส
 3. เพื่อศึกษาปริมาณของ flavonoid และ polyphenol ของสารกลั่นจากพรอพอลิส

1.3 ประโยชน์ที่คาดว่าจะได้รับ
 1. ทราบถึงฤทธิ์ในการต้านอนุภัพโมเลกุลของสารกลั่นจากพรอพอลิส
 2. ทราบถึงองค์ประกอบทางเคมีของสารกลั่นจากพรอพอลิส
 3. ทราบถึงปริมาณของ flavonoid และ polyphenol ของสารกลั่นจากพรอพอลิส
 4. เกิดองค์ความรู้ที่พื้นฐานต่องานวิจัยทางด้านเกษตรกรรม เกษตรกรนำแนวความที่
 เกี่ยวข้องสามารถนำข้อมูลไปประยุกต์ใช้ได้แก่ประโยชน์ได้

1.4 ขอบเขตของโครงสร้างวิจัย
 สารกลั่นพรอพอลิสไม่ว่าจะดจากอนุภัพโมเลกุลจาก DPPH, superoxide anion, hydroxyl anion และ hydrogen peroxide นำมาวิเคราะ
 องค์ประกอบทางเคมี โดยนำวัตถุปริมาณของ flavonoid และ polyphenol รวมทั้งนำแยก
 รายชื่อออกองค์ประกอบของสารกลั่นพรอพอลิสโดยเทคนิคกิจการวิเคราะห์ทางที่-2000
บทที่ 2
การตรวจเอกสาร (Literature Review)

2.1 พรอปอลิส (propolis)

2.1.1 สัณฐานทางกายภาพของพรอปอลิส

พรอปอลิสมีลักษณะเป็นยางข้นเหนียวและมีสีเหลืองจนถึงสีน้ำตาลเข้ม ไม่มีกลิ่น
สีของพรอปอลิสข้นอยู่กับยางไม้ที่ตั้งน้ำมานำจากส่วนต่าง ๆ ของพืช เช่นส่วนของเปลือกไม้ หรือใต้ใบ
(Burdock, 1998) โดยนำมาจากแม่กบเขี้ยวกว่านามาซอมแรมรัง อุดชั้นรอบริม ดังแสดงในภาพที่
2.1 Salatino et al. 2005 แสดงให้เห็นว่าเมื่อถูกละลายลงมีสีของเปิด มีการสร้างพรอปอลิสขึ้นมา
ปิดช่องเปิดนั้น นอกจากนี้พรอปอลิสยังช่วยกั้นความแลก และป้องกันการระบาดของเชื้อโรค
ภายในร่างได้ดี โดยเมื่อมีการติดเชื้อจะสามารถปิดกั้น และมีความเหนียวที่ยึดแน่นตามกระดูก
นั้นออกไปที่เนื้ออร์แกนได้ ดังนั้นผู้ผลิตพรอปอลิสสามารถใช้ประโยชน์สิ่งนี้ได้ ทำให้ผู้ผลิตได้แก้ไขปัญหาของ
ร่างกาย และทำลายเชื้อโรคที่ถูกติดจมยิบในร่างกาย แต่ไม่สามารถนำออกไปที่เนื้ออร์แกนได้ เพื่อไม่ให้
เกิดการเน่าเห็นไม่ได้ยิบ

ภาพที่ 2.1 พรอปอลิสถูกสร้างขึ้นเพื่อปิดช่องเปิดภายในกล่องเดียวกัน
ที่มา : Salatino et al. 2005
2.1.2 องค์ประกอบสำคัญของพรชวลิสและแหล่งที่มาจากของสารสำคัญ

พรชวลิส ประกอบด้วย ต้นลมธาราคยิงไม้และชีวิต ประมาณร้อยละ 55 ชีวิตร้อยละ
และ 30 น้ำมันหอมรีฉี-equiv และเหลืองแกะรีฉี-equiv 5 (Cunha et al., 2004) จากการศึกษาพบตัวสารสำคัญในพรชวลิสประกอบด้วยสารคลาสไซคคลัพที่ปรีatty, polyphenol, terpenoid, steroid และ amino acid

จากการสังเกตพฤติกรรมของมึนในบางศัตรู Kumazawa et al. 2003 รายงานว่ามี
จะเก็บส่วนของพรชวลิส Baccharis dracunculifolia ผลิตเป็นบางชวิพรชวลิส เมื่อมีมัลกัดพบตัว
สารคลาสที่มีความคล้ายคลึงกับสารที่สังเกตจากการ Baccharis dracunculifolia (ภาพที่ 2.2a) ซึ่ง
สารคลาสที่สามารถพบได้ในบางชวิพรชวลิสได้แก่ prenylated derivatives of p-coumaric acid, prenylated derivatives of acetophenone, dipertenes, lignans และ flavonoid (ตาราง
ที่ 1) ซึ่งแตกต่างจากพรชวลิสจากอินทิเปร็ปนครั้งที่มีสาร Prenylated flavonoid เป็น
องค์ประกอบสำคัญและพบว่ามีผลพรชวลิสจากผลของ Macaranga tanarius (Kumazawa et al., 2008) (ภาพ 2.2b และ 2.2c) แสดงให้เห็นว่าพรชวลิสในแต่ละพืชมีองค์ประกอบ
สารคลาสหลากหลายที่ขึ้นอยู่กับชนิดของพืชในแต่ละพืชที่นั้นๆ (Burdock et al., 1998) จากปัจจุบันทำ
ให้พรชวลิส สามารถใช้เป็นยาสมุนไพรได้ เอเชีย และแอฟริกามีองค์ประกอบทางเคมีที่
แตกต่างกัน (Marcucci, 1995) (ตารางที่ 2.1)

ภาพที่ 2.2 พฤติกรรมของมึนในการเก็บส่วนของพืชเพื่อใช้ในการสร้างพรชวลิส

a Baccharis dracunculifolia , ปรากฏ (Kumazawa et al. 2003)
b และ c Macaranga tanarius , โตกีนต้า, ญี่ปุ่น(Kumazawa et al. 2008)
ตารางที่ 2.1 ชนิดของพระพลิศ ชนิดของพืชและสารสำคัญที่พบในพระพลิศแต่ละชนิด

<table>
<thead>
<tr>
<th>พระพลิศ</th>
<th>ชนิดของพืช</th>
<th>สารสำคัญ</th>
<th>ข้างต้น</th>
</tr>
</thead>
<tbody>
<tr>
<td>European propolis</td>
<td>Populus Nigra</td>
<td>Flavonoid aglycone, Phenolic acid, Phenolic ester</td>
<td>Bankova et al. 2002</td>
</tr>
<tr>
<td>(Poplar type)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazilian propolis</td>
<td>Baccharis dracunculiforia</td>
<td>Prenylated derivatives of p-coumaric acid, Prenylated derivatives of acetophenone, Dipertenes, Lignans , Flavonoid</td>
<td>Marcucci et al. 1999, Kumazawa et al. 2003</td>
</tr>
<tr>
<td>Cuban propolis</td>
<td>Clusia rosea</td>
<td>Polyisoprenyted benzophenone</td>
<td>Cuesta et al. 2002</td>
</tr>
<tr>
<td>Taiwan propolis</td>
<td>Not identified</td>
<td>Prenylated flavonoid</td>
<td>Chen et al. 2003</td>
</tr>
<tr>
<td>Japan propolis</td>
<td>Macaranga tanarius</td>
<td>Prenylated flavonoid</td>
<td>Kumazawa et al. 2007</td>
</tr>
<tr>
<td>(Okinawa)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 การสกัดสารและตัวทำละลายที่สำคัญ (Extraction and solvent of active constituents) (รินนา, 2547)

วัตถุประสงค์ของการสกัด คือ เพื่อสกัดแยกสารสำคัญ และเพื่อให้ได้สารสกัดที่มีความ เข้มข้นเพิ่มขึ้น หลังจากที่ทำการเตรียมตัวอย่างแล้วควรเลือกตัวทำละลายที่เหมาะสมกับชนิดของ สารสกัดที่ต้องการสกัด โดยตัวทำละลายเครื่องมือควรมีความสมารถในการละลายสารสำคัญมากที่สุด และไม่ละลายหรือละลายของค์ประกอบอื่นได้น้อย (มี Selectivity สูง) เนื่องจากสารสำคัญส่วน ใหญ่เป็นสารประกอบกลิ่นหรือ ค้นคว้าพบว่ามีวิธีการเลือกสารทำละลายที่ดีจากสารสกัด นอกจากนี้ยังมีความมีวิธีทางด้านกุญแจ ในничลงตัวทำละลายมีหลักการโดยทั่วไป ถ้า สารสำคัญมีคุณสมบัติเป็นสารที่มีควันกีองของตัวทำละลายที่มีขึ้นเช่นเดียวกันในการสกัด ถ้า การทำละลายที่ใช้จะต้องมีความคงตัว มักจะ ยาก ยาก หากไม่เป็นพิษต่อชีวิตและไม่ระเหยง่าย หรือยากเกินไป (รินนา, 2547) ซึ่งต้องทำละลายที่ไม่มีให้คือ

2.2.1 น้ำ

จัดเป็นตัวทำละลายที่ดี หน่วยละและราคากลูก แต่การใช้น้ำอย่างเดียวเป็นตัวทำ ละลายมีข้อเสียหลายประการคือความสามารถในการละลายคุณภพที่ไม่ต้องการละลายได้ยาก เช่น เลือกสารที่ต้องการ สารเสียที่ละลายออกมากนั้น เช่น น้ำตาล ป้ง ส่วนเป็นสารที่ต้อง ของเรื่องต้นที่ไปใช้ในการสกัดได้ยากจากจุดนี้น้ำละลายไม่ได้ ที่จุดมีผู้สูงสุดการให้สารสกัดมีความเข้มข้นสูงจะต้องใช้จุดมีผู้สูงสุดในการละลายน้ำออกไป ซึ่งอาจเกิดความเสียหายกับสารสำคัญได้

2.2.2 แอลกอฮอล์

จัดเป็นตัวทำละลายที่ดีมากเมื่อเปรียบเทียบกับน้ำ แอลกอฮอล์มีข้อดีกว่าน้ำ กล่าวคือ มีความจำเพาะในการละลายมากกว่าน้ำ เนื่องจากสารละลายของแอลกอฮอล์ที่ ต้องการละลายได้มากกว่า มีทฤษฎีกับการกระจายลดของจุดน้ำเบื้องต้นและมากต้องการให้สารสกัด เข้มข้นขึ้นจะเหนื่อยได้ง่าย แต่จะมีราคาแพงกว่าน้ำ

2.2.3 คลอโรฟอร์ม (chloroform) และ อนิเทอร์ (ether)

จัดเป็นตัวทำละลายที่มีชีวช่องทาง ของสารประกอบที่ไม่มีชีวช่องทาง (non-polar component) ไปจนถึงสารที่มีชีวช่องทางหลัง

2.2.4 เมทานอล (methanol)

จัดเป็นตัวทำละลายที่ใช้สกัดสารที่มีชีวช่องทาง เนื่องจากแอลกอฮอล์ แต่โดยไม่ แอลกอฮอล์มากกว่าเพราะรายงานถูกกว่าและเป็นพิษต่อสุขภาพ
2.3 วิธีการสกัด

สำหรับการเลือกวิธีการสกัดควรพิจารณาจากความสามารถในการละลายของสารสำคัญในน้ำยาสกัด ถ้าละลายได้ง่ายนิยมใช้วิธีตัวอุ่นดับ แต่ถ้าละลายได้น้อยก็จำเป็นต้องใช้วิธีการสกัดแบบต่อเนื่อง ความคงตัวของสารสำคัญไม่ต่ำกว่าประมาณ 5 คู่จับของสารสกัด และค่าใช้จ่ายในการสกัดและความต้องการที่จะได้สารสกัดที่สมบูรณ์หรือเกือบสมบูรณ์ หากต้องการสารสกัดเชิงจากการใช้วิธีมาเซราชันก็เพียงพอแล้ว แต่ถ้าต้องการสารสกัดที่เข้มข้นก็ควรใช้วิธีการสกัดแบบต่อเนื่อง (วัฒนา, 2547)

2.3.1 มาเซราชัน (maceration) เป็นวิธีการสกัดสารสำคัญโดยวิธีการเหนี่ยวน้ำยาสกัด น้ำยาสกัดสามารถ vazagi ไปหลายองค์ประกอบออกมาได้ การเหนี่ยวน้ำยาสกัดที่น้ำมันที่ใส่ไว้ในน้ำยาสกัดเพื่อเวลาจะใช้เป็นเวลา 7 วัน หรือจนกระทั่งองค์ประกอบที่ต้องการละลายออกมาหมด ระยะเวลาการเหนี่ยวน้ำยาสกัดก่อนการกรองแยก (marc) อาจได้จากน้ำยาสกัด (ภาคที่ 2.3) วิธีการสกัดที่ใช้เฉพาะสารสำคัญจะ.Amount เพื่อไม่ให้ความร้อนจนทำให้สารสำคัญที่ไม่ใหญ่ควบคุมจนแยกสารสำคัญที่ไม่ใหญ่ควบคุม (วัฒนา, 2547) ซึ่งจะทำให้สารสำคัญที่ใหญ่ควบคุม (Cunha et al., 2004) แต่วิธีการสกัดนี้มักจะไม่สมบูรณ์เนื่องจากไม่ค่อยมีสารเล็กลงที่น้ำยาสกัด

ภาพที่ 2.3 การสกัดแบบมาเซราชัน (maceration)

2.3.2 การสกัดแบบต่อเนื่อง (continuous extraction) เป็นวิธีการสกัดสารที่ใช้ความร้อนข้าว cháy (ข้าวเหนียว, 2547) และวิธีการสกัดแบบต่อเนื่องนี้จะสกัดสารตัวอย่างที่เป็นอย่างเย็นโดยใช้สารละลาย นิยมใช้กับโครงสร้างที่เรียกว่า Soxhlet extractor (soxhlet extractor) (ภาพ 2.4) ซึ่งการทำงานนี้จะเป็นระบบปิดโดยใช้ตัวทำละลายที่มีจุดเดือดต่ำ เมื่อได้รับความร้อนจากฮีตเตอร์แบบแก้ว (heating mantle) หรือหม้ออัลลอยน้ำ น้ำยาสกัดในภาชนะประเภทนี้ไปผ่านกันในลิงค์ที่เรียกว่า thimble ซึ่งบรรจุพื้นอย่างนี้ น้ำยาสกัดผ่านลงตัวอย่างแท้แล้วขึ้นมาในแก้ว (thimble) ซึ่งบรรจุพื้นอย่างนี้ น้ำยาสกัดผ่านลงตัวอย่างแท้แล้...
2.3.3 การสกัดแบบใช้คลื่นเสียงสั้นโดยโครเวฟ (microwave assisted extraction, MAE)

วิธีนี้เป็นวิธีที่ใช้คลื่นเสียงสั้นโดยโครเวฟในการให้ความร้อนแก่ตัวทำละลาย ตัวทำละลายจะเพิ่มความร้อนไปสู่ตัวอย่างทำให้เกิดการแยกขององค์ประกอบทางเคมีของตัวอย่างไปสู่ตัวทำละลาย (Trusheva et al., 2007) วิธีการสกัดแบบนี้เหมาะกับการสกัดองค์ประกอบที่หนักความร้อนและใช้น้ำในการสกัดน้อยไม่สิ่งเปลือง ใช้วิธีในการสกัดน้อยมาก

2.3.4 การสกัดแบบใช้เครื่องสั่นความถี่สูง (ultrasound sonicator extraction, UE)

วิธีนี้เป็นวิธีที่ใช้คลื่นเสียงในการทำปฏิกิริยาเก็บด้วยตัวอย่างแล้วทำให้องค์ประกอบเคมีของตัวอย่างเพิ่มสูงตัวทำละลาย (ภาพที่ 2.5) วิธีการสกัดแบบนี้ใช้เวลาในการสกัดน้อย เหมาะกับการสกัดองค์ประกอบที่ไม่ทนความร้อนและใช้น้ำในการสกัดน้อยไม่สิ่งเปลือง (Trusheva et al., 2007)

ภาพที่ 2.5 การสกัดแบบใช้เครื่องสั่นความถี่สูง (ultrasound sonicator extraction, UE)

2.4 การทำให้สารStartTimeด้วยการสกัด (preconcentration)

สารสกัดอย่างหนึ่งที่ได้จะมีปริมาณมากและเจือจางทำให้นำไปแยกองค์ประกอบได้ไม่สะดวกและไม่มีประสิทธิภาพ ซึ่งต้องทำให้ให้มีความเข้มข้นเพียงก่อนด้วยวิธีดังนี้ (วัฒนา, 2547)

2.4.1 การระเหย (free evaporation) เป็นภาระตัวทำละลายออกจากหัวน้ำสกัดโดยใช้ความร้อนจากหม้ออัลลอยน้ำ (water bath) วิธีนี้อาจทำให้สารสกัดละลายด้วยได้เนื่องจากอุณหภูมิสูงจนเกินไป และหากใช้สารละลายอินทรีย์ในการสกัด การระเหยโดยใช้ความร้อน
โดยตรงแล้วความร้อนอาจเกิดอันตรายได้ง่าย นอกจากนี้ควรคำนึงถึงอุณหภูมิที่จะทำให้เกิดการสาลายด้านของสารสำคัญเมื่อใช้ความร้อน

2.4.2 การกลั่นในสุญญากาศ จัดเป็นวิธีที่นิยมมากที่สุดในการระเหยสารด้วงหาละลายออกจากน้ำยาสกัดโดยการกลั่นที่อุณหภูมิต่ำ พร้อมทั้งลดความดันลงให้เกิดเป็นสุญญากาศ โดยใช้เครื่องสุญญากาศเครื่องมือเรียกว่าโรตแปรอเรเตอร์ (rotary evaporator) (ภาพที่ 2.6) ซึ่งประกอบด้วยส่วนต่าง ๆ 3 ส่วนคือ ภาชนะบรรจุสารสกัดอยู่ภายในที่เก็บกลั่นส่วนคอนเดนเซอร์หรือส่วนควบแน่นโอโซนละลาย และภาชนะรองรับสารละลายหลังจากการกลั่น โดยการสกัดอย่างหนาที่บรรจุอยู่ในภาชนะจะเขยรลงในหม้อต้มเหลวหรือที่ควบแน่นอุณหภูมิต่ำ และจะหมุนตลอดเวลาที่ทำการ ที่จะให้มีการกระจายความร้อนอย่างทั่วถึงและเป็นเวลา ภาชนะบรรจุสารอย่างหนาจะต้องเข้ากับส่วนควบแน่น ซึ่งมีระบบทำความเย็นหลอดคอเวยรา ปลายของส่วนควบแน่นจะมีภาชนะรองรับโดยระบบจะต้องเข้ากับระบบสุญญากาศ สารที่ระเหยออกจากการบรรจุควบแน่นที่คอนเดนเซอร์และทยอยลงภาชนะรองรับสารละลายหลังจากการกลั่น ซึ่งสารละลายต่างๆสามารถนำไปทำให้เป็นสุญญภูมิและสามารถกลั่นมาได้ใหม่ได้

ภาพที่ 2.6 เครื่องโรตแปรอเรเตอร์ (rotary evaporator)
ที่มา: http://en.citizendium.org/images/3/3b/Rotary_Evaporation.png
2.5 การกำจัดไข่ (wax extraction)

น้ำมันที่ได้จากการกำจัดไข่ดังกล่าว นั้นจะมีวิธีปฏิบัติที่ตามที่จะได้ไข่กิจการจำกัดกันและลดผลกระทบของไข่ จากนั้น

นำไปประกอบกับอุณหภูมิประมาณ 0 องศาเซลเซียส เพื่อกำจัดไข่ออกจากสารภัฏ (Cunha et al. 2004)

2.6 โคมนาทกฟอร์ม (chromatography) (ศูนย์การเกษตร, 2540)

โคมนาทกฟอร์มเป็นเทคนิคที่นิยมใช้มากในปัจจุบัน สำหรับทำการให้บริการ แยกสารผสม

ออกจากกันและระบุ (identify) สารขั้นต่ำและสารขั้นสูง เป็นต้นว่า amino acid, lipid, carbohydrate, alkaloid ฯลฯ คั่วว่า โกรมาทกฟอร์ม แปลว่า การแยกออกเป็นสี (the production of color scheme) ทั้งนี้เนื่องจาก Tswett ชาวรัสเซีย ผู้พัฒนาเทคนิคนี้เป็นคนแรกในปี ค.ศ. 1906

ได้แยกสารที่สีกัดออกจากกันไม่ออกได้เป็นสีต่างๆ ในดอกดั้นน์ นอกจากนี้ นอกจากจากใช้แยกสารที่มีสีได้แล้ว เทคนิคโกรมาทกฟอร์มยังสามารถแยกสารที่ไม่มีสีได้ด้วยดัว

วิธีทางโกรมาทกฟอร์มเกี่ยวข้องกับการแยกแขก (distribution) ของสารระหว่างสองเพล

โดยเพลที่อยู่ใต้กับที่เทียมว่า เพลตที่ (stationary phase) ส่วนอีกเพลทหนึ่งคือที่ใส่ เขยกล้า

เพลตเลื่อนที่ (mobile phase) เราสามารถแบ่งโกรมาทกฟอร์มอย่างกว้างๆ ได้เป็น 2 พฤกติ ตาม

ลักษณะของเพลทที่เกี่ยวข้อง คือ

ก. โกรมาทกฟอร์มแบบบุคคล (adsorption chromatography) ในการนี้ เพลตที่เป็น

ของแข็ง เช่น ตัวอักษรหรือสิ่งต่างๆ ส่วนเพลตเลื่อนที่อาจเป็นแก้วหรือเป็นของเหลวได้ ดีอย่าง

ได้แก่ column chromatography, thin layer chromatography (TLC), gas-solid chromatography

ข. โกรมาทกฟอร์มแบบแบ่งส่วน (partition chromatography) ในการนี้ เพลตที่เป็น

ของเหลว ส่วนมากจะเป็นน้ำหรือสิ่งต่างๆ เช่น กระดาษ (supporter) ที่พิมพ์ เช่น สีน้ำมัน (kieselguhr) หรือเซลลูโลส (cellulose) ส่วนเพลตเลื่อนที่อาจเป็นแก้วหรือของเหลวได้ ดีอย่าง

ได้แก่ paper chromatography, gas-liquid chromatography

เทคนิคที่โกรมาทกฟอร์มที่ทำบรรดาของแข็งและไม่มีสีใช้เครื่องมือที่มีราคาแพง เช่น

1. โกรมาทกฟอร์มแบบบุคคล (column chromatography)
2. โกรมาทกฟอร์มแบบแบ่งส่วน (thin layer chromatography, TLC)
3. โกรมาทกฟอร์มแบบบุคคล (paper chromatography)
หินเลอออฟเครดิมานิกาฟิกาที (TLC) วิธีนี้ทำให้ตัวดูดซับที่เป็นของแข็งเป็นเชื้อหรือเป็นพิษมันบางๆ ขนาด 0.25-1 mm ติดอยู่บนแผ่นกระดาษ โดยมักจะใช้แผ่นกระดาษไมโครซอฟโลกเพราะสะดวกและรวดเร็ว แล่นนำสารตัวอย่างที่จะแยกฉันเล็กน้อยไปจุด (spot) บนตัวดูดซับที่ใส่ปลายปากกาช่วงหนึ่ง ใส่สีรุดที่ใช้ (cappillary tube) เมื่อตัวดูดซับจะแห้งแล้ว สารจะติดอยู่บนตัวดูดซับ น้ำแม้สระวัณโรคที่ไม่ใช้ในสารที่มีตัวที่ละลายในน้ำจะได้ผลดี โดยใช้ระบบตัวหยดลงจากตัวอย่าง สารละลายชูมันจะขึ้นมาขึ้นบนแผนภาพตั้งแต่ตัวดูดซับที่มีสารต่างๆ จะเคลื่อนที่ตามส่วนตัวที่ละลายตัวเร็วที่ยิ่งกัน ซึ่งถูกกระรอกตัวอย่างสารตัวอย่าง ดีที่จะละลายและตัวดูดซับ

การจะทราบว่าสารที่ไม่มีสีเคลื่อนที่อยู่ตรงไหน ทำได้หลายวิธี เช่น ตรงตัวช่องแสงอาทิตย์ หรืออุณหภูมิประเทศไทยean ติดอยู่ในแสงแดด (ในกรณีที่สีน้ำที่ทำให้สารนั้นจะแสดงได้) หรือเพราะดูดซับขัดกันบางเนื้อที่เปลี่ยนแปลงตัวดูดซับสำหรับตรวจสาร หรือเคลื่อนดูดดูดซับด้วยสารฟลูออเรสเซนซ์ เมื่อสารอยู่ที่ตัวแห้งไม่ได้ ตรงตัวจะมีสิ่งจำพวกสารไม่ปกติที่ไม่เป็นเอมานิกาฟิกาฟิกานื้อเปลือยป่า น้ำแม้สารตัวดูดซับที่มาใช้ในกรณีเป็นตัวที่ไม่ใช้ในสาร สารละลายชูมันจะเคลื่อนตัวอย่างย่อที่มีดีเคยไม่ได้ (reversible weak complex) ที่ไม่เป็นไปได้ที่จะมีสิ่งนี้มีทาง cara เวลาที่ใช้วิธีนี้เป็น 5-10 วินาที หรืออาจนานถึง 10-15 นาที แล่นทำสารนั้นดูดพื้น (absorb) ใดได้เนื่องจากวิธี)

ตัวดูดซับที่ใช้อาจเป็นชิ้นกล้ากึ่งหรืออัญมณี ในกรณีของชิ้นกล้ากึ่งหรืออัญมณีในการดูดขับ ซึ่งอยู่บนกล้ากึ่งหรืออัญมณีมีหลาย เลยสามารถในการดูดขับจะต้องในการตรวจแน่นี้ไม่ได้ เลยแต่แอน倪เอนเนี่ยนที่ดีอย่างนี้เพียงเล็กน้อย เลยทำเนื่องแอนเนี่ยนที่ดีอย่างนี้เพียงเล็กน้อย (activate) โดยทำให้รัน เช่น ฉีดออกไข่ฟ้า 60 วินาทีหรือนำใบใยในแคปตาคที่อุณหภูมิประมาณ 100-120°C ประมาณ 10 นาที แอนเนี่ยนที่ดีเลย์ให้ตัวอย่างจะส่งผ่านผ่าน แล่นทำเนื่องแอนเนี่ยนที่ดีอย่างนี้เพียงเล็กน้อย ทำเนื่องแอนเนี่ยนที่ดีอย่างนี้เพียงเล็กน้อย (activity) ไปบ้า ให้เนื้อก้อนกึ่งหรืออัญมณี โดยอัปคลอดฟ้าหรือเข้าเก็บอย่างกล่าวแล้ว แต่ตัวที่ดูดซับยังต้องอัญมณีที่เหมาะสม เช่น คลอโรฟอร์ม เมื่อยกเคลื่อนตัวดูดซับกลอนแอนเนี่ยนต่างๆ ขึ้นไปก่อให้ คลอโรฟอร์มระเหยไปบนผนัง มันทำเนื่องแอนเนี่ยนไม่ได้พันที่ไม่ต้องทำให้รันก่อน

ตัวทำลายที่ใช้ได้มาได้มาก ตัวทำลายหลายตัวระดับจะทำให้อธิบายในการแยกสารต่างๆ ออกจากตัวดูดซับหรืออัญมณีสารละลาย (eluting power) ไม่เล็กกัน ตัวทำลายตามพันธุ์ที่ใช้เรียงตามลำดับของอัญมณีสารละลายสูงขึ้น (polarity) จากนั้นไปห้ามก็ คือ

1. petroleum ether หรือ hexane 2. cyclohexane
3. carbon tetrachloride 4. benzena
5. chloroform 6. ether
7. acetone 8. ethanol
9. methanol 10. water
11. organic acid

จาต้องการตัวหัวละลายที่มีอัตราการระเหยม่วง อาจต้องผสมผสานกับสารละลายของชนิด
หรือหากต้องการขั้นต่ำกับแบบซึ่งและคาร์บอนแอลกอฮอล์หรือเป็นสารที่มีพิษ เลยใช้ตัวละลายที่วง

วิธีนี้ใช้แยกสารจำแนกชนิดออกจากกันและใช้สำหรับระบุสาร พบเงาเวลาที่ใช้ตัวลง
ขึ้นเดี่ยวขึ้น ใช้ระบบตัวหัวละลายที่เหนือกัน ที่มีหมุนภูมิและภาวะเดียงกัน สารหนึ่งๆ จะมีค่า
"rate of flow" หรือ ค่า R_f (R_f value) คงที่

$$R_f = \frac{\text{ระยะทางที่สารเคลื่อนที่}}{\text{ระยะทางที่ตัวหัวละลายเคลื่อนที่}}$$

2.6.1 การศึกษาพืชพืชต่ำต่ำประเทศเกินและเบียนวัตรกรรมทางกายภาพ (Gomez-Caravaca
et al., 2006)

ในการศึกษาถึงการกระจายสะสมของพืชพืชต่ำต่ำประเทศเกินและเบียนวัตรกรรมทางกายภาพใน
น้ำใน stationary phase และ mobile phase แตกต่างกันใจหรูบกิจจะสร้างขององค์ประกอบ
ของสารในพืชพืชต่ำต่ำประเทศเกินนี้ แต่อย่างไรก็ตาม silica gel (precoated solvent) นิยมนำมาใช้เป็น
stationary phase เพื่อให้การแยกสารกลุ่ม apolar flavonoid เช่น flavonols และ isoflavonols
ขณะที่ mobile phase ในสารศึกษาถึงการกระจายสะสมของความหลากหลายซึ่งได้แก่
ethanol/water (65:45, v/v) petroleum ether/ethyl acetate (70:30), petroleum ether/
acetone/formic acid (35:10:5), chloroform/ethyl acetate (60:40), toluene/chloroform/
acetone (40:25:35), n-hexane/ethyl acetate/acetic acid (31:14:5) หรือ (60:40:3) และ
chloroform/methanol/formic acid (44.1:3.2:3.5)

การสังเกตุคุณของสาร (visualization) สามารถทำได้โดยการมองภาพใต้คลื่นแสง UV และ
สามารถใช้สารละลายชนิดเพื่อทำให้สามารถสังเกตการเคลื่อนที่ได้
2.7 คุณสมบัติและสรรพคุณของพรอพอลิส์

2.7.1 ดูฤทธิ์ต้านเชื้อแบคทีเรีย เชื้อไวรัส และเชื้อรา

เนื่องจากในปัจจุบันนั้นผู้ผลิตมีการเสริมด้วยตัวเรือนเพิ่มปริมาณมากขึ้น ซึ่งทำให้เป็นปัญหาสำหรับการย้ายมากทางด้านการแพทย์ งานวิจัยของ Cushnie and Andrew (2005)พบว่าการประกอบพรอพอลิส์ในพรอพอลิส์มีดูฤทธิ์ในการยับยั้งการเจริญเติบโต หรือการเพิ่มปริมาณของเชื้อแบคทีเรีย เชื้อไวรัส และเชื้อรา โดยปัจจุบันไม่ได้พบการใช้ยาต้านเชื้อของผู้ผลิต (Kujumgieve et al., 1999)

2.7.2 ดูฤทธิ์ต้านการเกิดปฏิกิริยาออสตีแคลซัน

สารประกอบพรอพอลิส์ในพรอพอลิส์มีคุณค่าสูงในการป้องกันการทำงานของเส้นดึงให้อยู่ในสภาพที่ดี โดยเสริมประสิทธิภาพการทำให้สารของเส้นดึงด็อด ปฏิกิริยาออสตีแคลซันเป็นสารที่มีส่วนช่วยให้ร่างกายเติบโตและแก้ไข เพาะฤทธิ์อนุกรมมูลค่าในเซลล์จะถูกยับยั้งไม่สามารถปฏิกิริยาหน้าที่ได้อย่างมีประสิทธิภาพ นอกจากนี้ยังช่วยป้องกันริ้วรอยที่เป็นอันตรายต่อร่างกาย อันเกิดจากการขาดธาตุของเชื้อผู้ผลิต (Cushnie and Andrew, 2005)

2.7.3 ดูฤทธิ์ต้านการอักเสบ (anti-inflammatory)

ผลการขับเคลื่อนของเซลล์เมื่อผู้มีสมอง ต่างๆ ยังจำเป็นต่อการเกิดโรคทางภันคุณและโรคต่างๆ เช่น การเคลื่อนย้ายของเซลล์เมื่อเกิดจากการอักเสบของเซลล์เมื่อผู้มีสมองกลไกที่พร้อมไม่อาจต่อการอักเสบได้ ทำให้เนื่องจากเซลล์ผู้มีสมองที่เข้าอยู่ด้านต่าง (Mankhetkorn, 2004)

จากคุณสมบัติเหล่านี้ได้ว่าพรอพอลิส์เป็นสารที่มีดูฤทธิ์ต้านอนุกรมมูลค่า และมีประโยชน์ในการต้านต่างๆ มากมาย อีกทั้งยังมีสรรพคุณทางการแพทย์ เช่น มีดูฤทธิ์ต้านเชื้อแบคทีเรีย เชื้อไวรัส และเชื้อรา ดังนั้นหากมีการศึกษาและศึกษาจากพรอพอลิส์มาใช้ประโยชน์ในการปรับปรุงพัฒนา จะสามารถแก้ปัญหาที่เกิดขึ้นกับสุขภาพได้
2.8 อนุมูลอิสระ (free radicals)

2.8.1 ความหมายของอนุมูลอิสระ (โดย วิชิตวัชรยุทธ, 2650)

อนุมูลอิสระหรืออนุมูล คือ อะตอม นิวคลีอิกหรือสารประกอบที่มีเรือสี่ส่วนดีวยอนุมูลอิสระ ที่มีความสามารถในการต่อต้านสารพัดทั้งงานเสีย ซึ่งรวมถึงสารของโภชนาการและชีวิตของของเหลวทางสิ่งเหล่านี้ดีกว่าในบุคคลสมัยนี้ ซึ่งจากนั้นผลดีที่มากดีสุดของซีเรียพบว่ามีสิ่งแวดล้อมที่มีผ่านชั้นหมาย 2 ชั้นต่อแล้วแต่ชั้นระดับแรกที่เข้ากินกลุ่มเป็นอนุมูลอิสระโดยใช้การหักหักตรวจรูปแบบระบบและสารประกอบต่างของอนุมูลอิสระที่จะต้องมีแบบอย่างที่เหมาะสมและที่จะต้องปรับปรุงในการต่อต้านอิสระที่มีอยู่ในบุคคลในชั้นความเห็น (ภาพที่ 27)

ภาพที่ 27 อนุมูลอิสระ (free radicals)

อนุมูลอิสระที่เกิดขึ้นในสภาวะเป็นประจำทางพลังงานและอนุมูลในการละลายในสารพัดที่มีจริงสิ่งต่างๆ โดยไม่ท้าทายและประณาม สัญชาติทางทฤษฎีของอนุมูลอิสระคือ อะตอมในชั้นระดับของอนุมูลอิสระซึ่งแสดงตัวอย่างที่ต่างจากแนวคิดที่มีความสมบูรณ์แบบ และสมบูรณ์แบบที่มีความสมบูรณ์แบบได้แก่ อนุมูลอิสระเป็นอนุมูลอิสระที่มีความสำคัญทางสุขภาพที่มีอยู่ในอนุมูลอิสระ ซึ่งมีความอิสระตัวอย่างที่มีความสำคัญทางสุขภาพ ได้แก่ อนุมูลอิสระเป็นอนุมูลอิสระที่มีความสำคัญทางสุขภาพ ซึ่งมีความอิสระตัวอย่างที่มีความสำคัญทางสุขภาพ (O₂⁻) อนุมูลอิสระหรือ (OH) อนุมูลอิสระและเจลเป็นอนุมูลอิสระที่มีความสำคัญทางสุขภาพ
การกิจกรรมในสมองมีหลากหลายที่แตกต่างกันดังนี้

1. การแยกของหลายธาตุจากเกลือแบบโมโนไซคลิก (Homolysis)

 \[\text{A} : \text{B} \rightarrow \text{A}^{-} + \text{B}^{+} \]

2. การเหงื่อเลือดของ 1 ตัวที่ได้แบ่งออกในบางส่วนที่ไม่ใช่

 \[\text{A} + e^{-} \rightarrow \text{A}^{+} \]

3. การซึมมีผลกับการเกิดของ 1 ตัวจากกิจกรรมที่เป็นกลุ่มทางไฟฟ้า

 \[\text{A} \rightarrow \text{A}^{*} + e^{-} \]

2.8.2 ชนิดของอนุมูลอิสระและสารที่เกี่ยวข้อง

อนุมูลอิสระและสารที่เกี่ยวข้องกับอนุมูลที่มีบทบาททางชีวิตต้องแบ่งออกเป็น 3 กลุ่มใหญ่ คือ กลุ่มที่มีส่วนร่วมเป็นปฏิกิริยาต่อต้าน (reactive oxygen species, ROS) กลุ่มที่มีส่วนร่วมเป็นปฏิกิริยาต่อต้าน (reactive nitrogen species, RNS) และกลุ่มที่มีส่วนร่วมเป็นปฏิกิริยาต่อต้าน (reactive chlorine species, RCS) นอกจากนี้การศึกษาทั่วไปพบว่ามีสารหลายชนิดที่ไม่ย่อยในสารของอนุมูล แต่มีความเกี่ยวข้องที่เป็นผลลัพธ์ของอนุมูล และมีความสัมพันธ์กับการเกิดความเสียหายต่างๆซึ่งเกิดเป็นสาเหตุที่ทำให้เกิดอนุมูลในสมอง เนื่องจากมีความค้างคดเข้า สารตัวตัวกันได้ เช่น โปรตีน หรือสารที่ทำปฏิกิริยากันสารซึ่งมีกิจการเป็นอนุมูล เช่น ไมโครเวิร์สตริคซูดัส รวมถึงสารที่เป็นผลลัพธ์ของอนุมูลที่มีอันตรายสูง ได้แก่ แบรกซิข์และซิแล็กซ์ โดยรวมกันการต่อต้านปฏิกิริยา (reactive species, RS)

2.8.3 อนุมูลอิสระในกระบวนการปอดวิชีวิต

การเกิดอนุมูลอิสระในสิ่งมีชีวิตเกิดจากการแตกต่างของเซลล์ในการใช้งานอย่าง อนุมูลอิสระ แบบอนุมูล (O₂⁻) อนุมูลอิสระ知道了 (OH⁻) เป็นอนุมูลที่พบมากที่สุดในเซลล์ของสัตว์มีชีวิต สามารถทำให้เกิดอนุมูลอิสระหลายลักษณะดังนี้

2.8.3.1 ไม่ได้คุมผลหรือทำให้เกิดเป็น

ไม่ได้คุมผลหรือทำให้เกิดเป็นผล ผ่านกระบวนการลดอิสระอีกซึ่งจะถูกต้อง ไม่ได้คุมผลหรือทำให้เกิดเป็นผล ผ่านกระบวนการลดอิสระอีกซึ่งจะถูกต้อง ไม่ได้คุมผลหรือทำให้เกิดเป็นผล ผ่านกระบวนการลดอิสระอีกซึ่งจะถูกต้อง
อินเท็กซ์ ซึ่งทำให้เกิดการซึมไหลของอนุมูลอนุภาคออกซิเจน (O₂⁻) เข้ามาทำให้เกิดการปฏิกิริยาที่ระบบการป้องกันจะรับได้ (ภาพที่ 2.8)

ภาพที่ 2.8 อนุมูลอิสระที่เกิดขึ้นในไซต์แอนตี้ออกซิไดант
ที่มา: http://www.aapsj.org/View.asp?art=aapsj080362

นอกจากนี้อนุมูลออกซิเจน (O₂⁻) สามารถถูกกั้นกันได้โดยตัวเหนือที่มีกลุ่ม [4Fe-4S] ทำให้เกิด
เหตุในระดับ (Fe²⁺) ซึ่งเป็นผู้ทำให้เกิดอนุมูลออกซิเจนได้จากนั้นจะเกิดปฏิกิริยาหมักดิน
(Fenton reaction) และเกิดอนุมูลไฮโดรเพลช сла (·OH) โดยปฏิกิริยาไฮโดรเพลช (Haber-Weiss) จากนั้นจะถูกลด
ออกได้

ปฏิกิริยาหมักดิน (Fenton reaction)

Fe²⁺ + H₂O₂ → Fe³⁺ + ·OH + OH⁻

ปฏิกิริยาไฮโดรเพลช (Haber-Weiss)

O₂⁻ + H₂O₂ → O₂ + ·OH + OH⁻

2.8.3.2 กระบวนการตามยนต์ซิม

อนุมูลออกซิเจน (O₂⁻) สามารถถูกกั้นกันได้ด้วยกระบวนการตามยนต์ซิมที่ใช้อนุมูล
ได้แก่ กระบวนการตามยนต์ซิมของ arachidonic acid โดยอนุมูล cyclooxygenase (COX) ไปเป็น
prostaglandin และ leukotriene กระบวนการตามยนต์ซิมของ xanthine และ hypoxanthine โดยแอนเต็ม
ออกซิ딘 oxidase ในโปรตีน acid และการทำงานของ NADPH oxidase พบอยู่ในกลุ่มการเกิดอนุมูลอิสระ ชุดปราบยาออกซิเดน
(O₂⁻) จากกระบวนการเหล่านี้มีการปรับเปลี่ยนในอันดับต่ำการอิทธิพลต่อเซลล์ และไม่เกิดขึ้นในเซลล์หรือสารประกอบของอนุมูลอิสระที่มีอยู่ในปัจจุบัน

1. การระลอกหนีฟิสิกะการสรุปของประเทศและระบบเส้นประสาท

การควบคุมและการสั่นเสี้ยนก้าวทาง การทบทวนขั้นตอนของการสรุปของประเทศและการสั่นเสี้ยนก้าวทาง มีการเกิดอนุมูลอิสระในอันดับต่ำการอิทธิพลต่อเซลล์ เป็นการดำเนินการให้ได้ผลทางการสั่นเสี้ยนก้าวทางสามารถนำไปใช้ในการสั่นเสี้ยนก้าวทางโดยตรง และอาจทำให้เซลล์น้ำหนักในอันดับต่ำการควบคุมก้าวทาง ผู้ที่มีการสั่นเสี้ยนก้าวทางในอันดับต่ำการสั่นเสี้ยนก้าวทาง และอาจทำให้เซลล์น้ำหนักในอันดับต่ำการควบคุมก้าวทาง

2. มาจากผลิตีพิษของสารเส้นประสาท

มาจากผลิตีพิษของสารเส้นประสาทในแหล่งเส้นโคฟีพื้นที่ให้เกิดอนุมูลอิสระที่อยู่ในรูป

2.8.3.3 สารพิษต่อเซลล์ประสาท (neurotoxin)

ความเป็นพิษต่อเซลล์ที่หลักแหล่งสารพิษของสารเวชภัณฑ์จากการเกิดอนุมูลอิสระและการสั่นเสี้ยนก้าวทางที่มีความต้องการในอันดับต่ำการสั่นเสี้ยนก้าวทาง การสั่นเสี้ยนก้าวทางในอันดับต่ำการสั่นเสี้ยนก้าวทางเป็นไปในสภาวะที่ต่ำการสั่นเสี้ยนก้าวทางในอันดับต่ำการสั่นเสี้ยนก้าวทางต่ำการสั่นเสี้ยนก้าวทาง

2.8.3.4 ภาวะขาดเลือด (ischemia/reperfusion, IR)

ปัจจุบันไม่มีข้อมูลเพียงพอในอันดับต่ำการสั่นเสี้ยนก้าวทางและพิษพันธุกรรมในอันดับต่ำการสั่นเสี้ยนก้าวทาง
เฉพาะที่ ไม่มีรหัสแคลเรียหรือความมีประสิทธิ ทำให้ระดับ ATP ในเซลล์ลดลง ATP ที่มีอยู่แล้วถูกเปลี่ยนเป็น AMP อย่างรวดเร็วโดยปฏิกิริยา dephosphorylation AMP ถูกตัดออกโดยไม่ต้องติดเชื่อมเป็นระดับต่ีนและ
ไปสะสมที่แล้วต่ํา

การที่ ATP ลดลงจะส่งผลทำให้เซลล์สูญเสียพลังงานในเซลล์เพิ่มมากขึ้น ซึ่งทำให้เซลล์รวมทุกๆ
ตัวเกิดการเปลี่ยนแปลงและตัวแปรที่เกิดขึ้นอาจมีหลายระดับที่เกิดขึ้นในระยะสั้นและการดูดซับ
ไว้ (reperfusion) ทำให้สารไม่เพียงที่ถูกเปลี่ยนเป็นแซนด์และกัดตัวรีค ทำให้สุขภาพของเซลล์และ
แข็งแรงขึ้น เมื่อมีการเปลี่ยนและสื่อสารต่ออีกฝ่ายอย่างต่อเนื่องจะระดับการเกิดอนุมูลสูญเปลี่ยนลิโซเม (O_2^-)

อนุมูลสูญเปลี่ยนลิโซเม (O_2^-) มีความเป็นพิษต่อเซลล์เพราะยาอัดและสามารถยึดต้น
ปฏิกิริยาของกัลเซียมอิโซเมที่เป็นพิษและยึดต้น อนุมูลสูญเปลี่ยนลิโซเม (O_2^-) ทำปฏิกิริยาภัก
ในภูมิปัญญาต่อภาวะแอค ได้เป็นแพร่ร้อยที่ไม่แพร่ (ONOO^-) ซึ่งทำให้เกิดอันตรายกับเซลล์และเนื้อเยื่อ
สามารถต้านด้วยตัว ทำให้การรับผลดีเป็นต้น ดังนั้นแนวทางการป้องกันเชื้อนานาการใช้สารต้านอนุมูล
ควบคุมปริมาณ อนุมูลสูญเปลี่ยนลิโซเม (O_2^-) และควบคุมปริมาณ แพร่ร้อยที่ไม่แพร่ (ONOO^-) ด้วยสาร
ที่มีผลต่อเซลล์ในภูมิปัญญาต่อภูมิ

2.3.3.5 การขึ้นและลงจำกภูมิ

ในการขึ้นและลงจำกภูมิ สามารถทำได้โดยใช้การขึ้นและลงจำกภูมิในโครงสร้างเซลล์ อนุมูล
สูญเปลี่ยนลิโซเม (O_2^-) ทำปฏิกิริยาภักในภูมิปัญญาต่อ ได้เป็นแพร่ร้อยที่ไม่แพร่ (ONOO^-) ซึ่งละลายทำให้
เกิดผลเสียกับตัวต่างๆของเซลล์

2.4 อําเนียจากอนุมูลสูญเปลี่ยนลิโซเม

ความเสี่ยงจากสารสูญเปลี่ยนลิโซเมที่เกิดขึ้นจากอนุมูลสูญเปลี่ยนลิโซเม (O_2^-) ซึ่งเป็นอนุมูลที่เกิดขึ้นในเซลล์ แบ่งได้เป็น ความเสี่ยงจากอันตรายที่เกิดโดยตรง และความเสี่ยงจากอันตรายที่เกิดขึ้น
จากปฏิกิริยาซึ่งโดยมีอนุมูลสูญเปลี่ยนลิโซเม (O_2^-) เป็นอนุมูลหนึ่งในกิจกรรมภักที่ทำให้เกิด
อนุมูลสูญเปลี่ยน ซึ่งทำให้ความเสี่ยงต่อภูมิปัญญาต่อ นอกจากนี้ยังอาจทำให้เกิดการต้านทานต่อภูมิ
สิ่งขึ้น ที่สามารถต้านกับตัวต่างๆที่เกิดจากปฏิกิริยาลิโซเมที่สูญเปลี่ยนและเสริมภูมิขึ้นด้วย

2.4.1 อําเนียจากปฏิกิริยาของอนุมูลสูญเปลี่ยนลิโซเม (O_2^-)

ความเป็นพิษต่ออนุมูลสูญเปลี่ยนลิโซเม (O_2^-) เกิดขึ้นได้โดยตรงกับสารที่ไม่แพร่ต่างๆ เช่น
สิ่งพิษ สารสูญเปลี่ยน catecholamine และต่างๆเป็นต้น นอกจากนี้ยังสามารถระดับประสิทธิภาพทาง
ท่าทางของอนุมูลสูญเปลี่ยนต่างๆที่ต้านอาศัยได้ด้วย เช่น เอนไซม์ของเรียด แอนไพรอกูลิน
โพร็อกซิลส์ เป็นต้น อนุมูลอิสระออกไซเด็นที่ (O$_2^\cdot$) มีบทบาทสำคัญในการก่อให้เกิดการขัดแย้งและการแพร่ ทั้งแบบอิสระชนิดและเรื้อรังทั้งนี้ไม่ส่งผลกระทบเฉพาะเซลล์ โดยมีกลไกหลากหลาย เช่น ทำให้เซลล์ผ่า
ณ หลอดเลือดสมองมีมีการแต่ละกันไป คนมีกลไกจุดที่ทำหน้าที่ในการจับและขาดกัน เป็นต้น

28.4.2 อันตรายจากอนุมูลอิสระที่เกิดจากอนุมูลออกไซเด็นที่ (O$_2^\cdot$) เป็น
อนุมูลอิสระ

อนุมูลออกไซเด็นที่เกิดจากอนุมูลออกไซเด็นที่ (O$_2^\cdot$) เป็นอนุมูลอิสระที่ได้แก่ อนุมูลออกไซเด็นที่ไม่想法ผ่านออกไซเด็น และเป็นอันตรายในแพทย์ สารเคมีที่มีความใจด่างและมีฤทธิ์สูงกว่าอนุมูลอิสระที่ (ภาพที่ 2.9)

![Diagram](http://www.chinaphar.com/1671-408325977.htm)

ภาพที่ 2.9 อนุมูลออกไซเด็นออกซิเด็นเป็นอนุมูลอิสระของอนุมูลออกซิเด็น

อนุมูลออกซิเด็น (•OH)

เป็นอนุมูลที่มีความDamageและในทางปฏิบัติมีความเป็นพิษซึ่งถ้าอันตรายต่อเซลล์

กลักอนุมูลอิสระที่มีกับอนุมูลออกซิเด็น (•OH) 2ปฏิกิริยาคือ สารเคมีและเรื่องกล่าว

ว่าอนุมูลออกซิเด็น (•OH) เกิดจากปฏิกิริยาแอลกอฮอล์อนุมูลออกซิเด็น (O$_2^\cdot$) และ โคโลนเหล็กออก

ชนิด เนื่องจากช่องร่างกายที่เป็นต้องปฏิบัติการมีการปฏิกิริยากว่าปฏิกิริยาออกซิเด็น (Haber-Weiss)

ปฏิกิริยาออกซิเด็น (Haber-Weiss)

$\text{O}_2^\cdot + \text{H}_2\text{O}_2 \rightarrow \text{O}_3 + \cdot\text{OH} + \cdot\text{OH}$
ปฏิกริยาชินที่สองคือปฏิกริยาแฟนตัน (Fenton reaction) ซึ่งกล่าวว่าการคุณสมบัติในส่วนของสารประกอบซึ่งต่อหน้าที่เป็นตัวต้านปฏิกริยา

ปฏิกริยาแฟนตัน (Fenton reaction)

\[\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \cdot\text{OH} + \cdot\text{OH} \]

ใช้ในจ่ายเปรียวออกไซด์ (H₂O₂)

เอนไซม์ SOD ทำหน้าที่เปลี่ยนโมเลกุล \(\text{O}_2^- \) ให้เป็นโมเลกุลเปรียวออกไซด์ (H₂O₂) ซึ่งสามารถเป็นได้ทั้งสุนัขที่มีและสารชีวิตตัวหนึ่งไม่ที่มิได้ต้านทานสารต้าน sos เลยไม่ได้ต้านทานสารปฏิกริยาเอนไซม์ แต่ยังคงเปรียวออกไซด์ได้ตามการคุณสมบัติในส่วนของสารประกอบซึ่งเกิดปฏิกริยาขอจินตนาการกับกลุ่มออกไซด์ (SH) ที่ยึดในเยื่อปุก

ที่ใช้จับกันบังสะท้อนของเอนไซม์ glyceroldehyde-3-phosphate dehydrogenase ได้ใช้เปรียวออกไซด์ตามส่วนนี้แล้วทำการประมวลผลของเอนไซม์ SOD ดังกล่าวได้แก่ CuZnSOD และ FeSOD นอกจากนี้บางรายสามารถทำให้จินตนาการในส่วนของเอนไซม์ กลุ่มโมเลกุลที่ไม่ได้ต้านทานสารปฏิกริยาได้

เปรียวออกไซด์ (ONOO⁻)

เป็นสารประกอบที่คัดแยกได้จากการปฏิกริยาระหว่างโมเลกุลซัพเรียดกับกลุ่มออกซิเจน \(\cdot\text{O}_2^- \) เมื่อเกิดขึ้นแล้วจะมีความเป็นพิษต่อตัวร่างกายมาก ซึ่งทำให้เกิดอาการจิตและทำให้เป็นต้นบางส่วนมีผลต่อสุขภาพสูงสุดของการทำงาน ได้ผลต่อสุขภาพของเซลล์ที่มีการเปลี่ยนแปลงการสร้างสารของต่อมเส้นเลือดและสายเลือดที่ทำให้ผลดีต่อตัวร่างกายได้

2.8.5 ผลกระทบของอนุมูลอนิตรูปแบบกีโลกรัมและสารบางกลุ่ม

ลิพิด โปรดและยืดกลับ เป็นชีวินโคเกลุดีที่ดูกลุ่มสัมผัสทำให้เกิดความเสียหาย ที่นี้เพราะ

โมเลกุลกลับมีอิสระและถูกต้องตามโมเลกุลใดป้องกันตัวที่ดูกลุ่มได้ง่ายทำให้ชีวินโคเกลุดีที่ไม่ปฏิกริยาโดย

เมื่อเกิดขึ้นแล้วจะมีความเป็นพิษต่อตัวร่างกายมาก ซึ่งทำให้เกิดอาการจิตและทำให้เป็นต้นบางส่วนมีผลต่อสุขภาพสูงสุดของการทำงาน ได้ผลต่อสุขภาพของเซลล์ที่มีการเปลี่ยนแปลงการสร้างสารของต่อมเส้นเลือดและสายเลือดที่ทำให้ผลดีต่อตัวร่างกายได้

ลิพิดสามารถจัดกลุ่มได้โดยอนุมูลอนิตรูปแบบแก่ ลิพิดปริมาณชีวิตหรือเป็นระบบการรักษาตัวเงิน

ชีวินโคเกลุดีที่ดูกลุ่มสัมผัสทำให้เกิดการเปลี่ยนแปลงหรือเสียหายจากภายกริยาซึ่งทำให้เกิดลิพิด
ประโยชน์ที่ดีขึ้นเมื่อผู้มีสังคมที่มีสติในสังคมและในขณะเดียวกันสามารถมองเห็น นักการตลาดให้บริการของผู้มีสังคมและทำให้บริการสื่อสารกับลูกค้าได้ตามคุณภาพที่กำหนด ได้แก่ นโยบายคุณภาพต่าง ๆ เช่น คุณค่า คุณภาพและ ประสิทธิภาพ เป็นต้น รวมถึง คุณค่า คุณภาพ โดยผลิตภัณฑ์ที่เป็นผลิตภัณฑ์สู่การสื่อสารของที่มีชื่อเสียงสำหรับ คือ มาตรฐานสินค้า (MDA) ซึ่งสากลทั่วไปสอดคล้องกับการผลิตสินค้าและวัสดุที่มีคุณภาพได้

การและสามารถมีความเสถียรภาพที่มีผู้มีสังคมได้เช่นกัน และเนื่องจากการเปลี่ยนแปลงของสิ่งที่ เกิดขึ้นได้อุปกรณ์สำหรับเปลี่ยนแปลงโครงสร้างได้ติดตั้งบนบริการของผู้มีสังคมที่มีชื่อเสียงของดีเยี่ยมที่เกิดขึ้นในตลาด และทำให้เกิดความเสถียรภาพได้ดีอย่างดี การเดินมุ่งมั่นที่จะทำให้บริการสู่การผลิตสินค้าสูง ปฏิบัติการที่มีความสินค้าที่เกิดขึ้นในตลาด และทำให้เกิดความเสถียรภาพได้ดีอย่างดี การเดินมุ่งมั่นที่จะทำให้บริการสู่การผลิตสินค้าสูง ปฏิบัติการที่มีความสินค้าที่เกิดขึ้นในตลาด

ตลาดสามารถใช้ประโยชน์ที่ดีขึ้นเมื่อผู้มีสังคมได้เช่นกัน ปัจจุบันในตลาดมีบทบาทสำคัญเช่นกันที่ สำหรับการขยายตัวทางในตลาด เป็นตัวรับและส่งสื่อสารผ่านสื่อการสื่อสาร รวมถึงการบริการบริการด้านการพัฒนาและ ทักษะการทางตลาด การบังคับบริการด้านของผู้ผลิตที่ทำให้เกิดผลสินค้าและกิจการของสินค้า การสร้างบริการการสื่อสารของผู้ผลิตกิจการของสินค้า การสร้างบริการการสื่อสารของผู้ผลิตกิจการของสินค้า การสร้างบริการการสื่อสารของผู้ผลิตกิจการของสินค้า การสร้างบริการการสื่อสารของผู้ผลิตกิจการของสินค้า การสร้างบริการการสื่อสารของผู้ผลิตกิจการของสินค้า การสร้างกิจการสื่อสารของผู้ผลิตกิจการของสินค้า การสร้างกิจการสื่อสารของผู้ผลิตกิจการ of ความรู้ในการสร้างผู้ผลิตสินค้าและการสร้างกิจการสื่อสารของผู้ผลิตสินค้า การสร้างกิจการสื่อสารของผู้ผลิตสินค้า การสร้างกิจการสื่o
มิติปกติชี้นุ้ง สิ่งโรคอัลซีเดอ โรคพาร์กินส์ อาการมีอยู่และวัยส่วนหลังอักเสบ โรคเนื้องอกเรื้อรัง

Down's syndrome โรคดับเบิ้ล เป็นต้น

2.6 การป้องกันอัลไซเมอร์และความเสี่ยงที่เกิดจากอนุมูลอิสระ

เซลล์และร่างกายมีกลไกเพื่อควบคุมการผลิตอนุมูลอิสระไม่ได้สูญเสียกันดังกล่าว กลไกสำคัญที่ทำ

หน้าที่ควบคุมการผลิตอนุมูลอิสระ กลไกการคัดกรองอนุมูลอิสระให้ใช้ในสูตรดังกล่าว

ศาสตร์ สามารถป้องกันกลยุทธ์นี้ไม่ว่าจะไม่สามารถควบคุมการทำงานได้ กลไกการคัดกรองอนุมูลอิสระจะหลุดออกได้ ทำให้กลไกการคัดกรองอนุมูลอิสระหลุดออกในสูตรดังกล่าว

1. เอนไซม์

ในระดับเซลล์เองอนุมูลอิสระเป็นกลไกสำคัญในเชิงที่ทำหน้าที่ควบคุมการผลิตอนุมูลอิสระให้หลุดใน

สูตรดังกล่าวได้แก่

เอนไซม์เข้าไปในกลไกต่อเนื่อง (SOD) ทำหน้าที่เพื่อควบคุมการผลิตอนุมูลอิสระให้หลุดในสูตรดังกล่าว

อนุมูลอิสระในเชิงที่ อนุมูลอิสระเข้าไปในสูตรดังกล่าว (O2•−) โดยทำการรักษาตัวมีในสูตรดังกล่าว

อนุมูลอิสระให้ใช้ในสูตรดังกล่าว 2O2•− ทำให้เป็นไมโครจินเป็นอนุมูลอิสระชุดไนสินไทโอเมื่อเข้าสู่สูตรดังกล่าว

![Image]

เอนไซม์กัดตัด (CAT) เป็นเอนไซม์ที่อยู่ในกลไกการคัดกรองอนุมูลอิสระ มีส่วนเป็นองค์ประกอบทำ

หน้าที่ควบคุมการผลิตและหลุดออกไปในสูตรดังกล่าว

![Image]

เอนไซม์กลูคาไทโอเมื่อเป็นอาชีพ (GPx) เป็นเอนไซม์ที่มีการพัฒนาในอิสระของกลไกคัดกรองอนุมูลอิสระสูตรดังกล่าว

ฟิวที่สูตรดังกล่าว (ROOH) และไทโอเมื่อผลิตของกลไกอิสระที่เกิดจากไทโอเมื่อ(GSH) ร่วมในการ

ป้องกันกลไกมีสูตรดังกล่าวที่ช่วยป้องกันไม่ให้ได้สูตรดังกล่าวเกิดปฏิกิริยาดังนี้

![Image]
2. สารต้านอนุมูลอิสระ

เป็นค่าที่สูงที่สุดมากกว่า ต่างจากตัวเป็นตัวเริ่มต้นที่ได้จากปฏิกิริยาของสารต้านอนุมูลอิสระที่แสดงให้เห็นว่าสารต้านอนุมูลอิสระสามารถป้องกันปฏิกิริยาของอนุมูลอิสระได้ ซึ่งการปฏิกิริยาต่อสารต้านอนุมูลอิสระจะมีผลต่อสารต้านอนุมูลอิสระถูกนิยามว่าเป็นสารต้านอนุมูลอิสระ

วิตามินซี (vitamin C)

วิตามินซีหรือกรดแอสคอร์บิก (AsC) มีหน่วยวัดในร่างกาย 2 หมู่ที่แตกต่างให้โดยกันได้ (ภาพที่ 2.10) ซึ่งสิ่งนี้จัดเป็นกรดที่มีประโยชน์ต่อสุขภาพที่ดี และส่งผลต่อการต้านอนุมูลอิสระในเซลล์และอวัยวะที่มี

ภาพที่ 2.10 โครงสร้างของวิตามินซี (vitamin C)

ที่มา : www.globalherbalsupplies.com/.../vitamin-c.htm

วิตามินอี (vitamin E)

เป็นวิตามินที่ละลายได้ในน้ำมัน จากจะต้านอนุมูลอิสระสามารถมีตัวแบบ ที่มีน้ำมัน โดยไม่ได้โดยตรง วิตามินอีเป็นสารต้านอนุมูลอิสระที่สำคัญของระบบร่างกาย ซึ่งมีกรดที่มีส่วนต่อต้านอนุมูลอิสระ
ภาพที่ 2.11 โครงสร้างของวิตามินอี (vitamin E)

ที่มา : www.vita-dose.com/structure-of-vitamin-e.html

ในการทำหน้าที่วิตามินอีจะได้ใช้โดยเจาะอิเลกติฟที่อยู่ในรูปอนุมูลหรืออนุมูลดิฟ (L-)

ลิปิดปรอริกซ์ทำให้ได้ผลิตด้านมากกว่าอนุมูล

กลูทาโฟลน (Glutathione: GSH)

กลูทาโฟลนขึ้นอยู่กับการต้านอนุมูลในกลุ่มที่มีวิตามินอี GSH (ภาพที่ 2.12) มีโครงสร้างเป็นโปรตีนที่ประกอบด้วยกลูทามีน 3 ตัว GSH ละลายในตัวไกลเมื่อความเข้มมาก ปกติเซลลามีกลูทาโฟลน 2

แบบคือกลูทาโฟลนในรูปวิตามิน (GSH) และกลูทาโฟลนในรูปกลูทามีน (GSGG)
ภาพที่ 2.12 โครงสร้างกลูตามิโตน (glutathione)
ที่มา : www.bio.davidson.edu/.../LSHMain.html

กลไกการดับเคลื่อนชีวภาพของสารที่มีกลูตามิโตนหรือสารได้รับเสียหายด้วยแก๊สออกซิเจน ซึ่งใช้ในการคิดให้ว่านานอยู่ในกลูตามิโตนในรูปของกลูตามิโตน (GSH) อนุมูลออกซิโคลล 2 หมู่ รวมกันได้เป็นกลูตามิโตนในรูปของกลูตามิโตน (GSSG)

\[
GSH + R^* \rightarrow GS^* + RH
\]

\[
GS^* + GS^* \rightarrow 2GSSG
\]

สารดาบอนุมูลออกซิโดในกลูตามิโตนสามารถปรับปรุงความสามารถในการรักษาอนุมูลออกซิโดโดยการลดลงของอนุมูลออกซิโดซึ่งจะเกิดรู้สึกโดยการลดการเจริญของอนุมูลออกซิโดและกำหนดกลูตามิโตนให้สมรวดไป (quenching) สามารถทำให้ปฏิกิริยาเกิดกับโปรตีน สารดาบอนุมูลออกซิโดที่ไม่ได้เป็นสารดาบอนุมูลออกซิโดหรือแข็งแรงที่ขอยิงออกจากประโยชน์

3. สารดาบอนุมูลออกซิโด (metal chelator)

 นอกจากกลูตามิโตนและสารดาบอนุมูลออกซิโดสารดาบอนุมูลออกซิدو
การศึกษาพืชมาอย่างต่อเนื่อง โดยสามารถแบ่งได้เป็นสารต้านอนุภูมิสิ่งที่พืชมีการสร้างคาวาโรคัย เลียนแบบสารต้านอนุภูมิที่มีในธรรมชาติ เช่น วิตามินซี สารโพลีฟีนอล และคอร์ดิมินจากพิษมีนั้น เป็นต้น แต่อย่างไรก็ดีสารต้านอนุภูมิที่มีความสมดุลที่ทำตามต่างๆแล้วแต่สารต้านอนุภูมิที่ตัวอย่างพืชมีความสมดุลในการควบคุมศัตรูพืชและดักภาษิตเนื้อเยื่อต่างๆ โดยมีความ เข้มข้นเพียงพอที่สามารถออกฤทธิ์ได้ สารต้านอนุภูมิสิ่งที่มีในธรรมชาติในหลากหลาย ถ้า ผลไม้ สมุนไพร

2.9 สารประกอบฟีโนลิกและฟลาโวนอยด์ในพืชพอดลัส

2.9.1 สารประกอบฟีโนลิก (phenolic compound)

สารประกอบฟีโนลิก (polyphenolic compound) เป็นกลุ่มสารที่ให้สีในพืชสารประกอบฟีโนลิกเป็นสารตามทางคาวาโรคัยที่มีอยู่ในธรรมชาติ (secondary metabolism) สารประกอบฟีโนลิกเป็นสารประกอบพืชของแบคทีเรียที่มีมูโรโคลลักซ์ต่ออยู่ในหลอดสารประกอบฟีโนลิกพืชฐานที่มีมูโรฟีโนล (phenol group) เป็นหลัก ซึ่งประกอบด้วยแนวเทิน 1 วง และมีมูโรโคลักซ์ 1 วง (ไพร พล. กรมการและชื่อชีวภาพ. 2009 : online) จากเหตุผลต้านอนุภูมิสิ่งที่สารต้านอนุภูมิสิ่งที่ไม่ได้รับความเข้มข้นที่สูงได้จากปฏิกิริยาของสิ่งที่มีสารประกอบฟีโนลิกในกระบวนการโคแกนที่ได้ เส้นที่ให้ความสามารถในการให้ป้องกันของ Hydroxybenzoate ไพรโคลงสารประกอบฟีโนลิกเป็น สารที่มีบทบาทสำคัญเนื่องจากถูกต้านสารเคมีต่อชีวิต ด้านเรื่อง ด้านการคัดกรอง ต้านไวรัส (Khezri, et al 2006 ข้างถึงใน Grange and Davey, 1990)

2.9.2 สารประกอบฟลาโวนอยด์ (flavonoid compound)

สารประกอบฟลาโวนอยด์เป็นสารต้านอนุภูมิสิ่งที่ประกอบด้วยมูโรปิโตริโคโอะ ออกซิคิดและมูโรโคลักซ์ ที่สามารถป้องกันการเสี่ยงของเซลล์ต่างๆ อันเนื่องมาจากอนุภูมิ อิสระที่ได้มาจากปฏิกิริยาของอักชีชัน (oxidation) อีกทั้งพบว่าสารประกอบฟลาโวนอยด์มีฤทธิ์ต้านเชื้อแบคทีเรีย ต้าน เชื้อรา และต้านไวรัส (Khezri, et al. 2006 ข้างถึงใน Grange and Davey, 1990) ซึ่งสภาพแวดล้อมนั้นเป็นสารต้านอนุภูมิสิ่งที่มีประสิทธิภาพสูงกว่าชนิดอื่นแต่ต้องขึ้นอยู่กับ โครงสร้างทางเคมีของสารนั้นๆ ด้วยผู้มากที่ได้รับความสนใจเป็นอย่างมากในปัจจุบันของฟลาโวนอยด์ คือ เป็นสารต้านอนุภูมิสิ่งที่มีประสิทธิภาพสูงที่สุดคุณสมบัติในการยับยั้งการ ยับยั้ง การยับยั้งเยื่อแมลงการต้านอนุภูมิสิ่งที่การป้องกันโรคตาและยับยั้งการภูมิคุ้มกัน (Cushnie and Andrew, 2005) ฟลาโวนอยด์ที่มีเป็นสารประกอบพอดลัสจะเป็นตัวในป้องกันหรือ ยับยั้งกระบวนการของเชื้อในของเซลล์ LDL (Low density lipoprotein) ซึ่ง
กระบวนการออกซิเดซันเพื่อสลายดี low density lipoprotein (LDL) นั้นจะทำให้เกิดการขึ้นตัวของเอดส์เรียก ซึ่งเป็นสาเหตุหลักของโรคหลอดเลือดอclusive เพราะฉะนั้นสารพวกพอลีโอนอิกซ์ มีประโยชน์ต่อสุขภาพ คือ ช่วยป้องกันโรคจำคพับหลอดเลือด (Maisuthiskul et al. 2007) ป้องกันกระบวนการออกซิเดซันของดี lipid ของ LDL และช่วยลดความดันโลหิต

2.9.3 ประเภทของสารประกอบพอลีโอนอิกซ์

2.9.3.1 พลาโอน (Flavones) เป็นสารประกอบไซส์ตัวอย่างเช่น อะจีนิน (agipenin) สูโตเลอิน (luteolin) และไตรซิน (tricetin) (นิยม, 2548) ซึ่งสอดคล้องกับงานวิจัยของ Kosalec et al. (2004) ที่พบว่าพลาโอนเป็นสารประกอบพอลีโอนอิกซ์ประเภทหนึ่งที่มีอยู่ในพรอโดย

2.9.3.2 พลาโอนอล (Flavonol) เกิดจากสารประกอบพอลีโอนมีการแทนที่ของ หนู่ไตรซินเพื่อส่วนที่ตัวแทน 3 ตัวอย่างของพลาโอนอล ได้แก่ เออร์เซดิน (quercetin) แคมพ์เฟอร์อล (kaempferol) และแมร์ติน (myricetin) อะโตโอน (aglycone) ที่เป็นอนุญาตของพลาโอน และพลาโอนอลที่ทราบโครงสร้าง มีตัวประกอบ 60 ชนิด ซึ่งแตกต่างกันที่หนู่ไตรซิน และหนู่ แอมท์กีน (นิยม, 2548) ซึ่งสอดคล้องกับงานวิจัยของ Kosalec et al. (2004) ที่พบว่าพลาโอนอลเป็นสารประกอบพอลีโอนอิกซ์ประเภทหนึ่งที่มีอยู่ในพรอโดย

2.9.3.3 พลาโอนอนอล (Flavanonols) มีสูตรโครงสร้างคล้ายพลาโอน แต่หนู่ ไตรซินเพื่อส่วนที่ตัวแทน 3 (นิยม, 2548)

2.9.3.4 พลาโอน (Flavanone) มีสูตรโครงสร้างคล้ายพลาโอน แต่พันธะ ระหว่างคอร์ปอนอยู่ต่อเนื่องที่ 2 และ 3 เป็นพันธะต่อเนื่องเป็นพลาโอนอนอลที่พบในผลไม้มะกอกส้ม ส่วนไตรซินวิส์ เช่น เอเดรฟิน (hesperidin) และนาริงน (naringin) ที่มีเจริญเป็นตัว ช่วง แนวที่อยู่ภายในผลไม้ของแอปทีซิน จะเป็นดีออกได้เป็นชอลเคน (chalcone) เนื่องจากการแยกตัวของแอปทีซิน (anthocyanin) จะได้รับสีเเคลทีน์มาส์กล (นิยม, 2548) ซึ่งสอดคล้องกับงานวิจัยของ Kosalec et al. (2004) ที่พบว่าพลาโอนเป็นสารประกอบพอลีโอนอิกซ์ประเภทหนึ่งที่มีอยู่ในพรอโดย
3.1 วัสดุและวิธีการ (Materials and Methods)

3.1.1 ตัวอย่าง

น้ำสกัด propolis จากพืชที่ถูกแปรรูปทาง จังหวัดแพร่

3.1.2 สารเคมี

สารเคมีที่ใช้ในการทดลองนี้เป็น analytical grade

3.1.2.1 ethanol

3.1.2.2 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH)

3.1.2.3 α-tocopherol

3.1.2.4 ascorbic acid

3.1.2.5 sodium phosphate buffer pH 7

3.1.2.6 2-deoxyribose

3.1.2.7 FeSO₄-EDTA

3.1.2.8 hydrogen peroxide

3.1.2.9 trichloacetic acid

3.1.2.10 triobarbituric acid

3.1.2.11 sodium carbonate buffer pH 10.5

3.1.2.12 xanthine

3.1.2.13 EDTA

3.1.2.14 bovine serum albumin (BSA)

3.1.2.15 nitroblue tetrazolium (NBT)

3.1.2.16 xanthine oxidase enzyme (XOD)

3.1.2.17 cuprous chloride (CuCl)

3.1.2.18 aluminium chloride hexahydrate (AlCl₃·6H₂O)

3.1.2.19 potassium acetate (CH₃COOK)

3.1.2.20 quercetin

3.1.2.21 Folin-Ciocalteau reagent

3.1.2.22 sodium carbonate (Na₂CO₃)
3.1.2.23 gallic acid
3.1.2.24 silicagel 60 F_{254} plate
3.1.2.25 hexane
3.1.2.26 ethyl acetate
3.1.2.27 acetic acid
3.1.2.28 iodine
3.1.2.29 น้ำกลั่น (distilled water)

3.1.3 เครื่องมือ
3.1.3.1 เครื่องระเหยแห้ง (rotary evaporator) ยี่ห้อ Steroglass
รุ่น STRIKE 102A
3.1.3.2 เครื่องชั่งน้ำหนักทางเคมี 2 ตัวแหน่ง (analytical balance) ยี่ห้อ ADAM รุ่น AFP-2100L
3.1.3.3 เครื่องชั่งน้ำหนักทางเคมี 4 ตัวแหน่ง (analytical balance) ยี่ห้อ ADAM รุ่น AAA 250L
3.1.3.4 เครื่องผสมสาร (vortex mixer) ยี่ห้อ VELP
3.1.3.5 เครื่องปั้น เครื่องทดสอบ (centrifuge) ยี่ห้อ ORTO
รุ่น Lincer
3.1.3.6 กระบะกรองบุชเนอร์ (buchner funnel)
3.1.3.7 เตาอบความร้อน (hot air oven) ยี่ห้อ WTB Binder รุ่น FD 115
3.1.3.8 เครื่องวัดการดูดกลืนแสง (spectrophotometer) ยี่ห้อ THERMO SCIENTIFIC รุ่น HELIOS α

3.1.4 ถ้วยกระถางและเครื่องแก้ว
3.1.4.1 ถ้วยกระถาง (cylinder) ขนาด 20, 50 และ 100 มิลลิลิตร
3.1.4.2 หลอดกระถาง (test tube) ขนาด 16 x 150 มิลลิลิตร
3.1.4.3 ถ้วยวัดปริมาตรทางวิทยาศาสตร์ (volumetric flask) ขนาด 10, 25, 50 และ 100 มิลลิลิตร
3.1.4.4 ถ้วยรถไห้มือ (erlenmeyer flask) ขนาด 250 มิลลิลิตร
3.1.4.5 ไมโครพิปет (micropipette) ขนาด 20-200 และ 100-1,000 มิลลิลิตร
3.1.4.6 ทิป (tip) ที่ใช้กับไมโครพิปет ขนาด 200 และ 1,000 มิลลิลิตร
3.1.4.7 กระดาษกรอง (paper filter) ชนิด Whatman เบอร์ 1
3.1.4.8 อลูมิเนียมfoil (aluminium foil)
3.1.4.9 พาราฟิล์ม (parafilm)
3.1.4.10 ตะเกียงกวนสาร (stirring rod)
3.1.4.11 ช้อนตักสиваติมี (spatula)
3.1.4.12 ที่วางทดลองหลอด (rack)

3.2 วิธีการทดลอง

3.2.1 การสกัดสารจากพ辱พิธิสโดยใช้เอทานอลเป็นตัวทำละลาย (propolis)

นำพ辱พิธิส น้ำหนัก 35 กรัม ทำการขัดละเอียด หลังจากนั้นนำไปสกัดด้วยตัวทำละลาย 70% เอทานอล โดยอัตราส่วนระหว่างพ辱พิธิสและตัวทำละลายเป็น 1 ต่อ 10 และสกัดด้วยเครื่อง ultrasonicator เป็นเวลา 30 นาที หลังจากนั้นนำสุญญามิติที่ได้มากรองด้วยกระดาษกรอง Whatman No.1 และนำสารสกัดไปปั่นแปรเงื่อนเพื่อแยกสารกลักและระเหยออกจากกัน หลังจากนั้นนำสารสกัดพุทธิสที่ได้ไปประยุกต์เพื่อแยกว่าทำละลายออก โดยใช้เครื่องระเหยแห้ง (rotary evaporator) ที่อุณหภูมิ 40 องศาเซลเซียส นำสารสกัดที่แยกเว้นไว้ว่าทำละลายแล้ว นำมาขั้นน้ำหนักและเก็บไว้ที่ดุ้นภูมิทั้งสองที่ อุณหภูมิที่เหมาะสม เพื่อใช้ในการทดลองต่อไป

3.2.2 การศึกษาลูกโซ่ในการด้านอนุมูลอิสระของสารสกัดจากพุทธิส (propolis)
โดยแบ่งการทดลองออกเป็น 4 ชุดการทดลอง

3.2.2.1. DPPH radical-scavenging activity

นำสารสกัดที่ได้มากรองละลาย 70% เอทานอล โดยมีความเร็วชั้นที่ต่างกัน นำสารสกัดปริมาตร 0.3 มิลลิลิตร หลังจากนั้นเติมสารละลาย DPPH ที่มีความเข้มข้น 300 มิลลิมоляร์ปริมาตร 0.3 มิลลิลิตร และเติม 70% เอทานอล ปริมาตร 2.4 มิลลิลิตร ดังนั้นจะให้ได้ผลลัพธ์ที่ดีที่สุดในเวลา 30 นาที ไม่ให้มีผลสูตรนี้ เมื่อครบเวลา นำมาทำการคัดกรองด้วยสเปกเลอร์ความยาวคลื่น 517 นาโนเมตรทำการบันทึกผล โดยใช้ α-tocopherol และ ascorbic acid ที่ความเข้มข้น 1 มิลลิโมลเป็น positive control นำค่าที่ได้มาคิดเปอร์เซ็นต์การรักษาอนุมูลอิสระได้ดังนี้

\[
\% \text{DPPH radical scavenging activity} = \left(\frac{A_0 - (A_t - A_u)}{A_0} \right) \times 100
\]
เนื่องจากดีติคคลื่นแสงของ DPPH

A_0 คือ ค่าการดูดกลืนแสงของ DPPH

A_i คือ ค่าการดูดกลืนแสงของสารกัฟทรูฟอลิติที่ทำการปฏิรูปดีติคคลื่นแสงกับ DPPH

A_o คือ ค่าการดูดกลืนแสงของสารกัฟทรูฟอลิติ

3.2.2.2 Hydroxyl radical scavenging

สารละลายที่ใช้ในการวิเคราะห์ประกอบด้วย 0.1 มิลลิโตร sodium phosphate buffer ปริมาตร 0.90 มิลลิลิตร pH 7.0, 10 มิลลิโตร 2-deoxyribose ปริมาตร 0.15 มิลลิลิตร, 10 มิลลิโตร FeSO₄·EDTA ปริมาตร 0.15 มิลลิลิตรและ 10 มิลลิโตร H₂O₂ ปริมาตร 0.15 มิลลิลิตร เทิรมน้ำกลั้นลงไป 0.125 มิลลิลิตร หลังจากนั้นเพิ่มสารกัฟทรูฟอลิติในตัวที่ทดลอง เทาน้ำมันที่ความเข้มข้นต่างๆ ปริมาตร 0.075 มิลลิลิตร ดังที่ใช้ทุกกลุ่ม 37 องศาเซลเซียส เวลา 4 ชั่วโมง ทำการหยุดปฏิรูปด้วย 2.8 มิลลิลิตร trichloroacetic acid ปริมาตร 0.75 มิลลิลิตรและ 1.0 มิลลิลิตร 2-triobarbituric acid ซึ่งเตรียมใน 50 มิลลิโตร ปริมาตร 0.75 มิลลิลิตร นำไปถ่านในเวลา 10 นาที หลังจากนั้นนำไปเย็นและนำไปวัดค่าดูดกลืนแสงที่ 520 นา

โมเลกุลทำการบันทึกผล โดยใช้ α-tocopherol และ ascorbic acid ที่ความเข้มข้น 1 มิลลิโตรเป็น positive control

3.2.2.3 Superoxide anion scavenging

ทำการเติมสารละลายที่ใช้ในการวิเคราะห์ตามลำดับ ดังนี้ เติม 0.05 M sodium carbonate buffer pH 10.5 ปริมาตร 1.3 มิลลิลิตร, 3 mM xanthine ปริมาตร 0.1 มิลลิลิตร, 3 mM EDTA ปริมาตร 0.1 มิลลิลิตร, 0.15% w/v bovine serum albumin (BSA) ปริมาตร 0.1 มิลลิลิตร, 0.75 mM nitroblue tetrazolium (NBT) ปริมาตร 0.1 มิลลิลิตร หลังจากนั้นเติมสาร

กัฟทรูฟอลิติในตัวที่ทดลองในเวลาที่ความเข้มข้นต่างๆ ตั้งเวลาที่ใช้ในการบันทึกผลเป็นเวลา 10 นาที เท่าน้ำมันที่เติม xanthine oxidase (XOD) ความเข้มข้น 6 mU ตั้งเวลาที่ใช้ 20 นาที นำมาเติม 6 mM ClCl เพื่อทำการหยุดปฏิรูปดีติคคลื่นแสง ทำการบันทึกผล โดยใช้ α-tocopherol และ ascorbic acid ที่ความเข้มข้น 1 มิลลิโตรเป็น positive control

3.2.2.4 Hydrogen peroxide scavenging

นำระยะยาวสารกัฟที่ได้มาจากต้นในแรกอนด โดยมีความเข้มข้นที่ต่างกัน เทิรมน้ำ 43 มิลลิโตร H₂O₂ ที่เตรียมใน 0.1 M phosphate buffer ปริมาตร 0.6 มิลลิลิตร ตั้งเวลาที่ใช้
3.3 การศึกษาหาวิธีการทางที่มีคุณสมบัติในการด้านอนุมูลอิสระ ได้แก่ flavonoid และ polyphenol ในพรอพัสลด

3.3.1 การศึกษาหาวิธีการทางที่มีคุณสมบัติในการด้านอนุมูลอิสระ (flavonoid)

ปริมาณของ flavonoid จากได้โดยวิธี Aluminium Chloride Colorimetry น้ำสารสกัดพรอพอสลด 0.5 มิลลิลิตร เติม 70 เซ็นต์ reten ะหนานอลปริมาณ 1.5 มิลลิลิตร หลังจากนั้นเติม 0.1 มิลลิลิตร ของ 10 เซ็นต์ aluminun chloride hexahydrate, 0.1 มิลลิลิตรของ 1 มิลลิลิตร potassium acetate และน้ำกลิ่น 2.8 มิลลิลิตร ตั้งเวลาให้ถูกทุกหมอมิลลิองเป็นเวลา 30 นาที เมื่อครบเวลา น้ำสารสกัดจากสารคัดกลิ่นตัดความยาวคลื่น 415 นาโนเมตร ทำการบันทึกโดยน้ำมานำเข้าเมนเทียบกับกราฟมาตรฐานของ quercetin.

3.3.2 การศึกษาหาวิธีการทางที่มีคุณสมบัติในการด้านอนุมูลอิสระ (polyphenol)

ปริมาณของ polyphenol จากได้โดย Folin-Ciocalteau Colorimetric method น้ำสารสกัด 0.2 มิลลิลิตร เติมน้ำกลิ่นลงไป 0.8 มิลลิลิตร, 1 มิลลิลิตรของ Folin-Ciocalteau reagent ที่เจือจางแล้ว 4 เท่า และ 5 มิลลิลิตรของ 0.4 M Na₂CO₃, ตั้งเวลาให้ถูกทุกหมอมิลลิองเป็นเวลา 30 นาที เมื่อครบเวลา น้ำสารสกัดจากสารคัดกลิ่นตัดความยาวคลื่น 760 นาโนเมตร ทำการบันทึกโดยน้ำมานำเข้าเมนเทียบกับกราฟมาตรฐานของ gallic acid.

3.4 การศึกษาองค์ประกอบทางเคมีของพรอพอสลด โดยเทคนิค Thin Layer Chromatography

เตรียมสารสกัดพรอพอสลดที่ความเข้มข้น 1 mg/ml คุณสารสกัดปริมาตร 1 μl ลงบนแผ่น TLC plate ชนิด silica gel 60 F₂₅₄ จากนั้นนำไปใน mobile phase ซึ่ง mobile phase ประกอบด้วย hexane : ethyl acetate : acetic acid (60:40:1 v/v/v) ตรวจสอบการเคลื่อนที่ของสารด้วยไอออกไซด์ (Iodine vapour) แล้วเครื่องหมายตรง solvenet front และส่วนหนึ่ง ระยะทางที่สารเคลื่อนที่ได้ บันทึกระยะทางที่สารเคลื่อนที่ค่าบรรทัด Retention factor (Rf) ของสารต่างแต่ละชนิด.
3.5 การทดสอบทางสถิติ

นำข้อมูลมาวิเคราะห์ความแปรปรวนและเปรียบเทียบความแตกต่างระหว่างตัวอย่างโดยใช้วิธี Duncan’s multiple range test

3.6 สถานที่ทำการทดลองหรือعيدข้อมูล

สถานที่ในการทำการทดลองที่ทำการปฏิบัติการศึกษาศาสตร์และเทคโนโลยีมหาวิทยาลัยแม่โจ้-เพชร เซิมพรรามเกียรติ

3.7 ระยะเวลาทำการวิจัย

การวิจัยครั้งนี้จะใช้เวลาดังต่อไปนี้ คือ ตุลาคม 2550 ถึงเดือนกันยายน 2551 รวมเวลาวิจัย 1 ปี

ตารางที่ 3.1 แผนกรดำเนินงานตลอดโครงการวิจัย

<table>
<thead>
<tr>
<th>งานที่ปฏิบัติ</th>
<th>เดือน</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td></td>
</tr>
<tr>
<td>1. เตรียมเครื่องมือ ลำเลียง</td>
<td>✓</td>
</tr>
<tr>
<td>2. ทำการตกทอดموادสัตว์</td>
<td>✓</td>
</tr>
<tr>
<td>3. ทดลองดูการดักล่าพืช</td>
<td>✓</td>
</tr>
<tr>
<td>4. มีความอยู่คู่กับสัตว์</td>
<td>✓</td>
</tr>
<tr>
<td>5. วิเคราะห์ข้อมูล</td>
<td>✓</td>
</tr>
<tr>
<td>6. เขียนรายงาน</td>
<td>✓</td>
</tr>
<tr>
<td>7. ประเมินผลและสร้างรายงานฉบับเดิม</td>
<td>✓</td>
</tr>
</tbody>
</table>
บทที่ 4
ผลการทดลอง (Results)

4.1 ลักษณะของพรอพอลิสและสารสกัดพรอพอลิสในตัวกำลังยาเทนอลจด

พรอพอลิสที่ใช้ในการทดลองได้มาจากเกษตรกรในพื้นที่อำเภอรังกาวัง จังหวัดแพร่ มีสีน้ำตาลเข้ม ไม่มีกลิ่นและมีลักษณะเนียน (ภาพที่ 4.1) เมื่อนำพรอพอลิสมักกับน้ำใช้เป็นตัวกำลังยาเทนอลจด มีการเปลี่ยนสีเป็นสีเหลืองออกน้ำ จากการเลือกสารสกัดพรอพอลิสมาระยะตั้งแต่กำลังยาออกด้วยเครื่องระเหยแรง (rotary evaporator) เกิดการเปลี่ยนสีของสารสกัดพรอพอลิสมาระยะตั้งแต่กำลังยาออกด้วยเครื่องระเหยแรง (rotary evaporator) เกิดการเปลี่ยนสีของสารสกัดพรอพอลิสไปเป็นสีน้ำตาลเข้ม ประกาศผลสารสกัดพรอพอลิสในตัวกำลังยาเทนอลจดมีค่าเท่ากับ 6.67 %w/w (ตาราง 4.1)

ภาพที่ 4.1 ลักษณะของพรอพอลิสที่ได้จากเกษตรกรนรากรังกาวัง จังหวัดแพร่

4.2 การศึกษาหาปริมาณสารไกลโนโลน (polyphenol) และแฟนลอยน์ (flavonoid) ในสารสกัดพรอพอลิส

จากการศึกษาพบว่า สารสกัดพรอพอลิสมีตัวกำลังยาเทนอลจดมีสารไกลโนโลนและแฟนลอยน์เป็นองค์ประกอบ ซึ่งปริมาณสารไกลโนโลนของพรอพอลิสมีกว่า 1.295 มิลลิกรัมต่อกรัมของสารสกัดพรอพอลิส ในขณะที่ปริมาณสารแฟนลอยน์เท่ากับ 0.35 มิลลิกรัมต่อกรัมของสารสกัดพรอพอลิส (ตาราง 4.1)
ตาราง 4.1 ผลลัพธ์เรื่องปริมาณโพแทสี่และปริมาณโฟตอนของสารกัษฐ์พรอพอลิลในดินทำละลายแคมภิณ

<table>
<thead>
<tr>
<th>สารกัษฐ์พรอพอลิล</th>
<th>ผลลัพธ์เรื่องละ</th>
<th>ปริมาณโพแทสี่/ก.ว.</th>
<th>ปริมาณโฟตอน/ก.ว.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(% w/w)</td>
<td>mg/g dry weight</td>
<td>mg/g dry weight</td>
</tr>
<tr>
<td>สารกัษฐ์พรอพอลิล</td>
<td>6.67</td>
<td>1.295</td>
<td>0.35</td>
</tr>
</tbody>
</table>

*วิเคราะห์ปริมาณโพแทสี่ด้วยวิธี titr-o-dectate colorimetry

*วิเคราะห์ปริมาณโฟตอนด้วยวิธี aluminium chloride colorimetry

*มิตรภาพจากเครื่องวัดกรดด่างถังในดินทำละลายแคมภิณ

4.3 การศึกษารูปแบบสารกัษฐ์พรอพอลิลด้วยวิธี Thin layer chromatography

จากการศึกษาของคุณประกอบทางคู่มือของสารกัษฐ์พรอพอลิลโดยการแยกด้วยวิธี Thin layer chromatography ชนิด silica gel 60 F 254 และ mobile phase ที่ประกอบด้วย hexane : ethyl acetate : acetic acid (60:40:1%v/v) และตรวจดูการเคลื่อนที่ของสารกัษฐ์ด้วยไอโอดีน (iodine vapour) จากนั้นคำนวณค่า retention factor (Rf) หรือระยะทางการเคลื่อนที่ของสารกัษฐ์ พบว่าสารกัษฐ์พรอพอลิลในดินทำละลายแคมภิณมี Rf อยู่ในช่วงระหว่าง 0.07, 0.19, 0.34, 0.40, 0.51, 0.71, 0.75, 0.80, 0.86 และ 0.91

![ภาพที่ 4.2](image.png)

ภาพที่ 4.2 โครมามิเกอร์ของสารกัษฐ์พรอพอลิลในดินทำละลายแคมภิณ บนแผ่น TLC ขนาด 10 ซม. x 2.5 ซม. ชนิด silica gel 60 F 254 และ mobile phase คือ hexane : ethyl acetate : acetic acid (60:40:1%v/v) ตรวจสอบระยะทางการเคลื่อนที่ของสารด้วยไอโอดีน
4.4 การศึกษาฤทธิ์ในการด้านอนุมูลอิสระ DPPH ของสารสกัดพรอพโละสิส (DPPH scavenging assay)

อนุมูล DPPH เป็นอนุมูลอิสระต่างๆ มีสีม่วง ซึ่งการวัดความสามารถในการด้านอนุมูลอิสระนั้น ทำได้โดยวัดการลดของสีด้วยเครื่องแบบออโต’a’ติคฟิลิปและด้วยเทอร์ที่ความยาวคลื่น 517 นาโนเมตร ซึ่งการศึกษาได้เน้นสารสกัดพรอพโละสิสในตัวทำลายอนุมูล DPPH พบว่าสารสกัดพรอพโละสิสมีความสามารถในการยับยั้งอนุมูลอิสระได้ในแต่ละความเข้มข้น 10-400 ug/ml ทดสอบได้ 4.20 เบอร์เชนด์ และสามารถยับยั้งได้ใกล้เคียงกับสารเบอร์เชนด์ที่ความเข้มข้น 100 ug/ml ในขณะที่ความเข้มข้น 200 ug/ml 250 ug/ml และ 400 ug/ml สามารถยับยั้งได้ 76.75 เบอร์เชนด์, 87.11 เบอร์เชนด์ และ 93.56 เบอร์เชนด์ ตามลำดับ โดยสารสกัดพรอพโละสิสที่ความเข้มข้น 400 ug/ml สามารถยับยั้งอนุมูล DPPH ได้ถึง 89.64 เบอร์เชนด์ แต่อย่างไรก็ตามฤทธิ์ในการยับยั้งยังคงอยู่กับสารมาตรฐาน 1 mM ascorbic acid (ภาพที่ 4.3)

ภาพที่ 4.3 ความสามารถในการยับยั้งอนุมูล DPPH ของสารสกัดพรอพโละสิสที่ความเข้มข้น 10-400 ug/ml และสารมาตรฐาน ascorbic acid และ alpha tocopherol ที่ความเข้มข้น 1 mM
4.5 การศึกษาถึงในการยับยั้งในวิธีดำเนินการเบอร์ร์ออกไซด์ของสารสกัดพอกผลิต

จากการศึกษาถึงในการยับยั้งโดยทั่วไปเบอร์ร์ออกไซด์ของสารสกัดพอกผลิตในตัวที่قيقةของ
ยาอยู่ที่ความเข้มข้น 25-250 μg/ml พบว่าสารสกัดพอกผลิตมีความสามารถในการ
ยับยั้งอนุภาคสารได้ถึงค่าความเข้มข้น 25 μg/ml ซึ่งยับยั้งได้ 13.13 เบอร์ร์เซนต์ และสามารถ
ยับยั้งได้ที่ระดับเบอร์ร์เซนต์ที่ความเข้มข้น 200 μg/ml ในขณะที่ค่าความเข้มข้น 250 μg/ml สามารถ
ยับยั้งได้สูงสุด 70.83 เบอร์ร์เซนต์ (ภาพที่ 4.4) แต่ยังไม่สามารถในการศึกษาไม่สามารถ
ทำการศึกษาสารสกัดพอกผลิตที่ความเข้มข้น 400 μg/ml และสารมาตรฐาน 1 mM alphatocopherol และ 1mM ascorbic acid ทีเป็นเพราะไม่สามารถมีกลุ่มดับหักกิจยานั้น
เกิดความเร็วในการยับยั้งไม่สามารถวัดการสูญเสียลงได้

![Graph showing inhibition of superoxide anion production](image)

ภาพที่ 4.4 ความสามารถในการยับยั้งโดยทั่วไปเบอร์ร์ออกไซด์ของสารสกัดพอกผลิต

ความเข้มข้น 25-250 μg/ml

4.6 การศึกษาถึงในการยับยั้ง superoxide anion ของสารสกัดพอกผลิต

Superoxide anion ในการศึกษาถึงเกิดขึ้นจากกระบวนการ xanthine-xanthine oxidase

system และทำการตรวจสอบความสามารถในการยับยั้งอนุภาคสารของสารสกัดพอกผลิตโดยวิธีการ

เปลี่ยนแปลงสีของ nitroblue tetrazolium salt (NBT) ซึ่งถ้าสารสกัดมีความสามารถในการยับยั้ง
superoxide anion ได้ การเปลี่ยนแปลงสีของ nitroblue tetrazolium salt (NBT) จากสีเหลืองไปเป็นสีน้ำเงินจะเกิดขึ้นได้น้อยหรือไม่เกิดขึ้นเลย และสามารถวัดค่าการลดกลิ่นแสงได้ที่ความยาวคลื่น 560 นาโนเมตร จากการศึกษาพบว่าในหลอดทดลองที่เติมสารกลั่นพรอฟอสติคความเข้มข้นต่างๆ นั้นมิสีน้ำเงินเกิดขึ้น ดังนั้นแสดงให้เห็นว่าสารกลั่นพรอฟอสติคไม่สามารถยับยั้งการเกิด superoxide anion ในระบบ xanthine-xanthine oxidase ได้

4.7 การศึกษาถูกต้องในการยับยั้ง hydroxyl radical ของสารกลั่นพรอฟอสติค

Hydroxyl radical ในการศึกษานี้เกิดขึ้นจาก Fenton reaction และทำการตรวจดูความสามารถในการยับยั้งอนุมูลอิสระของพรอฟอสติคโดยวัดค่าการลดกลิ่นแสงได้ที่ความยาวคลื่น 520 นาโนเมตร จากการศึกษาพบว่าในหลอดทดลองที่เติมสารกลั่นพรอฟอสติคความเข้มข้นต่างๆนั้นมิมีสีน้ำเงินเกิดขึ้น ดังนั้นแสดงให้เห็นว่าสารกลั่นพรอฟอสติคไม่สามารถยับยั้งการเกิด hydroxyl radical จาก Fenton reaction ได้
บทที่ 5
วิจารณ์ผลการทดลอง (Discussion)

พอเพียงที่นำมาสู่การเรียนรู้ได้มาจากพื้นที่อินเดียร่องกาจ จึงต้องเฟื่อง มีสีน้ำตาลเข้ม ไม่มีกลิ่น มีลักษณะเหมือนผงแต่เมื่อมีรังสียูวีบังคับพบมีเงาผลิตภัณฑ์จากอินเดียและไทย (2549) และ ภูริพาน (2552) ได้ทำการศึกษาพบว่าพอเพียงที่ใช้หลักการต่างๆ ที่มีสีน้ำตาลเข้มจึงเก็บเป็นสีดำ ไม่มีกลิ่น มีลักษณะแข็งบัดกรีเป็นก้อนและเนื้อขุ่น ความแตกต่างในกล่องที่ใช้ได้เกิดจากระยะเวลาในการเก็บรักษ้าพอเพียง โดยการศึกษาพบว่าพอเพียงที่เก็บจากรังสียูวี 1 สัปดาห์มีมีกลิ่นและสีน้ำตาลเข้มขึ้น แต่พอเพียงจากการเก็บพานมีผันผวนที่กว่า 1 เดือน ดังนั้นจึงเป็นสาเหตุทำให้มีลักษณะเหมือนผงแต่เมื่อมีรังสียูวีตัวอย่างไม่เป็นสีดำ แต่ละง่ายตามตามที่มี Kumazawa et al. ได้ทำการศึกษาพอเพียงจากประเทศต่างๆ ที่มีประเทศไทย รายงานว่าพอเพียงจากประเทศไทยมีสีน้ำตาลเข้มและไม่มีมีกลิ่นผลิตภัณฑ์ที่ใบนานจึงเป็นไปตามที่ Trusheva et al. (2007) ศึกษาปริมาณที่มีวิธีการพอเพียงของพอเพียงจากยูรป 3 วิธีได้แก่ maceration, microwave assisted extraction (MAE) และ ultrasonic extraction (UE) พบว่าวิธี UE เป็นวิธีที่มีประสิทธิภาพมากที่สุดเพราะสามารถผลิตของพอเพียงได้ในปริมาณมาก ในระยะเวลาสั้นและมีปริมาณของไขมันกับสารสกัดน้อยกว่าวิธีอื่นๆ นอกจากนี้การศึกษาของสุพรรณีและพีที่ศึกษาปริมาณการสกัดของพอเพียงโดยวิธี maceration นั้นจะทำให้เก็บสารสกัดในปริมาณมาก ซึ่งส่งผลกระทบต่อการศึกษาผลในการต้านอนุมูลอย่างและการเป็นพิษต่อสิ่งมีชีวิต และพลังงานของ ปี 2551 พระร่วมและรั้งมา เปรียบเทียบวิธีการสกัดของพอเพียงจากจังหวัด เชียงใหม่ด้วย 3 วิธี พบว่าวิธี UE เป็นวิธีที่ดีที่สุดเช่นกัน ซึ่งสารสกัดที่ได้มีปริมาณผลิตภัณฑ์ที่เก็บขึ้นเป็น 2,25%ww ผลการศึกษาตามตารางแสดงพอเพียงได้ในปริมาณมากกว่าซึ่งเท่ากับ 6.67 %ww เมื่อวิเคราะห์ปริมาณสารประกอบโพลีฟีนอลิกและพลังงานของสารสกัดพบว่ามีปริมาณ 1,295 mg/g dryweight และ 0,35 mg/g dryweight ตามลำดับ ซึ่งปริมาณของสารประกอบโพลีฟีนอลิกที่ได้มีปริมาณสูงในจำนวนวารีของรั้งมา (2551) ซึ่งมีค่า 0.055 mg/g dryweight และ 0.25 mg/g dryweight แต่ยังไม่ได้เปรียบเทียบผลการสกัดของพอเพียงจากจังหวัด เชียงใหม่ แต่สามารถสื่อสารได้จากงานวิจัยของ Kumazawa et al. (2004) ซึ่งมีค่าเท่ากับ 31.2 mg/g dryweight และ 2.5 mg/g dryweight ตามลำดับ
นอกจากนี้, Kumazawa et al. ได้ใช้วิธีการคัดแยกทางคุณภาพของพาราซิตโดยเทคนิค HPLC พบว่าสารกัดพรากดีสีแดงจากประเทศไทยไม่แสดงคุณภาพแกรมของสารสนับสนุนใดๆ เลย แต่อย่างไรก็ตามจากการศึกษาระดับมวลของสารกัดพรากดีสีแดงโดยเทคนิค TLC พบว่าสามารถแยกชนิดของสารได้ใน 10 จุดตัวกัน โดยจุดที่ 8 มีค่า R, 0.75 มีความเข้มข้นของจุดมากกว่าจุดอื่นๆ และจากอาการค้างของสารพาราซิต (2552) ทำการคัดแยกค่าประกอบของสาร สารกัดพรากดีสีแดงในสิ่งมีชีวิตที่กัดตัวยึดที่อ้างอิง เอกชน สิ่งคู่มีโทษแพะ แพะในคลอและน้ำ ตามด้วยบิโอทัยคิด TLC และให้มี mobile phase เช่นเดียวกันการศึกษา พบว่าสารกัดจากตัวที่นำที่สัมผัสในแต่ละแรงแบบไก่มีจุดกัน และเมื่อพิจารณาไบโอทัยคิดของสารกัดจากตัวอากาศทำลายยาออก สามารถพบค่าที่ใกล้เคียงกับการศึกษาของคืนนี้คือ R, 0.50, 0.76 และ 0.84 ซึ่งจุดที่มีค่า R, 0.84 นั้นเป็นจุดที่มีความเข้มข้นมากที่สุด แสดงให้เห็นว่าสารกัดจากพรากดีสีแดงในประเทศไทยมีสารสำคัญเป็นองค์ประกอบของน้ำ นอกจากรถนิว มีการน้ำจะมีความแตกต่างทางคุณภาพทางอานมันกัน ซึ่งสอดคล้องกับ Burdock et al., 1998 ที่กล่าวว่าความแตกต่างทางคุณภาพภูมิภาค โดยเฉพาะทางด้านพื้นที่ในแต่ละที่นั้น แต่แกล้งให้เกิดความแตกต่างทางคุณภาพระหว่างประเทศของพรากดีสีแดงในแต่ละที่ของน้ำหรือประเทศ แต่อย่างไรก็ตาม Kumazawa et al. (2004) ได้รายงานว่าไม่ทราบแหล่งที่มาจากพรากดีสีแดงจากประเทศฉะเชิงเทราซึ่งมีความ และน้ำมันมีกิจการเพิ่มขึ้นจากน้ำมันเครื่องของพรากดีสีแดง เมื่อนำสารกัดพรากดีสีแดงที่แยกออกจากน้ำมัน UE เช่นกัน พบว่าสารกัดพรากดีสีแดงจากน้ำมันมีค่าความเข้มข้น 50 μg/ml มีความสามารถบรรจุเป็นได้ใกล้เคียง 50 ถึง 80 μg/ml ซึ่งในสารกัดพรากดีสีแดงจากแต่ละต้อง ใช้ความเข้มข้นน้อยที่ 100 μg/ml ซึ่งสามารถบรรจุเป็นได้ใกล้เคียง 50 ปกติชมัน เป็นไปได้ที่ความ แตกต่างของน้ำมันมีข้อต่าง ๆ ที่เกิดจากความแตกต่างทางคุณภาพระหว่างของน้ำมันแต่ละที่จากนี้น่าจะแสดงสารกัดพรากดีสีแดงสามารถใช้เป็นเครื่องเปรียบยอดขี้คิ้ว ซึ่งเป็นสารตัวต้านที่ทำให้เกิดความได้สาคัญ อนุมูลโอซิคลอซิล พบว่าสารกัดพรากดีสีแดงสามารถอัญเชิญทาง ไขโตเจนเปรียบยอดขี้คิ้วได้เช่นกัน แต่อย่างไรก็ตามยังไม่มีผู้รายงานกล่ากล่าวของพรากดีสีแดง
แม้ว่าสารกัฟพรอฟิลลิที่ความเข้มข้น 25-400 ug/ml สามารถยับยั้งอนุมูล DPPH และสารไอโคลเจนเปอร์ออกไซด์ได้ แต่จากการศึกษาพบว่าสารกัฟพรอฟิลความเข้มข้นสูงสั้นไม่สามารถยับยั้งอนุมูลไอโคลเจนและชูเปอร์ออกไซด์แอนทิออกซิดันได้ โดยอนุมูลชูเปอร์ออกไซด์แอนทิออกซิตัตในระบบ xanthine-xantine oxidase และอนุมูลไอโคลเจนทำให้เกิดขึ้นจาก fenton reaction เมื่อเรียบเทียบกับงานวิจัยของ Nagai et al. (2003) ซึ่งทำการศึกษาสารกัฟพรอฟิลลิทจากประเทศไทยอยู่ในสารกัฟพรอฟิลความเข้มข้น 1 mg/ml ถึง 100 mg/ml ซึ่งสูงกว่าความเข้มข้นของสารกัฟในการศึกษานั้นๆ ซึ่งการเตรียมสารกัฟพรอฟิลให้มีความเข้มข้นสูงขึ้น ดังนั้นทำการรวบรวมพรอฟิลลิทใน隹ผังต่างๆ ในระบบมากมาย จึงจะทำให้สารกัฟพรอฟิลลิทมีความเข้มข้นสูงขึ้นได้ ซึ่งอาจจะเป็นไปได้สำหรับการจัดทำสารกัฟพรอฟิลลิทจากแหล่งที่ความเข้มข้นสูงอาจทำการยับยั้งอนุมูลไอโคลเจนและชูเปอร์ออกไซด์แอนทิออกซิตัตในระบบ xanthine-xantine oxidase ได้ ซึ่งต้องมีการศึกษาต่อไป
References of Literature cited

