รายงานผลการวิจัย
มหาวิทยาลัยแม่โจ้า

เรื่อง การแยกและคัดเลือกเชื้อสู่สินที่ย่อยสลายน้ำมัน
ISOLATION AND SCREENING OF OIL-DEGRADATION
MICROORGANISMS

โครงการย่อยภายใต้รูปโครงการ:
เรื่อง การวิจัยและพัฒนาเชื้อสู่สินที่มีประสิทธิภาพในการจัดการสิ่งแวดล้อม
RESEARCH AND DEVELOPMENT OF EFFECTIVE MICROORGANISMS
FOR ENVIRONMENTAL MANAGEMENT

ไตรมาสการจัดสรรเงินประมาณวิจัย ประจำปี 2551
จำนวน 204,000 บาท

หน่วยงานโครงการ นางสาวพิภภัส บังจือกิจ
ผู้ร่วมโครงการ นางสาวสมกิต ศิริน
นายภูริทัศ จันทร์คำ
การแยกและคัดเลือกเชื้อจุลินทรีย์ยอดแยงิณน้ำมัน

ISOLATION AND SCREENING OF OIL-DEGRADATION MICROORGANISMS

พีระกันถ์ บังเจรดกิจ สมศักดิ์ ศิริวิช รัฐประ จันทร์เครง
PEERAKARN BANJERDKIJ, SOMKID DEEJING, RUTTAPORN CHUNDET

นางวิจฉาสีฉิว คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ

บทคัดย่อ

วิธีการแยกเจ้าหน้าที่ในเบื้องต้นในสภาพแวดล้อม คือ วิธีทางกายภาพ วิธีทางเคมี และวิธีการอยู่อาศัยทางชีวภาพ ซึ่งการใช้จุลินทรีย์ในการแยกเจ้าหน้าที่ในเบื้องต้นในสภาพแวดล้อมเป็นวิธีที่เป็นมิตรต่อสิ่งแวดล้อม งานวิจัยนี้ได้ทำการแยกเชื้อแบคทีเรียจากด้านอย่างดินและน้ำในบริเวณน้ำทรายจำนวน 30 โคลน เบื้องต้นได้แยกจากด้านของสิ่งที่ติดอยู่จำนวน 22 โคลน และจากดินบริเวณน้ำทราย 8 โคลน และพบจำนวนจุลินทรีย์จากน้ำปะทะน้ำ จำนวน 39 โคลน (SA1-SA39) จากนั้นได้จำนวน 40 โคลน (PW1-PW40) และจากด้านอย่างดินที่เป็นน้ำบ้านเครื่องที่ใช้แล้วโดยใช้วิธีทางกายภาพ ส่งคอลเลกชันทางจุลินทรีย์เป็นชุด พบว่าสามารถแยกเจ้าหน้าที่น้ำมันระดับ ++ 34 โคลน จากนั้นทดสอบการแยกเจ้าหน้าที่น้ำมันเครื่องที่ใช้แล้วโดยวิธี_partition gravimetric 19 โคลน และสามารถแยกเจ้าหน้าที่น้ำมันเครื่องที่ใช้แล้วได้มากกว่า 70 % และในทางที่ก่อการเจริญเติบโตได้ค่า 4.17-6.67 U/ml และค่าอีก 1 U/ml.

จากค่าที่ได้แล้วเก็บเกี่ยวแบคทีเรีย 16s rDNA sequencing พบว่าเจ้าหน้าที่น้ำมันเครื่องได้แก่ Bacteria thuringiensis, Lysinibacillus boronotolerans และ Acinetobacter sp.ซึ่งแสดงถึงสาเหตุการรู้สึกต่อสิ่งแวดล้อม ที่เหมาะสมสำหรับการใช้ในที่น้ำมันเครื่องน้ำมันเครื่องที่ใช้แล้วในกลุ่มแรก

คำสำคัญ: ดินเป่าเบื้องน้ำมัน, การอยู่อาศัยทางชีวภาพ, น้ำมันเครื่องที่ใช้แล้ว
ISOLATION AND SCREENING OF OIL-DEGRADATION MICROORGANISMS

PEERAKARN BANJERDKIJ¹, SOMKID DEEJING¹, RUITAPORN CHUNDET¹

¹Biological Department Faculty of Science Maejo University

Abstract

Methods were used to removal of contaminated oil such as physical, chemical and biological methods. Biodegradation has been admired to clean-up oil polluted environment. The aim of this study was isolated and selected the dominated bacteria from natural resources and soil-oil contaminated that can be degrading used lubricating oil. The 30 isolate from hot-spring water, 39 isolate from natural soil, 40 isolate from natural water and 45 isolate found from contaminated soil and showed the best 34 dominated isolates were degradation bacteria. The 19 dominated isolates were possibility oil degradation more than 70% by using partition gravimetric method. Afterwards, The lipase activity showed that 4.17 to 6.67 U/ml by using titration technique and 0.48 to 1.01 U/ml by using colorimetric method. All dominated isolates were sequencing method for 16s rDNA sequencing, result showed that majority of dominated bacteria were Bacillus thuringiensis, Lysinibacillus boronitolerans and Acinetobactor sp.. Optimum growth conditions were pH 8.5 to 9.5, temperature 37 to 40°C, orbital shaker 150 to 200 rpm and 0.5 to 2.0 % NaCl, respectively.

Key words: natural resources, soil-oil contaminated, biodegradation, lubricating oil used
กิติกรรมประกาศ

โครงการวิจัยนี้ได้รับทุนอุดหนุนการวิจัยประจำปีงบประมาณ 2551 จากสำนักวิจัยและส่งเสริมวิชาการเกษตร มหาวิทยาลัยแม่โจ้ การวิจัยครั้งนี้สำเร็จลุล่วงไปได้ด้วยดี จากความช่วยเหลือจากศูนย์และเครื่องมือจากศูนย์วิทยาศาสตร์และวิศวกรรมศาสตร์ มหาวิทยาลัยแม่โจ้ คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้ คณะวิศวกรรมศาสตร์

นางสาวพิทักษ์ธิดา ประสิทธิคิจ
นางสาวสมิตตา ติจริง
นายรัฐพร จันทร์ศร
คณะวิศวกรรมศาสตร์
<table>
<thead>
<tr>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>บทคัดย่อ (ก)</td>
</tr>
<tr>
<td>Abstract (ข)</td>
</tr>
<tr>
<td>กิตติกรรมประกาศ (ค)</td>
</tr>
<tr>
<td>สารบัญ (ง)</td>
</tr>
<tr>
<td>ศัพท์ (จ)</td>
</tr>
<tr>
<td>วัตถุประสงค์ของการวิจัย (ฉ)</td>
</tr>
<tr>
<td>ประโยชน์ที่คาดว่าจะได้รับ (ช)</td>
</tr>
<tr>
<td>การตรวจสอบ (ซ)</td>
</tr>
<tr>
<td>สถานที่และระยะเวลาในการวิจัย (ฌ)</td>
</tr>
<tr>
<td>จุดประสงค์ (ญ)</td>
</tr>
<tr>
<td>วิธีการวิจัย (ฎ)</td>
</tr>
<tr>
<td>ผลและวิจารณ์ผลการวิจัย (ฏ)</td>
</tr>
<tr>
<td>สรุปผลการวิจัย (ฐ)</td>
</tr>
<tr>
<td>เอกสารอ้างอิง (ฑ)</td>
</tr>
<tr>
<td>หน้า</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>59</td>
</tr>
</tbody>
</table>
น้ำจุกป้อมติดต่อกันในสังเกตคอมเพล็กซ์ เป็นปัญหาหนึ่งที่สำคัญมากของประเทศ ซึ่งส่งผลกระทบต่อระบบการรับประทานอาหาร ระบบภูมิคุ้มกันภัย โดยพบว่ามีการปะเพื่อของสารเคมี สารพิษ โดยเฉพาะน้ำมันต่าง ๆ ที่เกิดขึ้นจากกระบวนการผลิตทางอุตสาหกรรม หรือกิจกรรมต่าง ๆ ในชีวิตประจำวัน ทำให้ผลผลิตที่เกิดขึ้นจากกระบวนการต่าง ๆ ที่เป็นพิษกระจายออกสู่สิ่งแวดล้อม และเหลือในน้ำมันที่ “น้ำมัน”

จากการตรวจสอบภาพวาดเมื่อการปะเพื่อของน้ำมันในสังเกตคอมเพล็กซ์ พบว่าน้ำมันสามารถที่จะปะเพื่อสู่สิ่งแวดล้อมได้หลายทาง ซึ่งสาเหตุใหญ่ของปัญหามาจากปิโตรเลียม ดังอย่างเช่น ความน่าเป็นที่เกิดจากการระดับเครื่องยนต์สูงว่าจะยังมีน้ำมัน และอุบัติเหตุในการขนส่งน้ำมันต่าง ๆ ทำให้ส่งผลต่อระบบการรับประทานอาหารของประชาชน (จึงศักย, 2537)

ปัจจุบัน มีหลายวิธีการที่ใช้ในการกำจัดน้ำมันที่ปะเพื่อในสิ่งแวดล้อม คือ วิธีทางกายภาพ เช่น วิธีทางเคมี วิธีทางขีดข่วน และวิธีทางกายภาพ โดยได้แก่ การใช้หุ่นจำลอง (Boom), การใช้เครื่องมือตัด และดูดน้ำมันสำหรับ ซึ่งน้ำมันที่จะถูกน้ำมันที่จากสิ่งแวดล้อมที่เป็นกันหรือมีพื้นที่ที่มีอาณาบริเวณกว้างใหญ่ไม่เพียงจะทำให้เกิดการกระจายในน้ำมันได้อย่างรวดเร็ว แต่ยังทำให้ส่งผลกับชายฝั่งที่เป็นป้ายสีสัน แนวปะทะ หรือขั้นตอนที่มีสิ่งแวดล้อมกว่า 50 cm

วิธีทางเคมี ได้แก่ การใช้สารเคมีเจรจาพบ (detergent) หรือ dispersant ที่ทำให้น้ำมันกระจายตัวออกไปเป็นอนุภาคเล็ก ๆ จากนั้นจะรีบถึงไปในระบบชีวภาพตามสะดวกต่อไป การใช้สารเคมีเป็นวิธีการที่มีความเสี่ยง เนื่องจากสารเคมีที่ใช้อาจเป็นตัวก่อให้เกิดผลกระทบต่อสิ่งแวดล้อม

วิธีทางขีดข่วน หรือการใช้จุลินทรีย์ในกระบวนการน้ำมัน ที่เกิดขึ้นภายในน้ำมันที่ไหลเหลือจากกิจกรรมการผลิตหรือทางเคมี และเป็นวิธีการที่ยอมรับมากที่สุด เพราะเป็นการย่อยสลายของจุลินทรีย์ที่มีความสามารถย่อยสลายน้ำมันต่าง ๆ ที่มีอยู่ในธรรมชาติที่สุด มีการศึกษาวิจัยเกี่ยวกับการดูดจุลินทรีย์ที่สามารถย่อยสลายสารเคมี หรือตัวแปรจุลินทรีย์ที่มีการปรับปรุงจากพันธุ์จุลินทรีย์ที่มีความสามารถย่อยสลายน้ำมันได้ดี

ในปัจจุบันการกำจัดน้ำมันและไขมันที่ปะเพื่อสู่สิ่งแวดล้อมในประเทศไทยยังมีขั้นตอนที่ดีอยู่มาก ทั้งนี้ เพราะน้ำมันและไขมันเป็นสารเคมีที่มีโครงสร้างชัดเจน ทำให้จุลินทรีย์ตามธรรมชาติใช้เข้าในการย่อยสลายน้ำมัน รวมถึงรากภูเขาภูเขาและไขมันที่ปลอดภัยในน้ำ ทำให้ไหลลงจากเขาไปตามทางน้ำได้ กลลงเข้าไปในธรรมชาติ และทำให้ภูเขาภูเขาสามารถย่อยสลายสารเคมีได้ตามเงื่อนไข

อย่างไรก็ตาม ในประเทศไทยการวิจัยเพื่อแยกแยะและดัดแปลงจุลินทรีย์ที่มีอยู่ในธรรมชาติโดยเน้นหาเชิงจุลินทรีย์ที่มีคุณสมบัติดีในการย่อยสลายน้ำมัน ทั้งในรูปแบบของการศึกษา ค้นคว้าและเก็บรักษาเพื่อพื้นฐานของเชิงจุลินทรีย์ที่มีคุณสมบัติดีในการใช้น้ำมันและไขมันเพื่อเป็นแหล่งอาหารสำหรับสัตว์กินมัน
แยกและคัดเลือกขวัญทรีมีความสามารถในการย่อยธาตunanานมานานจากแหล่งมีการปะปนน้ำมันและแหล่งทรัพยากรธรรมชาติอย่าง ซึ่งเห็นถึงแนวโน้มการวิวัฒันๆ ที่อยู่ในแผนงานบริหารยั่งยืน ที่ได้เสนอการเก็บรักษาลายพื้นที่อย่างมีระบบของเรื่องขวัญทรีที่มีแผนและคัดเลือกได้ เพื่อนำไปใช้ประโยชน์ทั้งในด้านการเกษตรและสิ่งแวดล้อมต่อไป และโครงการวิจัยนี้สำหรับตอบสนองประเด็นยุทธศาสตร์ของแผนการบริหารราชการแผ่นดิน พ.ศ. 2548-2551 หัวข้อขวัญทรัพยากรบริหารจัดการทรัพยากรธรรมชาติและสิ่งแวดล้อม เป็นการสนับสนุนนโยบายการพัฒนาชาติอย่างยั่งยืน

การวิจัยครั้งนี้จึงเป็นการศึกษาแนวคิดเกี่ยวกับขวัญที่มีการปะปนน้ำมันและจากแหล่งดิน และน้ำธรรมชาติ ซึ่งมีความสามารถในการย่อยธาตunanานนานเรื่องที่ใช้แล้ว หรือทรัพยากรพื้นที่เหมาะสมต่อการบริหารพื้นที่ขวัญทรีที่คัดแยกได้

วัตถุประสงค์ของโครงการวิจัย

1. เพื่อทดสอบขวัญทรีที่คัดแยกได้ในระบบค้นหาภายใต้การที่เหมาะสม
2. เพื่อศึกษาการกระทำปะปนขวัญทรีที่คัดแยกได้ก่อนขยายอยู่ต่างการใช้จากเริ่มต้น

ประโยชน์ที่คาดว่าจะได้รับ

1. ได้ขวัญทรีที่มีความสามารถในการย่อยธาตunanานมานานได้สำาหรับที่เหมาะสมต่อการปะปนของขวัญทรี
2. ได้รวบรวมขวัญทรีที่มีศักยภาพในการย่อยธาตunanานนาน ภายใต้การที่เหมาะสมต่อการเจรูนเติบโตที่ต้องการ ซึ่งสามารถนำไปประยุกต์ใช้ในการกำากับปัญหาการปะปนน้ำมันในระบบน้ำที่ต้องการ
3. ได้สร้างการเก็บรักษาลายพื้นที่ขวัญทรีที่มีประสิทธิภาพในการย่อยธาตunanานนานเพื่อการพัฒนาเศรษฐกิจต่อไป
4. ได้นำเสนอการสร้างระบบการปะปนขวัญทรีเพื่อสิ่งแวดล้อมอย่างยั่งยืน
5. เป็นการสร้างแนวคิดว่าขวัญทรีที่คัดแยกได้จากธรรมชาติอย่างถูกต้อง เพื่องานที่ปฎิบัติทางสิ่งแวดล้อมยังได้หลักการพัฒนาอย่างยั่งยืน
การตรวจสอบสาร

จากผลปฏิบัติการในงานวิจัยเพื่อหาซิงคิสันหรีที่มีความสามารถในการย้อมสลายน้ำมันมาใช้ในการแก้ปัญหาภัยคุกข์โดย เน้นศึกษาในระดับสารประกอบไขมันคาร์บอน ซึ่งเป็นสารประกอบหลักในน้ำมันและมีความสัมพันธ์ของโครงสร้างสูง มีการระดมข้อมูลจากวิจัยในหัวข้อที่เกี่ยวกับนี้ซึ่งในหัวข้อต่างๆ สารประกอบโครงสร้างของสารประกอบไขมันคาร์บอนในการย้อมสลายฯลฯ ที่เกี่ยวกับการย้อมสลายสารประกอบไขมันคาร์บอนของจุลินทรีย์ เพื่อปรับปรุงสารประกอบต่างๆ ของจุลินทรีย์ให้สามารถเพิ่มความย้อมสลายสารประกอบไขมันคาร์บอนได้สูงขึ้น รวมทั้งการศึกษาแกวโยไฟโตผลเปลือกเรียก โมลิชั่น (hydrolysis) มีชื่อทางระบบว่าไฟโตผลเปลือกเรียก (hydrolyse) หรือ ไฟโตผลเปลือกเรียก (glycerol ester hydrolyase) และมีชื่อตามรหัส E.C.3.1.1.3 โปรตีนเป็นแกวโยไฟโตผลเปลือกเรียก ไฟโตผลเปลือกเรียก (acetyl lipase) และมีชื่อตามรหัส E.C.3.1.1.2 โปรตีนเป็นแกวโยไฟโตผลเปลือกเรียก ไฟโตผลเปลือกเรียก (acyl-hydroxylase) และมีชื่อตามรหัส E.C.3.1.1.3 โปรตีนเป็นแกวโยไฟโตผลเปลือกเรียก ไฟโตผลเปลือกเรียก (esterification) จากการใช้ผลและแกวโยผลเปลือกเรียกเป็นปฏิกิริยาแบบต่างๆ (transesterification) โดยทั่วไป โลปโปรดและผลเปลือกเรียกเกี่ยวกับกระบวนการย้อมสลายสาร สำหรับปัจจุบันมีการสังเกตได้จากจุลินทรีย์ และมีผลที่สำคัญและพบว่าปฏิกิริยาของเนื้อไขมันแปะปีน 2 ลักษณะใหญ่ๆ คือ ทำปฏิกิริยาแบบไม่จำเพาะต้นแบบพ่นยะไฮโดรคาร์บอน (non-specific lipase) และทำปฏิกิริยาแบบจำเพาะที่พ่นยะไฮโดรคาร์บอนการค้นหา 1,3(1,3-specific lipase) (ปราณี, 2543)

1. สารประกอบไฮโดรคาร์บอน (Hydrocarbon compound) (เพิ่มเติม, 2550)

สารประกอบที่ไม่แกวโยประกอบตัวธาตุคาร์บอนและไฮโดรเจนเท่าที่เรียกว่า สารประกอบไฮโดรคาร์บอน และสารประกอบไฮโดรคาร์บอนที่ไม่แกวโยประกอบตัวธาตุชนิดที่จะสลายสารประกอบ สารประกอบที่อยู่ในทางเดียว เรียกว่า ไฮโดรคาร์บอนหลักต่างๆ ส่วนสารประกอบไฮโดรคาร์บอนที่ไม่แกวโยประกอบมีพันธะสู่ หรือพันธะสามารถสลายสารประกอบ-คาร์บอนด่างอยู่ได้ เรียกว่า ไฮโดรคาร์บอนไม่เช่นต้น (unsaturated hydrocarbon)

ในผลของการประกอบไฮโดรคาร์บอนที่ละเอียดของคาร์บอนตัดกันเป็นสายยาวหรือตัดกันเป็นไปตรง (straight chain) หรือตัดกันเป็นสายยาวที่มีกิจการแยกออกจากโครงซึ่ง (branch chain) โดยไม่มีของคาร์บอนในโมเลกุลนี้แต่ยังแน่นอนว่า อะลิฟทิกไฮโดรคาร์บอน (aliphatic hydrocarbon) หรืออะลิฟทิก โมเลกุลของสารประกอบไฮโดรคาร์บอนโดยละเอียดของคาร์บอนตัดกันเป็นกระเปาะ และอาจมีกิจการกักกันของคาร์บอน เรียกโมเลกุลประเภทนี้ว่าไฮโดรคาร์บอนแบบโปรติค หรือ อะลิฟทิกคลิก
ไตรโคคาร์บอน (alicyclic hydrocarbon) และนิสสกุลของสารประกอบไฮโดรคาร์บอนที่มีวงหน่อยของ
แนวนี้เป็นโครงสร้างหลักใหญ่กว่า อะเรมatischeไฮโดรคาร์บอน (aromatic hydrocarbon)

น้ำมันเป็นสารประกอบไฮโดรคาร์บอน (hydrocarbon) ที่มีความสับสนและมี
องค์ประกอบเป็นสารต่างๆกว่า 100 ชนิด ซึ่งสามารถแยกได้โดย Silica gel chromatography ได้เป็น
สารประกอบประเภทหลักดังนี้ สารประกอบไฮโดรคาร์บอนที่เป็นกึ่งก้าน (aliphatic) และ สารประกอบ
ไฮโดรคาร์บอนที่เป็นวง (aromatic) หรือสารประกอบประเภท asphatic ซึ่งได้มีการศึกษาต่อมาถึงการ
ย่อยสลายของสารประกอบดังกล่าว (Brown et al., 1969)

สารประกอบไฮโดรคาร์บอนที่เป็นสารประกอบเชิงตัวได้แก่ n-alkanes, branch alkanes และ
cycoalkanes (naphthenes) n-alkanes ถูกย่อยสลายได้จากตัวที่สูงจากการทำปฏิกิริยาเริ่มต้นเป็นที่
เป็น primary alcohol, aldehyde และ monocarboxylic acid ในกรณีย่อยสลายของ carboxylic
acid ในกระบวนการ β – oxidation จะได้ผลิต 2 ชนิด คือ shorter fatty acid และ acetyl
coenzyme A ซึ่ง fatty acid ที่เกิดขึ้นนี้พบทำเป็นตัวที่ทำให้เกิดเป็นกึ่งกล้างหลังจากการย่อย
สลายสารประกอบไฮโดรคาร์บอน (Atras and Bartha, 1973)

2. บีเอ็นซี (Benzene) และอนุพันธ์ของบีเอ็นซี (เคมีฟิวชั่นนาร์, 2550)

ในปี ค.ศ. 1825 Michael Faraday ได้แกะแยกตัวอย่างของกีกรีซที่ได้จากการจุกไฟให้
แสงสว่าง ต้องมาเรียกว่า บีเอ็นซี เนื่องจากสามารถล้างความได้จากกลุ่มการเบนซินกับ
ผลิตภัณฑ์ออกไซด์ นับเป็นตัวอย่างของสารเคมีกล้ายกลาง ค่อนมาในปี ค.ศ. 1834 ได้ค้นพบดูสิภ์
ในกลุ่มของ บีเอ็นซีเป็น C₆H₆ จากดูสิภ์นั้นทำให้เห็นว่า บีเอ็นซีเป็นสารประกอบไม่ซับตัว แต่ในขณะ
นั้นไม่ได้รู้อย่างสุดยอดโครงสร้างคือที่จริงของบีเอ็นซีเว้นก็มีอย่างไร จนกระทั่งในปี ค.ศ. 1865 Kekule' ได้
พยากรณ์เบนซีนและเสนอสูตรโครงสร้างของบีเอ็นซีโดยมีสิมมิติฐานว่า บีเอ็นซีต้องประกอบด้วยหนึ่ง
ๆกลุ่มที่มีสิ่งเรียกว่าเบนซีน 6 อะตอมตั้งกันด้วยตัวระเบียบและเก็บรอนแต่ละอะตอมต่ำงกั้นสัง
พันระหว่างเนื้อเส้น 1 อะตอม ดังรูป

ภาพ 1 แสดงการต้นครัวและเส้นสุดตรงโครงสร้างของบีเอ็นซี

ที่มา: เคมีฟิวชั่นนาร์, 2550
จากผลการศึกษาโครงสร้างของเบนซีนพบว่า ความยาวพันระหว่างคาร์บอนตรงต่อมุกพันและมีความยาวเท่ากันคิด 1.39 แกล่สตรอม (Å) ซึ่งเป็นค่าที่อยู่ระหว่างคาร์บอนตรงต่อมุกพันระยะสั้น (1.34 Å) และพันระยะยาว (1.54 Å) ในขณะที่ความยาวพันระหว่างคาร์บอนตรงต่อมุกพันในโมเลกุลของเบนซีนไม่ได้เป็นพันระยะเดียวกันพันระยะสั้นอย่างใดอย่างหนึ่ง แต่ประกอบด้วยพันระยะที่มีการเคลื่อนที่ไปมาทางจริง และจากการวัดระยะระหว่างพันระยะของคาร์บอนแต่ละระยะเป็น 120 Å นักวิทยาศาสตร์ใช้ปรากฏการณ์ที่ปรากฏเป็นรูปแบบของโครงสร้างที่ทุ่มจริงของสารได้ ดังนั้นจึงเรียกเบนซีนสูตรโครงสร้างอย่างย่อของเบนซีนได้ดังนี้

![Structural formula of benzene](image)

ภาพ 2 แสดงการเขียนสูตรโครงสร้างอย่างย่อของเบนซีน

ที่มา: มหิดลวิทยา能得到, 2550

อนุพันธ์ของเบนซีน เกิดจากไตรเจมิจและละตอมในโมเลกุลของเบนซีนถูกแทนที่ด้วยธาตุอื่น หรืออะตอมใดๆ โดยที่เบนซีน สามารถประกอบออกโดยเรียงโครงสร้างเป็นอนุพันธ์ของเบนซีนซึ่งมีอยู่มากมายและการเรียกชื่อ IUPAC ของหน่วยงานเหล่านี้จะขึ้นโดยใช้เบนซีนเป็นเรือหลัก ตัวอย่างเช่น

ถ้าเบนซีนมีหน่วยแทนที่เพียงหน่วยเดียวให้อานหน่วยแทนนี้ แล้วตามด้วยชื่อหลักเบนซีน สามารถเลือกจาก IUPAC ชนิดหน่วยแสดงชื่อเบนซีน โดยคำกริยาซึ่งสัญญานิกายเรียกมากกว่าชื่อ IUPAC เช่น ถ้าหน่วยแทนเบนซีนเป็นหน่วยซับซ้อนมาก ๆ อาจจะเรียกชื่อเป็นส่วนประกอบของแดงแอน หรือแดงคลิน หรืออื่น ๆ แล้วเรียกเบนซีนเป็นหน่วยแทนที่เป็นหน่วยสีมีสี (phenyl group)

การระบุตัวเลขที่ตั้งตรงข้ามกับที่อยู่อาจระบุเป็นตัวเลขก็ได้ หรือที่สอดคล้องและนัยหมายถึงการใช้คำว่าหน้าหน้าวาง orto - สำหรับตัวเลข 1, 2 meta - สำหรับตัวเลข 1, 3 และ para - สำหรับตัวเลข 1, 4 โดยมักใช้เป็นตัวอย่าง o - m - และ p - แทน orto - meta - และ para - ตามลำดับ แต่ถ้ามีหน่วยแทนที่มากกว่า 2 หน่วยไปจะระบุตัวเลขที่แทนที่ด้วยตัวเลขอย่างปกติ เช่นถ้ามีสองอะลิฟติกมาเรียงต่อกัน โดยมีตัวเลขที่ด้านหนึ่งอยู่กับเรียกชื่ออะลิฟติกโดยรวมดิก อิไดรคาร์บอน (polynuclear aromatic hydrocarbon) เช่น
3. ประโยชน์ของเบนซีนและอนุพันธ์

เบนซีนเป็นตัวทำละลายและเป็นสารต้านทานในการส่งเสริมสว่างประกายต่าง ๆ แต่การสูบคุมเบนซีนในปริมาณมาก ๆ ทำให้เกิดอาการคลื่นไส้และอาการชัดเจน เมื่อจากระบบหายใจสั้นเหลาะ

นอกจากนี้ การตึงส่งสมบัติแก่เบนซีนต่อเนื่องกันมาก ๆ จะทำให้ขอร่ำรื่นในทางกระดูกซึ่งทำน้ำมันที่สร้างมันเสื่อมถดถอย ดังนั้น ต้องปฏิบัติตามที่กำหนดในระเบียบฝ่ายการอย่างดี และจำเป็น

จำเป็นควรใช้บุคคลเป็นตัวทำละลายแทน
สารประกอบโลหะคาร์บอนประกอบด้วยสาร渲染ดกปลีกสูญเสียไปอย่างรวดเร็วและผลจากหลายชนิด โดยทำให้เกิดความเสียหายทาง สารที่มีนองประกอบของคาร์บอนและโลหะชนิดนี้ แม้ในความหมายที่ใช้โดยทำให้มีผลกระทบต่อสารกีและผลิตภัณฑ์ของคนด้วย

จากที่ได้สูตรสารประกอบที่เกี่ยวข้องกับโลหะคาร์บอนโลหะตรีซีซึ่งโดยทำให้เกิดการตรวจจับเป็นการทางของสารโลหะคาร์บอนโดยตรง หรือโดยตรวจทางข้อย่างนับจำนวนของ hydrocarbon-degrading bacteria ในตัวที่มีการเปลี่ยนแปลงเป็นโลหะ เช่น การตรวจพบแบบที่เรียกว่ายี่สารกลาการโลหะคาร์บอนได้เป็นจำนวนมาก โปรดช่วยในการสร้างการเกิดสารประกอบ

การประมวลหาค่าออกแบบขยายภายใน (biodegrading activity) ของสารประกอบโลหะคาร์บอนโดยใช้ตัวอย่างทางที่สุดได้แก่ การวัดค่า “reactant” ซึ่งได้แก่สารประกอบโลหะคาร์บอนที่เป็นเป้าหมาย ทรัพยากรหน่วยผลิตสูงที่ที่เกิด เช่น CO₂ สำหรับการแสดงทางออกมาสามารถกระทำได้โดยการวัดจับตัวจานระหว่างลู่จินทร์ (microbial enumeration) หรือตรวจวัด specific activity ของประชากรจินทร์ที่ถูกต้องนั้น ซึ่งเป็นแลกฐานแสดงถึง biodegradation ที่เกิดขึ้นภายในตัว

ในการวิเคราะห์โลหะคาร์บอนที่เป็นเป้าหมายได้โดยทำให้ทำการสกัดสารนั้นจากโครงสรางของตัว ก่อนนำมาวิเคราะห์โดยอาศัยเทคนิคทาง gas chromatography, liquid chromatography หรือ spectrophotometer สำหรับวิเคราะห์หน่วยผลิตสูงที่เกิดเช่น CO₂ มักนิยมตรวจวัดโดยอาศัยตัวอย่างจากสารที่ถูกต้องที่มีสารประกอบในสารโลหะคาร์บอนและตรวจวัดโดยอาศัยเครื่อง liquid scintillation counter

4. น้ำมันเครื่อง (Motor oil)

คือ น้ำมันที่ใช้สำหรับหลักสิ้นในเครื่องยนต์เก็บทุกชนิด เช่น รถยนต์ รถบรรทุก รถจักรยานไฟฟ้า รถบรรทุก เพื่อควบคุมความเสียซึ่งและความเสียหายระหว่างสุญเสียกับแม่เหล็กเครื่องยนต์ ผลิตจากน้ำมันเดิม น้ำมันเครื่องที่ใช้แล้วจะบีบปั๊มเป็นดองค์ประกอบทางเคมี เช่น แก๊สคาร์บอน หรือสังเคราะห์

รองค์ประกอบของน้ำมันเครื่อง (PTT, 2008)

- ลักษณะทางกายภาพ (Physical State): ของเหลว (Liquid) ตัวแสวงบัดสีและกลิ่น (Appearance Color and Odor): น้ำตาล (Brown), กลิ่นน้ำมัน (Oily Odor) การละลายได้ในน้ำ (Solubility in Water): ไม่ละลายในน้ำ (Insoluble) ค่าความนิ่มที่ 100 ⁰C (Kinematics Viscosity @ 100 ⁰C, mm²/s): 14.5 – 16.0 ประเภทดีซิล Lubricating Oils (Petroleum), Hydrotreated neutral oil based > 30 % WT และ
5. การย่อยสลายสารประกอบไฮโดรคาร์บอนโดยจุลินทรีย์

จากการศึกษาของ Ullmann (2541) พบว่าในสาขาวิชาการทางน้ำมันที่อยู่น้ำมันได้ในดินมีความสามารถในการย่อยสลายน้ำมัน 88-92% ของเรื่องในดินที่มีแพทย์ที่อยู่น้ำมันได้ในดินมี 0.13-50% ของแบคทีเรียในดินที่มี ซึ่งแสดงถึงการย่อยสลายน้ำมันได้ดี ดังนั้นจะเห็นว่าแบคทีเรียจะจำเป็นสำหรับในการย่อยสลายน้ำมันได้ ดังนั้นจึงต้องทำการศึกษาและวิจัยในการย่อยสลายสารประกอบไฮโดรคาร์บอนด้วยจุลินทรีย์ต่างๆ นั้นแตกต่างกันไป (รัฐบาล, 2541) นอกจากนี้แล้วจึงต้องทำการศึกษาและค้นหาจุลินทรีย์ที่สามารถย่อยสลายน้ำมัน ยังพบจุลินทรีย์ประเภทอื่นๆ ที่มีความสามารถในการย่อยสลายสารประกอบไฮโดรคาร์บอนด้วย

ตารางที่ 1 ตัวอย่างจุลินทรีย์ที่สามารถย่อยสลายสารประกอบไฮโดรคาร์บอน

<table>
<thead>
<tr>
<th>ประเภทของจุลินทรีย์</th>
<th>สายพันธุ์</th>
<th>อ้างอิง</th>
</tr>
</thead>
<tbody>
<tr>
<td>แบคทีเรีย (Bacteria)</td>
<td>Mycobacterium, Pseudomonas, Nocadia, Streptomyces, Desulfovibrio, Corynebacterium และกลุ่มแบคทีเรียทาก cocci</td>
<td>Buchanan and Gibbons, 1974</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas, Acinetobacter sp. Bacillus thermoleovorans</td>
<td>ประหยัด, 2543</td>
</tr>
<tr>
<td>รา (Fungi)</td>
<td>Aspergillus, Penicillium และ Verticillium Phanerochaete, Pleurotus และ Coriolus</td>
<td>Davie and Hughes, 1968</td>
</tr>
<tr>
<td>อื่น ๆ (Others)</td>
<td>สาขาวิทยา Protheaebolphi</td>
<td>Frederic Chaillan, et al., 2004</td>
</tr>
<tr>
<td>ประเภทของเจริญพืช</td>
<td>สายพันธุ์</td>
<td>อ้างอิง</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>กลุ่มของแบคทีเรียแบบที่เรียกได้แก่</td>
<td>Frederric Chaillan, et al., 2004</td>
<td></td>
</tr>
<tr>
<td>จิ้มส์ Gordonia, Brevibacterium, Aeromicrobium, Dietzia, Burkhold และ Mycobacterium</td>
<td>Mahmud and Alexander, 2000</td>
<td></td>
</tr>
<tr>
<td>mycobacterium fortuitum Strain NF4</td>
<td>Margesin, et al., 2003</td>
<td></td>
</tr>
<tr>
<td>mycobacterium rathibonense Strain SD4</td>
<td>Frederic Chaillan, et al., 2004</td>
<td></td>
</tr>
<tr>
<td>mycobacterium sp. Strain PYR-1 nidA</td>
<td>Frederic Chaillan, et al., 2004</td>
<td></td>
</tr>
<tr>
<td>พืชไม้ได้แก่ Aspergillus, Penicillium, Fusarium, Amorphoteca, Neosartorya, Paecilomyces, Talaromyces และ Graphium</td>
<td>Frederic Chaillan, et al., 2004</td>
<td></td>
</tr>
<tr>
<td>เชื้อแบคทีเรียได้แก่ Candida, Yarrowia และ Pichia</td>
<td>Frederic Chaillan, et al., 2004</td>
<td></td>
</tr>
</tbody>
</table>

ในสภาพธรรมชาติน้ำมันและสารประกอบโลหะคารบอนจะถูกย่อยกลายโดยแบคทีเรียที่เรียกและราบจนเกิดผลขึ้นในสภาพแวดล้อมที่เป็นน้ำและสภาพแวดล้อมบก ซึ่งพบว่ามีแบคทีเรียและราบจนเกิดผลขึ้นในน้ำมันได้ จากการศึกษาพบว่า เชื้อราในต้นที่มีความสามารถในการย่อย สลายน้ำมันมีอัตราส่วน 6-82% ของเชื้อราในต้นที่หมด และพบว่าแบคทีเรียในต้น 0.13 - 50 % ของแบคทีเรียในต้นที่สามารถย่อยสลายน้ำมันได้ (พร้อมกิจ, 2541) ดังนั้นในการศึกษาของ Hollaway, et al., (1990) พบว่าแบคทีเรีย 0.003-100% ของแบคทีเรียในต้นที่มีความสามารถในการย่อยสลาย น้ำมันได้ ซึ่งแบคทีเรียและราบจนเกิดน้ำมันมีความสามารถในการย่อยสลายของน้ำมันและสารประกอบโลหะคารบอนเรือนิ้วต่างๆ นั้นแตกต่างกันไป

1. สายพันธุ์ของแบคทีเรียที่สามารถย่อยสลายสารประกอบโลหะคารบอน แบคทีเรียที่สามารถย่อยสลายสารประกอบโลหะคารบอนได้แก่ Mycobacterium, Pseudomonas, Nocardia, Streptomycetes, Desulfovibrio, Corynebacterium และกลุ่มแบคทีเรียจาก cocci (Buchanan and Gibbons, 1974)

2. ราบจนที่สามารถย่อยสลายสารประกอบโลหะคารบอน

ในการทำ bioremediation ของคินที่ปนเปื้อนน้ำมันในน้ำ เชื้อราที่มีประสิทธิภาพในการย่อยสลายน้ำมันได้ดี เนื่องจากราบน้ำมันจะถูกได้รับผลที่มี pH ต่ำและสามารถย่อย Российской 1963 Davie and Westlake ได้ทำการแยกเชื่อม Aspergillus, Penicillium และ Verticillium ที่สามารถ
เจอในน้ำมันได้ และได้แยกชีวาระคีต (white rot fungi) Phanerochaete, Pleurotus และ Coriolus ซึ่งมีการกระทำออกฤทธิ์ควบคุมได้รวดเร็วมาก

3. จุลินทรีย์ที่ใช้ในการย่อยถ่านของไมโครคารบอน

นอกจากแบคทีเรียและเชื้อราบางชนิดที่มีความสามารถในการย่อยถ่านของไมโครคารบอนได้แล้ว ยังมีจุลินทรีย์ต่าง ๆ เช่น ถ้าเรียก Proteacozym หรือยืดสกีกิจต้น ที่สามารถย่อยถ่านของไมโครคารบอนได้ก็จะมีการแยกชีวาระคีตจุลินทรีย์ที่ใช้จากการที่สามารถย่อยถ่านของไมโครคารบอนจากต้วที่มีการป้องกันปฏิกิริยาป้องกัน และกิจต้นเชื้อราในแบคทีเรียชนิดหนึ่งที่พบมีมีขนาด 33 ชนิด คือ แบคทีเรีย 8 ชนิด ทิจกิจ 21 ชนิด และยืดสกี 4 ชนิด และนำมิศกิจต้นด้วยชนิดทางไมเนกูลน์และทิจกิจต้นของแบคทีเรียชนิด Gordonia, Brevislactum, Aeromicrobium, Dietzia, Burkhold และ Mycobacterium ซึ่งมี 4 สลักพันธุ์ถูกแทนในและจัดอยู่ไม่มีการรายงาน ส่วนเพียงกิจได้แก่ Aspergillus, Penicillium, Fusarium, Amorpholota, Neosartorya, Paecilomyces, Talaromyces และ Graphium และเรียกยืดสกีได้แก่ Candida, Yarrowia และ Pichia และพบว่าไมโครคารบอนย่อยได้ตามดอกไม้และระยะทางถ่านกี่สูง ไม่นำมิศกิจต้องขึ้นอยู่กับระยะทางที่ระยะการย่อยไมโครคารบอนย่อยถ่านได้ยนนกิจกว่า (Friederich, et al., 2004)

แบคทีเรียปิโตรนัสในตลาด (Pseudomonas sp.BS2201, BS2203 และ Brevislactum sp.BS2202) ซึ่งแยกได้จากต้วที่มีการป้องกันน้ำมันเป็นจินยี่ สามารถย่อยถ่านของไมโครคารบอนได้ดีในระยะทางถ่านของจุลินทรีย์ ไม่ได้สามารถย่อยถ่านไม่ได้ถ่านไม่มีต้วที่มีต้วกิจ (ทดสอบ 10 วัน ในอัตราเกลือ) หรือสามารถย่อยถ่านของไมโครคารบอน (ทดสอบ 50 วัน) หรือย่อยถ่านของไมโครคารบอน ที่มีต้วกิจ (ทดสอบ 50 วัน).

Mane, et. al., 2001 ได้ศึกษาความปลอดภัยในการย่อยถ่านของไมโครคารบอนที่มีในลักษณะเป็นต้วที่มีการป้องกันน้ำมันในระยะทางถ่านของจุลินทรีย์ได้เพียงพอที่จะนำไปใช้ในงานพัฒนาการย่อยถ่าน การนำมิศกิจต้นด้วยและจุลินทรีย์ที่มีการย่อยถ่านได้มากที่สุด คือ 70% และ 60% ตามลำดับ

น้ำมันเคมีเป็นทรัพยากรธรรมชาติขั้นหนึ่งที่มีความสำคัญ และมีบทบาทอย่างมากต่อการ จำจุลินทรีย์และการทดแทนประเทศด้านการผ่านการป้องกันน้ำมันในลักษณะเป็นต้วที่มีการป้องกันน้ำมัน ไม่ได้หมดสิ่งต่าง ๆ มากก็ยังรู้ แต่ไม่เสียเวลาที่จะแนวเชื้อราที่ต้นตั้งกิจมีการย่อยถ่านได้มีบทบาทจุลินทรีย์ที่ ด้านการผ่านประเด็น เช่น แบคทีเรีย รา ยืดสกี เชื้อจุลินทรีย์ต้นกิจต้นเพียงกลุ่มที่มีการป้องกันถ่าน
น้ำมัน พบว่ามี 33 สายพันธุ์ เป็นแบคทีเรีย 8 สายพันธุ์ (Gordonia, Brevibacterium, Aeromicrobium, Burkholderia and Mycobacterium Dietzia) และ 21 สายพันธุ์ (Aspergillus, Penicillium, Fusarium, Amorphoteca, Neosartorya, Paecilomyces, Talaromyces และ Graphium) และยังมี 4 สายพันธุ์ (Candida, Yarrowia and Pichia.) ซึ่งสามารถย่อยสลายสารประกอบโลกรบอนซิลได้ดีที่สุด คือ n-alkane, isoalkane และ isoprenoid ส่วนสารประกอบโลกรบอนติดโลกรบอนจะถูกย่อยสลายได้โดยการสรุปสารประกอบโลกรบอน เนื่องจากมีโครงสร้างที่เข้ากันได้ (Frederic, 2004)

การคัดเลือกแบคทีเรียจากดินที่มีน้ำมันเป็นเบื้อง พบว่ามีแบคทีเรีย 2 กรุ่น กลุ่มที่ 1 ประกอบด้วยแบคทีเรีย 3 สายพันธุ์ สามารถย่อยสลายสารประกอบโลกรบอนที่เป็นเบี้ยในสิ่งแวดล้อม เช่น น้ำมันดีเซล น้ำมันดีซิล และน้ำมันเครื่อง แบคทีเรียกลุ่มที่ 2 ประกอบด้วยแบคทีเรีย 6 สายพันธุ์ (Bacillus and Pseudomonas spp.) สามารถย่อยสลาย medium- and long-chain alkanes ในดินที่มีน้ำมันเติมเป็นเบื้องได้ศึกษากลุ่มที่ 1 (Mahiran, 2004)

Seudomonas sp. BS2201, BS2202 และ Brevibacillus sp. BS2202 ซึ่งเป็น Nitrate-reducing bacterial ที่มีความสามารถในการจัดการกับน้ำมันเป็นเบี้ยสามารถย่อยสลายสารประกอบโลกรบอนเป็นเบี้ยได้ในสภาพที่มีออกซิเจนและในสภาพที่ไม่มีออกซิเจน ซึ่งสารประกอบloxanntenตามสารประกอบ alkanes (C10-C35) ได้ 90-95% ในเวลา 10 วัน สำหรับสารประกอบ alkanes สามารถย่อยสลาย alkanes ได้ 20-25% นอกจากนี้ยังสามารถย่อยสลาย polycyclic aromatic hydrocarbons ได้ 15-18% (V.G. Grischchenkova, 2000)

Harayama et al. (2004) ได้ศึกษาแบคทีเรียที่สามารถย่อยสลายสารประกอบโลกรบอนในชุดสารสารปิโอไตรเมซ โดยทำการคัดเลือกแบคทีเรียจากสารประกอบโลกรบอนน้ำมันที่แพร่กระจายในแหล่งธรรมชาติ จัดพบแบคทีเรีย 2 ชนิด คือ alcanivorax และ cycloclasticus ซึ่ง alcanivorax มีคุณสมบัติในการย่อยสลายสารประกอบโลกรบอน เช่น แตนออกได้คด สำหรับ cycloclasticus มีคุณสมบัติสามารถทำให้คุณสมบัติโลกรบอนเกิดลดลงได้

Harayama et al. (1999) พบว่า น้ำมันเติมประกอบด้วยโลกรบอนหลัก 4 ชนิด คือสารประกอบโลกรบอนคลื่นต่ำ (saturated hydrocarbon) สารประกอบโลกรบอนไม่คลื่นต่ำ (nonsaturated hydrocarbon) โลกรบอนที่มีติดโลกรบอนสารประกอบโลกรบอนโลกรบอน ซึ่งสามารถย่อยสลายได้จากเนื่องจากการเป็นเบื้องน้ำมันไทยในสารประกอบโลกรบอนที่มีไมโครอากาศภาพการระเหย การแตกตัวโลกรบอนบางส่วน ซึ่งจะทำให้น้ำมันที่มีสารประกอบโลกรบอนตกตัวเป็นผลดี เนื่องจากการลงดินโลกรบอนใต้ดิน

Mahmoud and Alexander (2000) ได้แยกชีวจุลินทรีย์จากเตาบันไดเนื้อที่สามารถย่อยสลายสารประกอบโลกรบอนได้ คือ mycobacterium fortuitum Strain NF4 mycobacterium
ratisbonense Strain SD4 และใช้วิธีการ high-pressure liquid chromatography (HPLC) ในการวิเคราะห์ปริมาณน้ำมัน ซึ่งเชื้อหินทรีย์ที่แยกได้สามารถอยู่ acyclic isoprenoids และ alkanes ได้

Ghazali et al., 2004) การละลายตัวคู่กับกระบวนการทางชีวภาพของไบโอคาร์บอนของินิที่เป็นเป็น โดยใช้กลุ่มของมดที่อยู่ในกลไกของไบโอคาร์บอน มีการทดลองน้ำด่วงอย่างเด่นที่เป็นเป็นไบโอคาร์บอนมาเลสในสารที่ประกอบด้วยน้ำมันมีคิด หรือไบโอคาร์บอนแช่คิวจูจี้ไปใช้เป็นแหล่งคาร์บอนต่อการทดลอง โดยส่วนหนึ่งของรัฐพิธีใหม่จะติดเจริญเจริญได้ในน้ำมันเดิม ส่วนประกอบไบโอคาร์บอนแต่ละชนิดหรือร่างสังเคราะห์ความสามารถสิ่งต่างไบโอคาร์บอนที่เป็นเป็นในสิ่งแวดล้อมนั้น วิเคราะห์โดยการใช้ดีเอ็นเอที่เป็นเป็นน้ำมันเดิม น้ำมันเดิม น้ำมันแช่คิวจูจี้ไปใช้แล้ว พบว่าแบคทีเรียที่มีประสิทธิภาพในการละลายติดทะเลสาบขนาดกลาง และละลายในอินทิมที่เป็นเป็นน้ำมันเดิม หลังจากที่ปนเป็นได้ 30 วัน ปรากฏว่าไม่พบผลใดๆ แบคทีเรียกลุ่มนี้ประกอบด้วยBacillus และ Pseudomonas spp.เป็นส่วนมาก

6. มีการทดลองและภาคีที่มีอิทธิพลต่อการย่อยละลายน้ำมันของอินิทรีย์

6.1 ผลกระทบทางภูมิอากาศของ oil pollutants
diphenylmethane ซึ่งเป็นส่วนประกอบของน้ำมันจะอยู่ในสภาพของน้ำหนักที่อยู่ในกลไก 30°C และสามารถออยล์อยู่ในน้ำมัน pseudo monas sp.แต่ที่ 20°C จะอยู่ในสภาพของแรงเร่งซึ่งจริงไม่สามารถอยู่ในน้ำมันได้ เช่นเดียวกับ nephalene จะอยู่ในสภาพของแรงเร่งของเชิงชันน์ (Gatellier, et al., 1973)

6.2 ผลของอุณหภูมิต่อการย่อยละลายน้ำมันของอินิทรีย์
อุณหภูมิมีผลต่อการย่อยละลายในสภาวะต่าง ๆ ของน้ำมันจากสารศักย่า (Antai, 2003) รายงานว่าที่อุณหภูมิจะลดการทำงานของสารประกอบไบโอคาร์บอนที่มีน้ำมันในกลไก ซึ่งเป็นส่วนที่เป็นพิษต่ออินิทรีย์ต่าง ๆ ทำให้ออกสารประกอบไบโอคาร์บอนมีผลต่อก และพบว่าที่อุณหภูมิ 20°C น้ำมันที่มีความแข็งค่อยๆจะถูกออยล์ไม่ได้ติดต่อกับน้ำมันที่มีความแข็งค่อยๆและส่วนประกอบที่เป็นพิษจะขณะได้ถูกกระทำในขณะที่อุณหภูมิ 10°C สำหรับแบคทีเรียที่สามารถระบายได้จะมีอัตราการระบายต่ำกว่าเมื่อเกิดสภาวะต่าง ๆ นอกจากนี้การย่อยละลายของสารประกอบไบโอคาร์บอนสามารถเกิดขึ้นได้ในอุณหภูมิต่างจาก 0°C และอุณหภูมิสูงประมาณ 70°C แต่มีอัตราการย่อยละลายที่แตกต่างกันไป

6.3 ผลของสารอาหารต่อการย่อยละลายน้ำมันของอินิทรีย์
อัตราส่วนของคาร์บอนของในน้ำมันและฟอสفورัลของcarbon/nitrogen (C/N) และ carbon/phosphorus (C/P) มีผลต่อการเจริญเติบโตของอินิทรีย์โดยทั่วไปและเก็บเนื้อ
สาหรับโคโครสคาร์บอนละต์ของกลุ่ม C ที่เปลี่ยนแปลงไป ซึ่งทำให้ความสามารถในการเจริญเติบโตของจุลินทรีย์ในบริเวณที่ถูกเปลี่ยนแปลง (Choi, et al., 2002) ในกระบวนการให้แก่เกษตรีมีการของธาตุเหล่านี้กลุ่ม C ที่เกี่ยวข้องควบคุมการกระทำของจุลินทรีย์ในบริเวณนั้น จึงเป็นตั้งเป้าเพื่อผลสัมฤทธิ์ในทางดีด้วยอย่างไรก็ตาม ปริมาณของฟิล์ลได้ที่มากกว่าจะเป็นตัวชี้วัดของการออกซิเจนสำหรับโคโครสคาร์บอน (Chazal, 2004) โดยทั่วไปค่า C/N = 60-100:1 เป็นตัวอย่างที่มีความเหมาะสมต่อการเจริญเติบโตของจุลินทรีย์ (Bartha, 1979)

6.4 ผลกระทบของอัจฉริยะต่อการออกซิเจนสำหรับโคโครสคาร์บอน

ปริมาณของจุลินทรีย์จะเกี่ยวข้องกับปฏิกิริยาในการออกซิเจนสำหรับโคโครสคาร์บอน โดยเฉพาะในปฏิกิริยาของโคโครสคาร์บอนที่ต้องอาศัยอนินชิเออร์ออกซิเจน แล้วยิ่งมากกับกลุ่มจุลินทรีย์ที่ใช้อากาศ (aerobes) การเปลี่ยนแปลงมันในผิวล้า พบว่าปริมาณของจุลินทรีย์จากอาคารเพราะที่จะลดลงได้โดย enraged จุลินทรีย์เพื่อการดูแลจุลินทรีย์สำหรับใช้ในการออกซิเจนสำหรับโคโครสคาร์บอน ในขณะที่การเปลี่ยนแปลงในวัน พบว่าปริมาณของจุลินทรีย์ในต้นจะลดลงกับปริมาณจุลินทรีย์ที่สามารถใช้การออกซิเจนจากอากาศ ซึ่งระดับ รวมกัน และปริมาณในวัน ทำให้เกิดความสร้างในการออกซิเจนสำหรับโคโครสคาร์บอนที่มีความเกี่ยวข้องกับการคงค่าสูงขึ้น ในภาษาก็ไม่มีจุลินทรีย์ที่ไม่ต้องการออกซิเจนในการดูแลจุลินทรีย์ (Bailey, et al., 1973)

6.5 ผลกระทบของ pH ต่อการออกซิเจนสำหรับโคโครสคาร์บอน

จุลินทรีย์ที่มีความสามารถในการออกซิเจนซึ่งจำเป็นจะเจริญเติบโตได้ดีในช่วง pH ที่เป็นกลาง โดยเฉพาะในต้นบนเขตร้อน ซึ่งเนื่องจากอุณหภูมิและความชื้นจะมีความเป็นกลางจะทำให้ตระเตรียมในการออกซิเจนในบริเวณจุลินทรีย์เกิดขึ้นได้ อย่างไรก็ตาม จากการเปลี่ยนแปลงของ jalis ในบริเวณที่เป็นกลางจะน้อยลง จุลินทรีย์จะยับยั้งการเจริญเติบโตของจุลินทรีย์ แล้วทำให้การเปลี่ยนแปลง pH ของต้นที่มีความเป็นกลาง (pH 4.5) ไม่มีค่า pH เป็นกลาง (pH 7.4) จะอธิบายกับการออกซิเจนสำหรับโคโครสคาร์บอนเพิ่มเติม เช่นกัน (gasoline) จะเพิ่มเป็น 2 เท่าและอีกสิ่งของการขยายน้ำสั่งจะลดลงถึง 0.1% ของสิ่งอื่น ๆ (pH 8.5) (Chazal, 2004)

6.6 ผลกระทบของความแห้งต่อการออกซิเจนสำหรับโคโครสคาร์บอน

การทดสอบความสามารถในการออกซิเจนของต้นจะมีส่วนตัวมากกว่าขั้นตอนที่ระดับความแห้งต่าง ๆ (ตั้งแต่ 3.3% - 28.4%) พบว่าตัวการออกซิเจนของต้นจะมีความสัมพันธ์กลับกันโดยมีการสูญเสียจะลดลงเมื่อระดับความแห้งของต้นสูงขึ้น นอกจากนี้ความคืบหน้าของความสามารถในการแยกตัวอย่างนั้นจะมีแนวโน้มทำให้จุลินทรีย์โดยทั่วไปไม่เกิน 20% จะมีจุลินทรีย์ในบริเวณดูดสูงและสามารถย้อมสารออกซิเจนได้เพียงบางส่วน (Ward and Brock, 1978)
7. บัณฑิตสุดท้ายการเจริญเติบโตของจุลินทรีย์ในการช่วยลดสารประกอบไฮโดรคาร์บอน

7.1 จุลินทรีย์

จุลินทรีย์แต่ละชนิดต้องการช่วงจุลินทรีย์ในการเจริญเติบโตต่างกันไป เช่น Psychrophilic microbe, Mesophilic microbe, Thermophilic microbe และ extreme thermophiles microbe

จุลินทรีย์ที่อาศัยในบริเวณแตรดักเตะสามารถเจริญเติบโตได้ที่อุณหภูมิ 20-30°C และจุลินทรีย์สุดที่สุดที่จุลินทรีย์สามารถเจริญเติบโต คือ จุลินทรีย์นิยภาพรรค่า 37°C ซึ่งที่อุณหภูมิช่วงจุลินทรีย์สามารถย่อยละลายน้ำมันปิโตรเลียมที่ปนเปื้อนได้ (Susan, 2003)

![Graph 5: Temperature vs. Generations per Hour](image)

Yoshiki et. al., 2007 พบว่า แรงดึงดูด DW2-1 เจริญเติบโตอย่างรวดเร็ว ในน้ำเสียระดับปานกลางที่ส่งก๊าซธรรมชาติ (<1×1010 (CFU)/ml) ระหว่างอุณหภูมิที่ 20°C และ 38°C และย้าหาะการย่อยละลายของน้ำมันซอลคูเครือที่ 90% หลังจากการทำเลี้ยงจุลินทรีย์ 48 hrs ไลอัพและระบบการเจริญเติบโตแบบขึ้นมา (BSF) ของแรงดึงดูด DW2-1 หลังจากการทำเลี้ยงจุลินทรีย์ 48 hrs ยูที 1720 UI และ 480 U/ml ตามลำดับ การเพาะเลี้ยงจุลินทรีย์ไม่เพียงการบ่ำน้ำเสียที่ปนเปื้อนในแนว DW2-1 จะเป็นตัวหลักที่ได้เกิดการย่อยละลายอย่าง 90% ของน้ำมันสลด ในระบบการย่อยชีวจุลินทรีย์เป็นระยะเวลากว่า 7 วัน โดยทั่วไปแล้วอาจจดสุทธิได้ว่าจำนวนจุลินทรีย์ที่สามารถย่อยละลายสารประกอบไมโครคาร์บอนได้สามารถใช้เป็นเครื่องมือในการตัดสินใจลดปริมาณเชื้อเพลิงต่างๆ สามารถเบี้ยนจากสารประกอบโลกร้อนหรือไม่ ซึ่งบางวันในบริเวณที่ไม่มีการเบี่ยนของสารประกอบโลกร้อนจะพบจุลินทรีย์กั่มเพื่อ 0.1% จากจุลินทรีย์ที่พบทั่วถึงแล้ว แต่ถ้ามีการเบี่ยนของสารประกอบโลกร้อนจะพบจุลินทรีย์กั้มเพื่อเท่านั้นที่เจริญเติบโตได้หรือคิดเป็น 99.67% ของจุลินทรีย์ที่พบทั่งหมด
Tomohisa et al. (2001) ได้ศึกษาเชิงลึกที่ได้ทั้งใน บริเวณลากับน้ำมันปิโตรเลียมใน Minami-aga (Niigata) และ Yabase (Akita) พบว่ามีแบคทีเรียที่สามารถย่อยละลายน้ำมันได้ คือ Bacillus thermoleovorans ซึ่งเจริญที่อุณหภูมิ 50 - 80°C แต่เจริญได้ดีที่อุณหภูมิ 70°C ซึ่งสามารถอยู่ใน n-alkanes ยาวนาน ได้ศึกษา C12 และ C15

อุณหภูมิเป็นปัจจัย ที่ทำให้สูงนิรภัยเจริญเติบโตเร็วขึ้น ฉะนั้นอุณหภูมิของน้ำที่มีดินแตกต่างกัน มาก ที่ซึ่งโลกอุณหภูมิ 0°C จนถึงบริเวณด้านใต้ดินมีอุณหภูมิ 30°C น้ำทะเลมากกว่า 90% มีอุณหภูมิต่ำกว่า 5°C จึงเหมาะกับการเจริญเติบโตไบโอฟิลส์ที่นั้น ในน้ำที่ร้อนนานแปดวันมีอุณหภูมิ 75-85°C กับจุลินทรีย์ที่เจริญเป็นที่ยอมรับได้ นอกจากนี้อุณหภูมิน้ำอัดเมล็ดแสงไปตามทุกทิศทำให้ ชนิดและจำนวนจุลินทรีย์เปลี่ยนแปลงไปด้วย (เหลานภพ, 2544)

7.2 สาเหตุ

การย่อยละลายน้ำมันในแหล่งน้ำต่างๆ โดยจุลินทรีย์จะเกิดขึ้นได้ในสภาพแวดล้อมที่มีออกซิเจน ซึ่งออกซิเจนจะเกิดขึ้นได้เพราะการก่อปฏิกิริยาในอากาศสะอาดน้ำมัน โดยเฉพาะในปฏิกิริยาออกซิเดชันของจุลินทรีย์ ที่ต้องการเคมีไอน้ำออกซิเจน และสภาวะสภาพแวดล้อมที่เป็นแหล่งน้ำมันออกซิเจนจากอากาศสำหรับการย่อยiasiโดยจุลินทรีย์ ซึ่งกรรมการในการย่อยสาธารณะ น้ำพังต์ล้มแบบบกท่าน พบว่า ปริมาณออกซิเจนในน้ำซึ่งเรียกว่าจุลินทรีย์ที่สามารถใช้ออกซิเจนจากอากาศได้ ชนิดของน้ำ และปริมาณน้ำในน้ำ ทำให้สภาวะบนออกซิเจน จะเป็นปัจจัยสำคัญที่จะส่งเสริมในการย่อยละลายน้ำมันโดยจุลินทรีย์ (นิปปุยัน, 2532)

จุลินทรีย์แต่ละชนิดต้องการออกซิเจนในปริมาณที่แตกต่างกัน เช่น Aerobic type เจริญได้ เฉพาะบริเวณที่มีออกซิเจนที่นั่น Microaerophile type เจริญได้ในบริเวณที่มีออกซิเจนเล็กน้อย ถ้าออกซิเจนมากจะเจริญดี Anaerobic type เจริญได้ในที่ไม่มีออกซิเจน และ Facultative anaerobic type เจริญได้ทั้งหมดที่นี้ และไม่มีออกซิเจน เนื่องจากสามารถเปลี่ยนแปลงระบบการผลิตของ ซึ่งองค์ประกอบได้ Faiznazieen (2004) ได้คัดเลือก Bacillus และ Pseudomonas spp. จากนั้นที่มีสารประกอบไข่โคเปอร์บอนแบบเบส พบว่าสามารถเจริญได้เมื่อมีแสงที่ความเร็วน 150 rpm

งานวิจัยของ Grishchenkov et al., 2000 พบว่า Pseudomonas sp. BS2201, BS2202 และ Brebacillus sp. BS2202 ถูกแยกออกมาจากกลิ่นที่เป็นน้ำมันปิโตรเลียม เพื่อจุดประสงค์ในการศึกษาความสามารถย่อยละลายน้ำมันปิโตรเลียมด้วยไบโอฟิลส์ ภายใต้ปัจจัยแวดล้อมที่แบบ การใช้ออกซิเจนและแบบไม่ใช้ออกซิเจน ในการคำรชีวิต ภายใต้สภาพการใช้ออกซิเจนในการคำรชีวิต (การทดสอบทางวิทยาศาสตร์ในสารอาหาร ไข่ปลา 10 ก programas) ความสัมพันธ์ต่ำต่ำ 20-25% ของ วัสดุอยู่กับเครื่อง (TEM) รวมถึงมากกว่า 90-95% ของการวิเคราะห์ alkanes (n-C10-C35) ภายใต้ สภาวะการไม่ใช้ออกซิเจนในการคำรชีวิต (การทดสอบทางวิทยาศาสตร์ ไข่ปลา 50 กิโล) สารจุลินทรีย์เหล่านี้มีอยู่และได้ 15-18% ของ TEM, 20-25% ของ alkanes และ 15-18% ของระหว่าง
โพรไคเรปอน ความเสี่ยงช่วยย่อยลำไส้โพรไคเรปอนที่มีตัว ภายใต้เงื่อนไขที่ไม่ได้เริ่มใช้ออกซิเจน ต่ารหัตนั้น

งานวิจัยของ Frédéric et al., 2004 พบว่าการเห็นการพวกเขาเส็งคุณทรีโอโพรไคเรปอนแบบเริ่มออกซิเจน การย่อยลำไส้ของสัตว์ทดลองแสดงถึงการเจริญเติบโตจากคืนที่เป็นน้ำด้วยผลิตภัณฑ์ น้ำมันเป่าไส้ และแบคทีเรียสีน้ำเงินที่ขาดออกซิเจนจากอินโคเรีย แต่ผลผลิตขั้นต่ำจาก 33 สายพันธุ์ต่างกัน แบคทีเรีย 8 ชนิด เรื้อรัง 4 ชนิด และยีสต์ 4 ชนิด ถูกจำแนกถึงกลุ่มต่างๆ ที่เฉพาะเจาะจงด้วยโมเลกุลและเทคโนโลยีต่าง ๆ ที่ปรากฏเกี่ยวกับสิ่งมีชีวิต เรื่อยๆกับสายพันธุ์ เช่น Gordonia, Brevibacterium, Aeromicrobium, Dietzia, Burkholderia และ Mycobacterium ทั้ง 4 สายพันธุ์ยังไม่มีการอธิบาย เชื่อว่าจะเข้าอยู่กับ Asperillus, Penicillium, Fusarium, Amorphoteca, Neosartorya, Paecilomyces, Talaromyces and Graphium และยีสต์ได้แก่ Candida, Yarrowia และ Pichia.

เนื่องจากการเกิดเซลล์ในสัตว์และน้ำทะเล พบว่า มีแบคทีเรียและยีสต์ที่สามารถย่อยลำไส้ นำเสนอได้มากกว่า 10% และยีสต์ที่แยกได้ ที่ทั่วไปที่ให้สัตว์ เช่น Candida ซึ่งเป็นพืชทางลบทางชีวภัณฑ์ สามารถแตกได้ ดังนี้ Candida parapsilosis, C. albicans, C. guilliermondii, Yarrowia lipolytica, C. tropicalis และ C. intermedia. Y. lipolytica ซึ่งยีสต์นี้สามารถย่อยลำไส้ส่วน aliphatic ของน้ำมันเป่า Bombay High ได้ 78% แต่ไม่สามารถย่อยลำไส้ส่วน aromatic หรือ asphaltene ออกจากนี้ แต่ละไร เลยแสดงต่างกันมาก ในโครงการ และพอร์เตชั่นที่เหมาะสมต่างการย่อยลำไส้ด้านนี้มี (S.S. Zinjarde, 2002)

Schaefer et al. (2006) ชุดไคเรียที่เกี่ยวข้องในการเปลี่ยนอิชเอนเป็น carboxylic acid ได้ และสามารถย่อยลำไส้ได้ จากการทดสอบมีการนำได้ค่อนข้างช่วยย่อยลำไส้น้ำมัน พบจากการใส่ดีเอ็นายสีน้ำเงินได้ระดับต่ำสุด และได้คืนๆในการเจริญเติบโตกลไกในการย่อยลำไส้ น้ำมันนี้มี 3 กลไกคือ

1. กระบวนการให้ออกซิเจนเว้นกันโดยการชุดไคเรียที่อยู่ของได้คืน
2. การเพิ่มเกิดของกลุ่มไคเรีย
3. การเพิ่มความสามารถของกลุ่มไคเรียในการย่อยลำไส้โดยการย้อม

S. Khodijah et al., 2004 พบว่า แบคทีเรียเจริญเติบโตที่ย่อยลำไส้โดยการย้อมยีสต์ยังคงมีชีวิตอยู่ในบริเวณทะเลประเทศญี่ปุ่น และบางบางบังคับที่ย่อยลำไส้โดยการย้อม คือการรักษาสิ่งในกรงที่ได้รับ (DO: 1-6 mg/l, Eh:12-300 mV)
7.3 ความเป็นกรด-ด่าง (pH)

จากงานวิจัยของ Hao et al., 2004 พบว่า thermophile bacteria สายพันธุ์ TH-2 ที่มีสิทธิ์อยู่ในบริโภแบบ Shengli ที่มีน้ำมัน ในภาคตะวันออกของประเทศจีน สามารถเจริญเติบโตได้ที่อุณหภูมิสูงถึง 85 °C และเจริญได้ในสภาพที่เป็นต่าง

![pH Diagram]

วัดปรับ pH น้ำเสียด้วย Tris-HCl ให้เป็น pH 7.8 พบว่าสามารถย่อยสลายไฮโดรคาร์บอน และมีประสิทธิภาพในสลายได้ที่สุดคือ ย่อยสลาย n-alkanes ได้ 97% และ ประสิทธิภาพการย่อย 86% ย่อยสลาย total aliphatic hydrocarbons ได้ 40% และ ประสิทธิภาพการย่อย 30% และ ย่อยสลาย total aromatic hydrocarbons ได้ 25% และ ประสิทธิภาพการย่อย 17% ในเวลา 10 วัน (M.L. Nievas, 2005)

การศึกษาสภาวะที่เหมาะสมสำหรับการย่อยสลายน้ำมันดีเบิล BH สามารถคงแบ่งแยกภี้ที่รีดได้ 130 ไอโซเลท จากตัวอย่างที่มีน้ำมันปะปัน เช่น Micrococcus sp. GS2-22, Corynebacterium sp. GS5-66, Flavobacterium sp. DS5-73, Bacillus sp. DS6-86 และ Pseudomonas sp. DS10-129 ซึ่งแบ่งที่ดีที่สุดของการเจริญเติบโตและย่อยสลายน้ำมันดีเบิลได้โดยมีตัวบ่งคัดที่รีดเป็นกลุ่ม (mix culture) โดยที่ความเข้มข้นของน้ำมันดีเบิล 1% mix bacteria จะย่อยสลายน้ำมันดีเบิล BH ได้สูงสุด 78% ที่อุณหภูมิ 30 °C pH 7.5 ซึ่งเป็นสภาวะที่เหมาะสมกับการย่อยสลายน้ำมันดีเบิล BH ส่วน Pseudomonas sp. DS10-129 จะย่อยสลายน้ำมันดีเบิลได้ 66%, Bacillus sp. DS6-86 ย่อยสลายน้ำมันดีเบิลได้ 59%, Micrococcus sp. GS2-22 ย่อยสลายน้ำมันดีเบิลได้ 49%, Corynebacterium sp. GS5-66 ย่อยสลายน้ำมันดีเบิลได้ 43%, Flavobacterium sp. DS5-73 ย่อยสลายน้ำมันดีเบิลได้ 41% (Rahman K.S.M,2002)
Rahman et al. (2002) ได้ทำการศึกษาหาสาเหตุที่เกิดของการย่อยด่างทางชีวภาพในน้ำเสียดิน ที่มีการเปลี่ยนแปลงของสารเคมี โดยทำการคัดเลือกแบบที่เรียกตามลำดับของน้ำมันที่ 130 ไอโซเลท พบว่ากระแสกลุ่มแบคทีเรียในการย่อยด่างน้ำมัน สามารถระดับน้ำมันได้ถึง 78% ในเชื้อ Pseudomonas sp. หรือ DS10-129 สามารถระดับน้ำมันได้ 66% Bacillus sp. หรือ DS6-86 สามารถระดับน้ำมันได้ 59% Micrococcus sp. หรือ Gs2-22 สามารถระดับน้ำมันได้ 49% Corynebacterium sp. หรือ Rg56-66 สามารถระดับน้ำมันได้ 43% Flavobacterium sp. หรือ DS5-73 สามารถระดับน้ำมันได้ 41% ซึ่งการตระหนักถึงด่าง โดยแบคทีเรียกลุ่มแพร่กระจายจาก 78% ถึง 52% ที่ความเข้มข้นของน้ำมันเดินพื้นที่มาก 10% ถึง 13% ที่คุณภาพ 30°C และความเป็นกรด-ด่าง 7.5 สามารถพบได้การย่อยด่างทางชีวภาพ

S. Khodijah et al., 2004 พบว่า แบคทีเรียเจริญบนที่อยู่ด่างประโยชน์สูงคิดวิทยาในบริเวณทะเลประดู่น้ำทะเล กระบวนการบ้านค้า打架วิทยาที่เกิดขึ้น ภายใต้สภาวะของความเป็นกรด-ด่างที่ 6.4—8.

7.4 ความสืบเนื่อง
จากการศึกษาของ Supama, 2004 พบว่าเชื้อ ES1 ที่แยกจากบริเวณที่มีน้ำมันในทะเล สามารถทนต่อความเค็มได้สูงสุด 3.5% NaCl และเจริญเติบโตได้สูงสุดในอาหารที่มี 0.5% NaCl ซึ่งสามารถย่อยด่างน้ำมันก็เชิดสูง 61% เมื่อเปรียบเทียบกับความเข้มข้นของ NaCl ที่แตกต่างกัน และความสามารถของกลุ่มเชื้อในในการย่อยด่างน้ำมัน turbie (TuO) ซึ่งประกอบด้วยส่วนผสมของ alkane, cycloalkanes และ isoalkanes ซึ่งมีค์ปริมาณสำคัญในเกิดจากแหล่งน้ำมัน ที่น้ำกัดต่างปรับปรุงให้เข้มข้น เมื่ออยู่ในอาหารเชื้อที่มีเชื้อ Atsuta A ถูกพวกสีเหลืองในสารละลายเหลืองจืดที่ 0.5% (w/v) TuO จะเกิดการย่อยสลาย 90% (Hitoshi et al., 2008)

S. Khodijah et al., 2004 พบว่า แบคทีเรียเจริญบนที่อยู่ด่างประโยชน์สูงคิดวิทยาในบริเวณทะเลประดู่น้ำทะเล กระบวนการบ้านค้า打架วิทยาที่เกิดขึ้น ภายใต้สภาวะของความเป็นกรด-ด่าง (DO: 1–6 mg/l; Eh: 12–300 mV) และเรือนเรือนของความเป็นกรด-ด่าง จนถึงความเป็นกรด-ด่าง (pH 6.4–8) ของ NaCl ความขดขันที่ 3–15% (ECs of 45–200 mS/cm)

8. เอทานอลการเปลี่ยน
เอทานอลการเปลี่ยนคือเรียกเชื้อในกลุ่มไฮโตรเจลาส (hydrolase) มีซีดำสามารถกว่ากลีเซอรอล เอทานอลไฮโตรเจลาส (glycerol ester hydrolase) หรือไฮโตรเจลาสเกลือสูง เธ็ลไฮโตรเจลาส (triacylglycerol acylyhydrolase) และมีค์ดำตามหลัก E.C.3.1.1.3

โดยเป็นเอทานอลที่พบในแหล่งบริเวณพืช และการผลิต才可以ใช้และเปลี่ยนการเจริญ

หรือเอทานอลได้รับการให้แก่และประเมินและสามารถผลิตได้โดยปฏิกิริยา
เอกAceptarวิธีการ (esterification) จากกรดไวนิสและกลิ่นขดสก ซึ่งเป็นปฏิกิริยาของกลับ หรือแตกปรีบ กระمورนระหว่างเอกacerbหนนต่าง ๆ (transesterification) ไลเปปิดน่ยเป็น 3 กลุ่มตามความจำเพาะ ต่อสายพันธุ์ (substrate) ได้แก่

1. ความจำเพาะต่อสายพันธุ์ (group specific)
 ไลเปปีมีระดับของความจำเพาะต่อสายพันธุ์ เช่น ไลเปปีจากCandida antarctica จะมีความจำเพาะต่อสายพันธุ์น้อยสูงต่ำกว่าสายพันธุ์อาจ
2. ความจำเพาะต่อตำแหน่ง (position specific)
 ไลเปปีทั่วไปมีความจำเพาะต่อตำแหน่งเฉพาะเฉพาะต่อด้านหน้าที่ 1 และ 3 (1,3 specific lipase) ของโครงสร้างไขมัน
3. ไม่มีความจำเพาะต่อสายพันธุ์ (non-position specific)

หมายถึง ไลเปปีที่เข้าทุ่มปฏิกิริยาเกิดในไลเปปีได้โดยไม่เจาะจง จะเป็นต่อด้านหน้าที่ 1, 2 หรือ 3 ของโครงสร้างไขมันที่ได้ บัจจุบันมีการงานไลเปปีในดุลพัทธสมการการทำงานคัดแปลงไขมันและยังนั้น รวมไปถึงการสังเคราะห์ไขมันไว้ในเซลล์ไขมัน (structured triglyceride) เพื่อปรับปรุงคุณสมบัติของไขมันทั้งทางกายภาพและโภชนาการ ในส่วนใหญ่มีไลเปปีได้ที่มีดังกล่าว

ดังนั้น ผลดีที่จากความจำเพาะต่อตำแหน่งที่ 1 และ 3 และโครงสร้างไขมัน (3-specific lipase) หลุดจากผลการทำงานของยี่

ไขมันในวงกลม โดยได้แก่ แช่ใบ 2-มอนิกซิลเอทิลและกลิ่นไขมัน เป็นส่วนใหญ่ โดยปกติแล้วกรด ไขมันภายใต้บริเวณมากกว่า 12 ตัว ที่ดุรุดซึ่งเข้าไปในเซลส์มันสดได้สีน้ำมัน จะถูกนำไปสร้างเป็นโครงสร้างไขมันในไขมัน และถูกส่งผ่านท่อเลือด (lymphatic vessel) เพื่อส่งไปยังส่วนต่าง ๆ ของร่างกาย ในระบบทาระบบการทำงานเชิงขั้นตอนระหว่างปฏิกิริยาและไขมันที่ไร้ลูกลอม (chylomicron)ในทางตรงข้าม กรดไขมันที่มีการออกมาได้ 12 ตัว ที่ดุรุดซึ่งรักและถูกส่งผ่านทางเส้นเลือด (portal vein) ผ่านสู่สูตรได้โดยตรงในระบบทาระบบเส้นเดียวกัน 2 โมโนอีทิลเอทิลจะนำไปได้อย่างรวดเร็ว (มูรี, 2548)

มีการระบุถูกใช้ไลเปปีได้จากสุนัขสุนัขในทางเห็นไลเปปีสุนัขทางกายภาพบางส่วนของเนื้อจาก

มีข้อดีหลายประการเช่น เอนโมลิซึ่งควบคุมในorganic solvents, เอนโมลิซึ่งต้องการ cofactors, เอนโมลิซึ่งควบคุมจำเพาะ substrate น้อย (broad substrate specificity) และทำสำหรับไลเปปี

ความจำเพาะเฉพาะเจาะจงในเรื่อง enantioselectivity มีการรายงานว่า มีเอก

ไลเปปีที่ใช้ประโยชน์ทางการใช้ในปัจจุบัน มีในก๊าซเนื้อจาก 34 แหล่งของอะซิยาทั้งสิ้น ซึ่งใน
นั้นมี 18 แหล่งนักยับจากfungi เช่น Candida rugosa, Candida antarctica, Thermomyces lanuginosus, Rhizomucor miehei เป็นต้น และ 7 แหล่งจากแบคทีเรีย เช่น Burkholderia cepacia, Pseudomonas alcaligenes, Pseudomonas mendocina, Chromobacterium viscosum เป็นต้น

ซึ่งเอกเปปิดน่ยมีการนำไปประยุกต์ใช้ประโยชน์มากมาย เช่น ใช้ในการส่งเคราะห์สารอินทรีย์
(organic synthesis), ใช้ดิมในสารเกษตรเพื่อช่วยประสิทธิภาพการเข้าสังเคราะห์, เทิร์นชาดิใบผัก, ใช้ในจุดสกุลกรรม, และใน.uaผดลามิการนำมาใช้เพื่อการบ้านค์ของเสีย เนื่องจากประเทศอื่นหลายสกุลของเอนไซโมเจียจากจุติฝรั่ง (กิจวิ, 2544)

9. แหล่งของจุตินทรีย์ที่ผลิตเอนไซโมเจีย

ทางการวิเคราะห์จุตินทรีย์ที่ผลิตเอนไซโมเจียได้จากแหล่งต่าง ๆ มากมาย ซึ่งสิ่นเป็นแหล่งของจุตินทรีย์ที่ผลิตเอนไซโมเจียได้จำานวนมาก ที่ได้จาก Penicillium citrinum, Pseudomonas sp. และ Aspergillus terreus นอกจากนี้ ยังสามารถพบจุตินทรีย์ที่ผลิตเอนไซโมเจียได้ในแนวนี้ ผลป่าล้ม และน้ําเสียงจากโรงงานจุติสกุลกรรม (กิจวิ, 2548)

เอนไซโมเจียจากจุตินทรีย์เหล่านี้จะมีผลในการทำงานแตกต่างกันไป ซึ่งอยู่กับชนิดของจุตินทรีย์ และกลุ่มของจุติที่พบในแหล่งที่คัดเลือกจุตินทรีย์ ซึ่งในที่นี้จะแบ่งจุตินทรีย์ที่สามารถผลิตเอนไซโมเจียได้ 3 จำพวกใหญ่ ๆ คือ

1. เรียล

เรียลหรือเจ้าเป็นแหล่งของเอนไซโมเจียที่ดี และถูกนำมาประยุกต์ใช้ในจุติสกุลกรรม โดยเฉพาะเจ้าสกุลกรรมอาหาร เช่น Aspergillus niger สามารถผลิตเอนไซโมเจียได้ค่อนข้างมากที่จะนำไปใช้ในจุติสกุลกรรม

ภาพ 7 แสดงการเตรียมแบบ slide culture ของ Aspergillus niger ซึ่งแสดงให้เห็นโครงย่อยส่วนที่ยื่น

ออกไปรอบ ๆ ที่มา http://www.bscr.ac.th/~sci/dept/biot/rubrong.doc, 2550
2. นิสิต

ยึดเป็นเชื้อติดเชื้อในบางชนิดที่มีลักษณะเป็นเชื้อติดเชื้อในอาการติดเชื้อโดยไม่ได้เกิดโรค และได้ศึกษาการติดเชื้อโดยไม่ได้เกิดโรคโดยการตั้งนิสิต ซึ่งยากที่จะติดเชื้อไม่ได้ที่เกิดโรค และใช้ในจุดกล่าวถึงว่า พบว่ามีนิสิตที่เกิดจากโรคมะเร็งในอาการติดเชื้อโดยไม่ได้เกิดโรค เช่น วาริโอวิโอลาในโรคจุก ขั้นตอนการรักษาฐาน ซึ่งตั้งข้อถกตามเกี่ยวกับการติดเชื้อโดยไม่ได้เกิดโรค คือ วาริโอวิโอลาในโรคจุก ขั้นตอนการรักษาฐาน ซึ่งตั้งข้อถกตามเกี่ยวกับการติดเชื้อโดยไม่ได้เกิดโรค เช่น วาริโอวิโอลาในโรคจุก

10. งานวิจัยเกี่ยวกับเจริญเติบโต

Aleksieva et al. (2002) พบว่าการเรียกตาวิทยาเป็นการมาเกิดนิสิตบ่อยจากอาการยืดเยื้อม์ให้เกิดตัวเป็นเร็วขึ้น โดยการลงยาของจุกเล็กน้อย เช่น แบคทีเรีย อิสต์ ซึ่งสามารถเจริญได้โดยใช้น้ำมันริบบิ้นเป็นแหล่งค่าเร่ร่อน

Saisuburamaniyan et al. (2004) กล่าวว่า วิธี colorimetric เป็นวิธีที่ง่ายและรวดเร็วในการหาค่ากิจกรรมเจริญเติบโตในตัว น้ำมันนิสิตตัวละควบคุมโดย cupric acetate pyridine reagent และรักษาค่าความสดที่ 715 nM ที่วิธีวิจำและวิธีวิจำโดยใช้ในรักษาค่ากิจกรรมเจริญเติบโตจากการเจริญเติบโตจากในลู่ที่เป็นน้ำมัน

Ghanem et al. (2000) รายงานว่าสูตรของ B. alcalophilus สามารถเจริญเติบโตและจากการศึกษาพบว่ามีนิสิตตัวละควบคุมโดย cupric acetate pyridine reagent และรักษาค่าความสดที่ 715 nM ที่วิธีวิจำและวิธีวิจำโดยใช้ในรักษาค่ากิจกรรมเจริญเติบโตจากในลู่ที่เป็นน้ำมัน

Tano-Debrah et al. (2000) ได้ทำการศึกษาเกี่ยวกับการเจริญเติบโตในตัวและน้ำมันและน้ำมันในน้ำเสีย ซึ่งได้รับการระดับควบคุมโดยเจริญเติบโตต่างๆ และได้รับการใช้ในกระบวนการเก็บตัวของน้ำเสีย ที่มีความเข้มข้นของไขมันและน้ำมันสูง สามารถคัดเลือกاقتี่โดยใช้ 15 วิวัฒนา ด้วยตัวอย่างน้ำเสียที่มีการบูรณะน้ำมัน

Aleksieva et al. (2002) แบคทีเรียสามารถเจริญได้ในอาหารที่มีอยู่ในน้ำเสียจากโรงงานน้ำมันและน้ำมัน และจากการสั่งการแบคทีเรียตู้สูตรนี้ สามารถลดปริมาณไขมันได้จาก 17 สายพันธุ์ ที่คลีนิก เจริญเติบโต ได้แก่ tributyrin ตัวช่วยซึ่งเป็น B. alcalophilus sp. และจากการสั่งการ พบว่าความเป็นกรด-ด่าง ที่เหมาะสมในค่ากิจกรรมเจริญเติบโตอย่างดี คือความเป็นกรด-ด่าง 6 ในอาหารที่เหล่าน้ำมันมีผลิตภัณฑ์เชิงอนามัยที่สามารถใช้เป็นแหล่งเจริญเติบโต tributyrin เช่น trilaurin, trimyristin, tria Laurin, tricaprylin, tributyrin, Tween 80 ที่น้ำเสียจากโรงงานน้ำมันและน้ำมันน้ำมันและน้ำมัน อาหารที่มี 20% ของทางน้ำมันกับ 2% trilaurin มีค่ากิจกรรมเจริญเติบโตสูงสุดโดยการเพาะเลี้ยง B. alcalophilus...
sp. ที่ความเป็นกรด-ด่าง 6 และอุณหภูมิ 30°C นาน 64 ชั่วโมง แต่ที่ได้ศิลป์ Bacillus sp. สามารถผลิตไล
เปลอกแซงลด 15 U/ml และภายในแซงลด 168 U/ml.

Fadil et al. (2003) พบว่า น้ำเสียจากโรงงานน้ำมันแมคคอลเม็กซิกัน และน้ำตาลสามารถใช้เป็น
แหล่งอาหารที่มีประโยชน์ของจุลินทรีย์เพื่อใช้ในการผลิตไลพ์

D’Amibale et al. (2006) ศึกษาการแยกจากสารของไลพ์ในน้ำเสียจากโรงงานน้ำมัน
แมคคอลโดยวิธีกิจกรรมไลพ์บนแซงลด

Lanciotti R et al. (2005) ใช้ Yarrowia lipolytica เป็นสายพันธุ์ที่ได้จากบริษัทน้ำเสียจาก
โรงงานน้ำมันแมคคอล และสามารถผลิตไลพ์ในน้ำเสียจากโรงงานน้ำมันแมคคอลได้ กิจกรรมไลพ์

Kim et al. (2000) พบว่า กลุ่มไลพ์ที่ผลิตจาก Bacillus pumilus จากคีร์ มีคุณสมบัติ
ไลพ์ที่เหมือนกับ E.coli และมีคุณสมบัติของสาเด็จปลอดคืน และคุณสมบัติทางชีวเวชเหมือนกัน.

Ghanem et al. (2000) รายงานว่ากลุ่มของ Bacillus alcalophilus สามารถผลิตไลพ์และ
จากสารคีร์ทันไม่ ความเป็นกรด-ด่าง และอุณหภูมิมีผลต่อค่ากิจกรรมไลพ์โดยอุณหภูมิสูงที่สุด คือ
6 องศาเซลเซียส ความเป็นกรด-ด่าง 6.6.

Castro-Ochoa et al. (2005) แยก Bacillus thermoleovorans จากปะณ์จากร้อนและได้
การทำกิจกรรมไลพ์ของความเป็นกรด-ด่าง อุณหภูมิ การละลาย ที่เหมาะสมในการผลิตไลพ์.

Chen et al. (2004) แยก Bacillus sp. จากสารกิจกรรมไลพ์ และคีร์กิจกรรม
ไลพ์ รวมในปัจจัยความแตกต่างของสารคีร์ที่อาจมีผลต่อค่ากิจกรรมไลพ์

เกนกุกิจการทรัพย์ศิลป์ (1998) ไลพ์เป็นเชื้อชีวิตที่มีความสามารถในการออกยาด่างน้ำมันและไขมัน
ได้ผลิตกิจกรรมเป็นไลพ์ในสารละลาย และกิจกรรมไลพ์ นอกจากนี้ ไลพ์ยังมีผลต่อการโรค
พิษที่อาจเกิดขึ้นได้เช่นไข้เลือดออก และโรคอื่น ๆ ซึ่งเป็นผลจากการที่เกิดในระบบที่มีไขมัน หรือระบบที่มีสารรับรู้เป็นตัวทำลาย อนึ่งถ้าเชื้อชีวิตใหม่
ไลพ์ในสารคีร์ที่อ่อนนุ่ม เพื่อการต้านทานโรค กิจกรรมไลพ์จะทำงานป้องกันเชื้อชีวิตที่มี
ความคืบหน้าต่อความเป็นกรด-ด่าง อุณหภูมิ และมีความจุทางต่อสารด้านหลายชนิด จึงมีการ
นำเชื้อเช่นนี้ไปใช้ในการกรักภูมิป้องกัน น้ำยาขัดถลิ่ง เชื้อเหลือง
ซิลิป ยาหาร เครื่องสำอาง และยา.
สถานที่และระยะเวลาในการวิจัย
ระยะเวลา 1 ปี (ตุลาคม 2550-กันยายน 2551)
สถานที่ทำการทดลอง หรือ ที่ทำการผลิต
ห้องปฏิบัติการ
- ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้
- ห้องปฏิบัติการชีววิทยา ศูนย์เทคโนโลยีชีวภาพ มหาวิทยาลัยแม่โจ้

ภาระตัว
- เก็บตัวอย่างดินและน้ำบริเวณต่าง ๆ ในเขต จ.เชียงใหม่
 อย่างน้อย 15 แห่งเก็บตัวอย่าง

ชุดบรรณาการทำวิจัย

1. ชุดบรรณาการและสารเคมี
 1. เครื่องมือ
 1.1 กล่องจุกกระเซาะแบบแลกแลกระบาย
 1.2 เครื่องถ่ายสูญญากาศ
 1.3 เครื่องจักรยานง่ายระดับ
 1.4 เครื่องระบายความดันไอน้ำ (autoclave)
 1.5 เครื่องวัดค่าการดูดกลืนแสง (spectrophotometer)
 1.6 ดูปเปิ้ลเชื้อควบคุมดูดมนุม -80 องศาเซลเซียส
 1.7 ดูปเปิ้ล
 1.8 ตู้ปลอดเชื้อ (laminar)
 1.9 เครื่องวัดความเป็นกรด-ด่าง (pH meter)

2. สารเคมี
 2.1. โซเดียมซีลเวอร์(I)
 2.2. น้ำกรดคลอริก (hydrochloric acid)
 2.3. เฮ克思าน (hexane)
 2.4. โซเดียมซีลเวอร์(I) แอนไฮดรุด (sodium sulphate anhydrous)
 2.5. น้ำมันต้องเชื้อเริ่มต้นสีศุกประจำงานที่ใช้แล้ว
 2.6. อะเซทีน (acetone)
 2.7. แคลเซียมคลอไรด์ (calcium chloride)
2.8. เทอโกล (ethanol)
2.9. กรดออเลนิก (oleic acid)
2.10. เฟนอลทาลีน (phenolphthalein)
2.11. ไนเตรตโซเดียม (sodium hydroxide)
2.12. โปตัสเซียมไดไฮโดรฟอสเฟต (potassium dihydrogen phosphate)

3. อาหารพิจารณาสำหรับแยกและเพาะเลี้ยงเชื้อ
3.1. Nutrient agar (NA)
3.2. Nutrient broth (NB)

4. สุ่มกันเชื้อ
4.1. กรอบกันเชื้อ
4.2. คลอรูปฟัม 250 มิลลิลิตร
4.3. น้ำผักเชื้อ
4.4. มีเกอร์
4.5. เปปโต
4.6. หลอดทดลอง
4.7. หลอดล้างเชื้อ
4.8. ไนโตรปิล

วิธีการวิจัย

1. การเก็บตัวอย่างดินและน้ำ
1.1 เก็บตัวอย่างดินและน้ำ จากแหล่งป่าปริมณฑล นำกลัยๆ และแหล่งธรรมชาติในบริเวณจังหวัดเชียงใหม่และพื้นที่ดังกล่าวที่เคยเป็นที่อยู่ของสัตว์ชนิดต่างๆ เช่น ปไม ช้าง ตู๊กตุ๊ก แล้วสังเกตการณ์เป็นที่ ที่อยู่ของตัวอย่างดินและน้ำก่อนนำไปเก็บที่ตู้เย็นที่บริเวณ ที่มีอุณหภูมิ 500 องศาเซลเซียส แล้วเก็บตัวอย่าง

1.2 วัดค่าความเป็นกรดด่าง และอุณหภูมิ พร้อมบันทึกลงบันทึกการทดลองที่มีการเก็บตัวอย่าง

2. การแยกเชื้อจุลินทรีย์จากตัวอย่างดินและน้ำ
2.1แยกเชื้อจุลินทรีย์ด้วยอาหารที่มีสารอาหารสูง
แยกเชื้อจุลินทรีย์จากตัวอย่างดินและน้ำ โดยใช้หลอดที่ใส่เชื้อ 5 g และตัวอย่างน้ำ 5 ml ใส่ลงในอาหาร Luria – Bertani Medium (LB broth) 100 ml ในภาชนะหูกระเบน 250 ml นำไปพอเพียงเงาบน เครื่องเข้าหาความเร็วเรือไม่เกิน 160 rpm ที่อุณหภูมิห้องเป็นเวลา 2 วัน จากนั้นนำมาแช่
(Spread plate) ตันบานของ LB agar ในจานเพาะเชื้อ นำไปฝอยที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 1-2 นาที เชื้อขั้นแบบทำลายแล้วทำการลูกลำดม (streak) โดยใช้หัวเติมจนได้ไล่เนื้อเดียว ๆ และเก็บไว้บน]='รา\nูรูนแปลง (stock)

2.2 แยกเชื้อจากภูมิพืชตัวอย่างและการตรวจสอบ
แยกเชื้อจากภูมิพืชจากการลูกลำดมและนำโดยใช้ดิน 10 g ผสมด้วย 0.1% sodium pyrophosphate ที่ผ่านการคัดลอกด้วย 30 g glass beads ปริมาตร 90 ml นำไปโปรแกรมแช่เย็นนาน 1 ชั่วโมง เซลล์ตัวอย่างในน้ำกลืนให้ค่าความเร็วเช่นเดียวกัน 10⁵, 10⁶, 10⁷, 10⁸ และ 10⁹ ได้โดยการเจาะ饰品ใน Bushnell Haas Medium 10 ml เดินน้ำมันเครื่องที่ใช้แล้ว (ที่ผ่านการลูกลำดมเพื่อ
เห็นสารประกอบเนื้อความเจาะรังนวล 22 μm) 50 μl ลงในทุกหลอด และนำไปปลูกที่อุณหภูมิต่ำอยู่ 37 องศาเซลเซียส เป็นเวลา 3-6 วัน

3. การคัดเลือกภูมิพืชที่มีประสิทธิภาพตูไกในการพยายามก้าวตัวอย่าง
3.1 การคัดเลือกภูมิพืชที่มีประสิทธิภาพในการคัดเลือกสารน้ำมันด้วย
วิธีการทางทางกายภาพ เรียงคั่น
1. เลือกเชื้อโดยไม่นิ่งแล้วจากเนื้อตัวอย่างที่ต่างกันของโคเลย์ นำไปตัดเป็นส่วนขนาด NA จน
ทำให้ได้โคเลีย่อมัน ๆ และทำการคัดแยก Gram stain (McCurt, 1988) เพื่อดูภูมิพืช
ลักษณะรูปภาพและการเรียงตัวเชื้อที่เกิดต่าง ๆ ต่าง ๆ
2. จากนั้นนำเนื้อแม่ของเชื้อที่แยกได้จากข้อ 1 จะนำเชื้อแบคทีเรียและโพลิโพรพิเลนที่
ในสารละลายเชื้อ NB โดยใช้ที่ตั้งปลายมีดโพลิโพรพิเลน ๆ ของเชื้อในขนาด NA ใส่ลงในสารละลาย
เชื้อ NB ปริมาตร 100 ml ที่อยูในขวดปูขนาน 250 ml นำไปเขย่าที่ความเร็ว 150 rpm เป็นเวลา 48 hrs โดยมีข้อไม่ไปต่อเชื้อจะเป็นฟุสคาร์คูม
3. วัดรูปเชื้อที่ความยาวตั้ง 600 nm (OD₆₀₀) โดยให้ตระหนักรู้ค่าที่ต่ำกว่า 0.5
4. ระบุเนื้อแม่เชื้อที่ใช้แล้ว (ผ่านการลูกลำดม) ลงในแต่ละชั้นของการวิเคราะห์เชื้อ ระยะระยะ 2 ml นำไปที่ตั้งขั้นต่ำ 72 hrs ที่อุณหภูมิ 37 องศาเซลเซียสของเนื้อเป็นน้ำมันกันน้ำของ
สารละลายเชื้อ, สำหรับความรุนแรงของสารละลายเชื้อโดยแลบอนท์ ๆ 24 hrs และทำการคัดแยกเนื้อ
เปลี่ยนแปลงกับฟุสคาร์คูม (ชัยรุ่ง, 2541) โดยมีการคัดแยกความตามสารรูปในเนื้อแสดงน้ำมัน

ระดับ 0 - ลักษณะรูปแบบของเนื้อเป็นเชื้อที่มีการ
เปลี่ยนแปลง เมื่อเปียดเติมกับฟุสคาร์คูม
ระดับ + - ลักษณะรูปแบบของเนื้อเป็นเชื้อที่มีการ
เปลี่ยนแปลง เมื่อเปียดเติมกับฟุสคาร์คูม
ระดับ ++ - ลักษณะรูปแบบของเนื้อเป็นเชื้อที่มีการ
3.2 การคัดเลือกรุ่นเขี้ยวซีซีที่มีประสิทธิภาพสูงในการสกัดสารน้ำมัน
ด้วยวิธีการทางเคมีิิิ์เรียกว่า Partition gravimetric (APHA, 1998)

1. เลือกแกลบเคเบิ์ที่แยกได้มาเพื่อวิเคราะห์สารน้ำมัน NB โดยใช้วิธีการวัดระดับตะไก้ในน้ำมัน
ของเชื้อมากุ้มในสารละลายเครื่องมือปริมาตร 100 ml ที่อยู่ในขวดบรรจุภัณฑ์ปาก 250 ml

2. นำไข่ต้มที่ความเร็วยาว 150 rpm 37 °C เป็นเวลา 24 hrs แล้วน้ำมันเครื่องหรือจากค่า Optical Density ที่ความยาวคลื่น 600 nm (OD600) โดยใช้เครื่องวัดค่า OD600 ประมาณเท่ากับ 0.5 หยด
น้ำมันเครื่องที่ใช้แล้ว (ส่วนการเวียนเข้าเข้า) ลงในตะเกียงที่ทำจากวัสดุบริสุทธิ์แล้ว ละลาย 2.0 ml
น้ำ spender สำหรับเวลา 72 hrs สังเกตการเปลี่ยนแปลงของน้ำมันบริเวณบริเวณร่างกายของสารละลายเครื่อง

3. ทดสอบการขยับน้ำมันเครื่องที่ได้จากน้ำมันเครื่อง Partition gravimetric นำอาหาร
ปริมาณ 100 ml ปรับให้ pH 3-5 หลังจากนั้นเติม Hexane ซึ่งเป็นชั้นสกัด 10 ml เข้าไป &display 3-5 min
ที่แยกขึ้นเก็บส่วนที่เป็นน้ำมันให้ นำส่วนเหล่าน้ำมันได้และวัดน้ำมันเครื่องโดยเติม Hexane 10 ml เข้าไป 3-5
min

4. เก็บส่วนที่เป็นน้ำมันที่สกัดได้จาก 3. กรองด้วย Sodium sulphate anhydrous 1.0 g ขนาด
กระบวนการ ≤ 40 จากนั้นจะปฏิบัติ Hexane โดยอัตราที่ 105 °C นาน 30 min หลังจากนั้นให้ย่อยใน
โดยคูณคิดเป็นไม่น้อยกว่า 30 min ซึ่งน้ำหนักน้ำมันที่ได้มาจากคิดเป็นค่าปริมาณน้ำมันจากสุด

ปริมาณน้ำมัน (mg/l) = (B - A)X106
ปริมาณน้ำมัน (ml)

A = น้ำหนักตัวยังคง B = น้ำหนักตัวยังคงที่ถูกล้น

2. ทดสอบการขยับน้ำมันของแบคเทเรีย โดยวิธีซีซีเอ

1. การเตรียมแบคเทเรีย

ทำหรือเตรียมรูจุดน้ำมันในอาหาร NB ที่ยังน้ำมันเครื่องที่ใช้แล้ว 0.1 % by volume และ
CaCl2 0.01 % (ตามน้ำหนัก) ในขวดบรรจุภัณฑ์มีที่บรรจุ 25 ml โดยมีค่า OD600 ลงไข่แล้วที่
0.1 ที่ความยาวคลื่น 600 nm ปั่นเสียบเครื่องปั่นความเร็ว 150 rpm ชูที่รุมบูรุ่น 37 °C นาน 24 hrs
น้ำมันเครื่องแยกแล้วสิ้นสุดที่ชูที่รุมบูรุ่น 4 °C ด้วยความเร็ว 5000 rpm เป็นเวลา 10 min เก็บส่วนน้ำมัน

วิเคราะห์กิจกรรมของแบคเทเรีย (Holme, 1993)

2. การวิเคราะห์กิจกรรมของแบคเทเรีย (Holme, 1993)

2.1 ผสมน้ำมันเครื่องที่ใช้แล้ว 0.2 ml และสารละลายเคลียระยีของโครีริอัน 10 mM
ปริมาณ 0.3 ml และสารละลายพอดีเป็นฟิล์มฟลูเรสเซนซ์ 0.15 Mol pH 7 ปริมาณ 4 ml เข้าด้วยกัน ใน
ครูประยุม ขนาด 250 ml จำนวน 2 ใบ โดยขั้นตอน 1 ให้เป็นสารละลายมาตรฐาน (blank) ขั้นตอน 2 เติมสารละลายแอมโมเนียจากข้อ 2.1 เปรียบเทียบ 0.5 ml

2.2 น้ำสารละลายทั้ง 2 ขวดไปผ่านอุณหภูมิ 65° C เย็นด้วยความเร็ว 200 rpm เป็นเวลา 1 hr หยุดปฏิกรณ์การ夣สารละลายผสมของน้ำออกและแอลกอฮอล์ (ข้อละล่่นน 1:1 โดยปริมาตร) ปริมาตร 20 ml

2.3 เติมสารละลายแอมโมเนีย 0.5 ml เติมสารละลายฟีนอลหัวสี 3-4 หลอด ลงไปในสารละลายขั้นตอนที่ 1 และขั้นตอนที่ 2 กำหนดให้ขั้นตอนที่ 1 เป็น blank

2.4 นำผลการได้ผลที่ปรับปรุงภายใต้สาระที่เกิดขึ้นแล้วสารละลาย NaOH เข็นย่อย 0.05 Molar ได้ผลแทรกที่ pH ของสารละลายต่ำกว่า 11 ซึ่งสิ่งที่เป็นฟีนอลนั้น จะปรากฏเป็นสีชมพู บันทึกลงเรื่องสารละลายโดยคมическิตรูปที่ใช้ในการได้ผลสารละลายปฏิกรณ์และสารละลายมาตรฐาน (Blank) จากนั้นนำไปคำนวณ Activity ของไลพ์ซิล ซึ่งกำหนดให้ 1 ยูนิทไลพ์ซิล คือปริมาณกรดไลพ์ซิลละ 1 Mmol ที่เกิดขึ้นจากการเร่งปฏิกรณ์ของไลพ์ซิล ในเวลา 1 min ภายใต้สมการที่ ทำการทดลอง

การคำนวณค่ากิจกรรมไลพ์ซิล (Lipase Activity) โดยการใส่ผล
A คือ ความเข้มข้นของ NaOH ที่ใช้ในการใส่ผลต่ำสุด
B คือ ปริมาตร NaOH ที่ใส่สารละลายปฏิกรณ์- ปริมาตร NaOH ที่ใส่สารละลายมาตรฐาน

C คือ ปริมาณสารละลายไลพ์ซิล ที่ใช้ต่ำปฏิกรณ์ไลพ์ซิลน้ำมันเครืองที่ใช้ผล
(0.5 ml)

ปริมาตรโมลของ NaOH ที่ใส่ในการใส่ผล = \(\frac{A \times B}{1000} \) mol

สูตร กรดไลพ์ซิลที่เกิดขึ้น = \(\frac{A \times B \times 10^6}{1000} \) mmol

เมื่อใส่สารละลายไลพ์ซิล C ml ที่ปฏิกรณ์ไลพ์ซิล ได้ผลโดยค่าน้ำมันเครืองเป็นเวลา 60 min

กิจกรรมไลพ์ซิล = \(\frac{A \times B \times 10^6}{10000 \times C \times 60} \) U/ml
3. การวิเคราะห์กิจกรรมเอนไซม์โดย Colorimetric method (Holme, 1993)

3.1 การเตรียมสารบรรจุของกรดโคลิดิก

ใส่สารละลายกรดโคลิดิกเข้มข้น 10 mMolar (กายภาพง UW) ปริมาตร 0.3, 0.6, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 และ 5.0 ml ลงในหลอดทดลอง ปรับปริมาณสารในแต่ละหลอดให้เท่ากัน 5.0 ml ด้วยโอโซอกแทน จากนั้นเติม copper reagent 10.0 ml ผสมให้เข้ากันด้วยเครื่องเขย่า แล้วทิ้งไว้ให้สารละลายเย็นมากน้ำสารละลายรับมือโอโซอกแทน โปรตีนในไวต่อธาตุสังเคราะห์ที่ 715 mMolar โดยใช้โอโซอกแทนเป็น blank นำค่าที่ได้ไปเรียกว่าค่าการดูดซึ่งแสงที่ 715 nm โดยใช้โอโซอกแทนเป็น mMolar

3.2 การวิเคราะห์กิจกรรมเอนไซม์ โดย Colorimetric method

ผสมน้ำมันเครื่องที่ใช้แล้ว 0.2 ml และสารละลายกรดโคลิดิกเข้มข้น 10 mMolar ปริมาตร 0.3 ml และสารละลายฟอสเฟตฟิลF1 2 โน๊ต 250 ml โดยชั้นที่ 1 ให้เป็นสารละลายกรดเอนไซมา ชั้นที่ 2 ดิสผลสารละลายปิโอซอล 0.5 ml น้ำสารละลายทั้ง 2 ชั้นปิโอซอลที่อยู่ในสารละลายที่ 2 ชั้น ให้เท่ากัน 1-2 ตัว 6 Molar HCl ชั้นดวกลอยละdezapat pH เปิดโอโซอกแทน 5 ml ลงไป แล้วใส่เข้ากันด้วยเครื่องเขย่า นำไปให้เข้ากันด้วยเครื่องเขย่า แล้วทิ้งไว้ให้เขย่า แล้วน้ำสารละลายรับมือโปรตีนของโอโซอกแทน ได้ค่าตัวแปรสารประกอบกรดโคลิดิกด้านซีติมอยู่ในโคลิดิก และนำไปคำนวณ Activity โดยกำหนดให้ 1 utive ตัวแปรเอนไซม์สารละลาย 1 mMolar ที่เกิดขึ้นจากการกระทำกิจกรรมเอนไซม์ ในเวลา 1 min

การคำนวณค่ากิจกรรมเอนไซม์โดย Colorimetric method

\[
\text{กิจกรรมเอนไซม์} = \frac{B}{AX60} (\text{U/ml})
\]

A คือ เอนไซม์ที่ใช้ในการตัดสิน (0.5 ml)
B คือ กรดโคลิดิกที่เกิดขึ้นจากกรดเอนไซมา

4. การศึกษาสาระที่เหมาะสมต่อการสร้างเอนไซม์ของเชื้อที่ดัดแปลงได้ (กันพิภนิพ, 2548)

นำเชื้อจากกลุ่ม Pw3/2, Pw27/1 (ปต. บรรจุ, 2550) และ SA 11/4, SA 6/3 (ชีนพิธี, 2550) และวิเคราะห์สารประกอบกรดเอนไซม์โดย Colorimetric method จากชั้น 1 ถึง 3 ชั้น การกระทำของเชื้อ

ศึกษาสาระที่เหมาะสมต่อการสร้างเอนไซม์ของเชื้อโดยวิเคราะห์สาระที่เกิดขึ้น

คำานวณเป็นกรด-ด่าง (pH) จุดเหนียว การให้ฉีดยา (ความเข้าใจในการเขย่า) และ ความเค็ม (%NaCl)
1. ค่าความเป็นกรด–ด่าง (pH)ที่เหมาะสมต่อการเจริญเติบโตของเชื้อ
1.1 ใช้ตัวอย่างเชื้อและวัตถุประสงค์เชื้อสุ่มในอาหารดีเอ็นเอปริมาณ 100 ml ที่อยู่ในขวดปัส
ชนะประมาณ 250 ml

1.2 นำไปแช่ที่ความร้อน 150 rpm ขณะจุนภูมิ 37 °C เป็นเวลา 24 hrs วัดปริมาณเชื้อจากค่า
OD₉₀₀ เบื้องต้นเท่ากับ 0.5 จากนั้นแบ่งออกเป็น 2 กลุ่ม กลุ่มที่ 1 ปรับ pH เป็น 8.5, 9.0, 9.5 และ pH
เฉลี่ย (7.30) นำไปปรับความเร็วมา 150 rpm ขณะจุนภูมิ 37 °C เป็นเวลา 48 hrs นำไปวัดการเจริญเติบโตของเชื้อโดยใช้อุปกรณ์ spectrophotometer ที่ความยาวคลื่น 600 nm

1.3 นำส่วนที่ 2 เชื้อไปใส่ลงในอาหารเจริญ NA เพื่อสังเกตอาการการเปลี่ยนของเชื้อสุ่ม
ระหว่างการศึกษา pH ที่เหมาะสม

2. จุนภูมิที่เหมาะสมต่อการเจริญเติบโตของเชื้อ
2.1 ใช้ตัวอย่างเชื้อและวัตถุประสงค์เชื้อสุ่มในอาหารดีเอ็นเอปริมาณ 100 ml ที่อยู่ในขวดปัส
ชนะประมาณ 250 ml

2.2 นำไปแช่ที่ความร้อน 150 rpm ขณะจุนภูมิ 37 °C เป็นเวลา 24 hrs วัดปริมาณ OD₉₀₀ เบื้องต้นเท่ากับ 0.5 จากนั้นแบ่งออกเป็น 2 กลุ่ม กลุ่มที่ 1 ปรับ pH ให้เป็น pH ที่เหมาะสมกับการเมื่อยัดดินโดยเชื้อ นำไปปรับความเร็วมา 150 rpm ขณะจุนภูมิ 37, 40, 45 °C เป็นเวลา 48 hrs นำไปวัดการเจริญเติบโตของเชื้อโดยใช้อุปกรณ์ spectrophotometer ที่ความยาวคลื่น 600 nm

2.3 นำส่วนที่ 2 เชื้อไปใส่ลงในอาหารเจริญ NA เพื่อสังเกตอาการการเปลี่ยนของเชื้อสุ่ม
ระหว่างการศึกษาจุนภูมิที่เหมาะสม

3. การให้อาหาร (ความเร็วจริงในการเจริญ) ที่เหมาะสมต่อการเจริญเติบโตของเชื้อ
3.1 ใช้ตัวอย่างเชื้อและวัตถุประสงค์เชื้อสุ่มในอาหารดีเอ็นเอปริมาณ 100 ml ที่อยู่ในขวดปัส
ชนะประมาณ 250 ml

3.2 เขย่าที่ความร้อน 150 rpm ขณะจุนภูมิ 37 °C เป็นเวลา 24 hrs วัดปริมาณ OD₉₀₀ เบื้องต้นเท่ากับ 0.5 จากนั้นแบ่งออกเป็น 2 กลุ่ม กลุ่มที่ 1 ปรับ pH ให้เป็น pH ที่เหมาะสม จุนภูมิที่เหมาะสมกับการเจริญเติบโตของเชื้อ แล้วนำไปปรับความเร็วมา 100, 150, 200 rpm เป็นเวลา 48 hrs นำไปวัดการเจริญเติบโตของเชื้อโดยใช้อุปกรณ์ spectrophotometer ที่ความยาวคลื่น 600 nm

3.3 นำส่วนที่ 2 เชื้อไปใส่ลงในอาหารเจริญ NA เพื่อสังเกตอาการการเปลี่ยนของเชื้อสุ่ม
ระหว่างการศึกษาอาหารให้อาหาร (ความเร็วจริงในการเจริญ) ที่เหมาะสม

4. %NaCl ที่เหมาะสมต่อการเจริญเติบโตของเชื้อ
4.1 ใช้ตัวอย่างเชื้อและวัตถุประสงค์เชื้อสุ่มในอาหารดีเอ็นเอปริมาณ 100 ml ที่อยู่ในขวดปัส
ชนะประมาณ 250 ml

4.2 นำไปแช่ที่ความร้อน 150 rpm ขณะจุนภูมิ 37 °C เป็นเวลา 24 hrs วัดปริมาณเชื้อ
จากค่า optical density ที่ความยาวคลื่น 600 nm (OD_{600}) เริ่มต้นเท่ากับ 0.5 จากนั้นแบ่งออกเป็น 2 ส่วน ต่อเนื่องที่ 1 ปลูกให้เป็น pH ที่เหมาะสม จุนเมือกที่เหมาะสม และความเร็วราบที่เหมาะสม หลังจากนั้นตั้น NaCl 0.5, 1.0, 2.0 % เป็นเวลา 48 ชม นำไปวัดอัตราการเจริญเติบโตของเชื้อโดยใช้เครื่อง spectrophotometer ที่ความยาวคลื่น 600 nm

4.3 นำส่วนที่ 2 นำเชื้อไปผลิตยากระบาด NA เพื่อสังเกตการณ์การป้องกันของเชื้อในระหว่างการศึกษา %NaCl ที่เหมาะสม

ผลและวิเคราะห์ผลการวิจัย

การเก็บตัวอย่างตัดและการวิเคราะห์

ระยะที่ 1 ทำการเก็บตัวอย่างน้ำและดิน แบ่งออกเป็น 2 แหล่งใหญ่ๆ คือ 1. แหล่งน้ำศรีดินในงานวิจัยนี้เลือกส่งน้ำจริง 2. แหล่งดิน ในการเก็บตัวอย่างน้ำ ใช้ผ้าเช็ดน้ำและผ้าที่มีสีไม้ จำนวนตั้งแต่ละ 5 คุณ และ 2. แหล่งตั้นน้ำ ใช้กระดาษที่มีสีที่มีสีไม้ จำนวนตั้งแต่ละ 2 คุณ

ระยะที่ 2 ทำการเก็บตัวอย่างดินและนำไปที่มีดิน คือ วิธีการเชื้อป่าเป็นไปอย่างที่น่าดึง จำนวนตั้งแต่ละ 10 คุณ และเก็บตัวอย่างดินในบริเวณพื้นที่ที่เป็นตั้น 1 คุณ เนื่องจากผลการวิเคราะห์เชื้อสุสาน มีในระยะที่ 1 ที่ใช้เป็นปริมาณสุสานเชื้อสุสานและมีประสิทธิภาพต่างกัน เชื้อสุสานที่พบจากการแพร่กระจาย

คัดค้นที่ 1 การแยกเชื้อแบบคัดคืน

จากแหล่งเก็บตัวอย่างเชื้อแบบคัดคืนประกอบด้วย 2 แหล่ง หลักคือ 1. แหล่งน้ำและดินของราดชำดิน และ 2. แหล่งน้ำและดินวิธีการเชื้อแบบคัดคืน ดังนี้

1. การคัดแยกเชื้อจากแหล่งน้ำและดินของราดชำดิน

1.1 การคัดแยกเชื้อจากน้ำ

การคัดแยกเชื้อแบบที่เก็บจากแหล่งน้ำและดินของราดชำดิน เป็นเวลา 24 ชั่วโมงที่อุณหภูมิ 37 องศาเซลเซียส พบว่าเชื้อแบคทีย์เริ่มที่ตั้งหมู่ lasting 68 ชั่วโมง สอดคล้องกับงานวิจัยของ วัตถุ (2528) กล่าวว่า ตั้นน้ำมีแหล่งต้นจุดต่างๆ ของเชื้อสุสาน แบคทีย์เริ่มตั้นที่ตั้นน้ำและผ้าที่สูงที่สุดเริ่มเป็นระยะที่อยู่อาศัยของเชื้อสุสาน ซึ่งนั้นเชื้อออกผ่านดินและผ่านผ้าที่ตั้นน้ำ การคัดแยกเชื้อบ่งบอกการวิเคราะห์ (spread plate) โดยการใช้แผ่นกาวเจล วัตถุี่การแยกเชื้อและทำให้ตั้นน้ำที่ผลิตเชื้อที่สูงไปเท่านั้น

การคัดแยกเชื้อทำให้บริหารธุรกิจการ streak plate agar จนได้ผลิตภัณฑ์เชื้อ
1.2 การศึกษาสัณฐานวิทยาของแบคทีเรีย โดยการย้อมสีแกรม

เมื่อคัดแยกเชื้อได้ทั้งหมด 39 ชนิด คือ SA 1 - SA 39 ทำการศึกษาสัณฐานวิทยาของแบคทีเรีย โดยการย้อมสีแกรมเพื่อดูปรากฏ ลักษณะการเรียงตัวและติดต่อกัน ดังตารางที่ 2 ผลจากการย้อมแกรมนั้นพบว่าแบคทีเรียส่วนใหญ่เป็นแบคทีเรียแกรม 35 ชนิดและแบคทีเรียแกรมแบบ 4 ชนิด มีรูปร่างท่อน 20 ชนิดและรูปร่างกลม 19 ชนิด สอดคล้องกับงานวิจัยของ Huy et al. (2007) ในการศึกษาลักษณะของแบคทีเรียที่สามารถคล้ายน้ำมันเปรียบเทียบจากดิน พบว่า สายพันธุ์ DW2-1 ที่นำมาจัดแน่นการศึกษาลักษณะสัณฐานวิทยา และทางชีวเคมีพบว่า มีรูปร่างท่อน และอยู่ในแกรมแบบในส่วนใหญ่ คุณภาพ (2547) ซึ่งประสงค์ของการย้อมสีเพื่อให้แสดงของแบคทีเรียที่ย้อมสีแกรมดังที่ได้เห็นได้ง่ายในการศึกษาลักษณะ (shape) ขนาด (size) ลักษณะแบบของเซลล์ (cell arrangement) และโครงสร้างต่างๆของเซลล์

ตารางที่ 2 แสดงผลการย้อมแกรมของเรื่องแบคทีเรียจากแหล่งต่างๆบนในไม

<table>
<thead>
<tr>
<th>เรื่อง</th>
<th>ลักษณะการย้อมสีแกรม</th>
<th>รูปร่างของเซลล์</th>
<th>เรื่อง</th>
<th>ลักษณะการย้อมสีแกรม</th>
<th>รูปร่างของเซลล์</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA 1</td>
<td>พบก</td>
<td>ท่อน</td>
<td>SA 21</td>
<td>พบก</td>
<td>ท่อน</td>
</tr>
<tr>
<td>SA 2</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 22</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 3</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 23</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 4</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 24</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 5</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 25</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 6</td>
<td>พบก</td>
<td>ท่อน</td>
<td>SA 26</td>
<td>พบก</td>
<td>ท่อน</td>
</tr>
<tr>
<td>SA 7</td>
<td>พบก</td>
<td>ท่อน</td>
<td>SA 27</td>
<td>พบก</td>
<td>ท่อน</td>
</tr>
<tr>
<td>SA 8</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 28</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 9</td>
<td>พบก</td>
<td>ท่อน</td>
<td>SA 29</td>
<td>พบก</td>
<td>ท่อน</td>
</tr>
<tr>
<td>SA 10</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 30</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 11</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 31</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 12</td>
<td>พบก</td>
<td>ท่อน</td>
<td>SA 32</td>
<td>พบก</td>
<td>ท่อน</td>
</tr>
<tr>
<td>SA 13</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 33</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 14</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 34</td>
<td>พบก</td>
<td>กลม</td>
</tr>
<tr>
<td>SA 15</td>
<td>พบก</td>
<td>ท่อน</td>
<td>SA 35</td>
<td>พบก</td>
<td>ท่อน</td>
</tr>
<tr>
<td>SA 16</td>
<td>พบก</td>
<td>ท่อน</td>
<td>SA 36</td>
<td>พบก</td>
<td>ท่อน</td>
</tr>
<tr>
<td>SA 17</td>
<td>พบก</td>
<td>กลม</td>
<td>SA 37</td>
<td>พบก</td>
<td>กลม</td>
</tr>
</tbody>
</table>
2. การคัดแยกเชื้อจากแหล่งดินธรรมชาติต่างๆ
 2.1 การคัดแยกเชื้อจากระดับ
 จากการศึกษาการแยกและคัดเลือกบริสุทธิ์ พบว่าสามารถแยกเชื้อแบคทีเรียจากแหล่งน้ำธรรมชาติที่นำมาศึกษาได้ 40 ชนิดคือ Pw1-Pw40 โดยวิธีการแยกเชื้อบริสุทธิ์ด้วยการ serial dilution และ spread plate agar เพื่อทำให้เชื้อกระจายโดยการใช้แหล่งสกัดกวนเป็นแผ่นเพื่อทำкарติกแยกแล้วว่า เหลือเชื้อน้ำธรรมชาติที่มีน้ำยาฆ่าเชื้อเต็มไปหมด และทำการคัดแยกเชื้อ ทำให้บริสุทธิ์โดยวิธีการ streak plate agar จนได้โคไลน์ได้ยิ่งๆ ซึ่ง ดูวงรี (2545) ได้กล่าวว่าตามธรรมชาติลิจิตวิทยาหลายชนิดอยู่รวมกัน จึงมิได้แยกจากแหล่งที่มีเม็ดเยื่อที่ได้ปกติเป็นเชื้อแยงมัน ดังนั้นการทำให้เชื้อบริสุทธิ์จึงเป็นสิ่งที่จำเป็นเพื่อนำมาเทียบชนิดที่นิยมใช้คือ วิธีการ streak plate agar และ liquid dilution method

![G) การ streak plate agar เชื้อแบคทีเรียPw38](image1) ![H) การ streak plate agar เชื้อแบคทีเรียPw27](image2)

ภาพ G ตัวอย่างการ streak plate agar ของเชื้อแบคทีเรียPw38 และ Pw27

จากภาพ G เป็นเชื้อแบคทีเรีย Pw38 และ Pw27 ซึ่งได้จากการ streak plate agar จนได้โคไลน์เดียวกัน ซึ่ง มังกร (2544) ได้กล่าวว่า การ streak plate agar จนได้โคไลน์เดียวกัน สำหรับน้ำ

(PIGMENTATION) ของแบคทีเรีย
2.2 การศึกษาอณิฐานวิ MICROBIOLOGY โดยการข้อมูลิ่ง

เมื่อ streak plate agar จนได้โค้ดทั้งตัวว่า นำมาเยื่อแบบแกรม ซึ่งการย้อมสีนี้มีความสำคัญ และให้กันเฉพาะหลาย นักบ้าน (2544) ได้กล่าวว่า การย้อมสีเมื่อแบ่งเป็นการศึกษาสิ่ง ร่างกายและภูมิภูมิคุณตัวของเซลล์ จึงทำให้สามารถแยกแกรมที่เรียกอีกเป็น 2 ชนิดคือ แบคทีเรียแบบ แกรมบี (gram-positive bacteria) และแบคทีเรียแบบแกรมลบ (gram-negative bacteria) ซึ่ง gram-positive bacteria จะติดสีกองของ คริสตัลไวนิลนิล (crystal violet) และ gram-negative bacteria จะติดสีแดงจาก safranin. เหตุที่เป็นเช่นนี้เพราะ โครงสร้างและองค์ประกอบของมันเข้าใจใน gram-negative bacteria จะมีสารประกอบโพลีฟิลิลนิลเป็นมากกว่า gram-positive bacteria และยังมีขึ้น ของมันเข้าใจต่างกันด้วย ในการย้อมสีเพื่อปล่อยเซลล์จะไปมีความไม่เท่ากันให้รู้ภัย ของมันเข้าใจต่างกันด้วย นารี safranin ทำให้สารสมบูรณ์ในยูริกของมัน crystal violet และไอโอดีนคอมเพล็กซ์ (iodine complex) หยุดยั่งยืน เมื่อใช้ย้อม safranin จึงติดสีแดงของ safranin แต่ใน gram-positive bacteria ซึ่งมีไม่มีที่หนึ่งเข้าอกว่าแล้งสีแดงของเซลล์ จะมีเพียงเท่ากัน เกิดการสูญเสียน้ำ เรียกภู่ เมื่อมันซึ่งมีขนาดเล็กมาก สารประกอบมันจะสูญและเซลล์จะสูญเสียน้ำได้ เซลล์ย้อมครั้งสีม่วงเมื่อย้อม หันด้วย safranin จึงไม่ติดสีแดง จากการทดลองเยื่อแบบแกรมที่เรียกจากมันเข้าใจ บรรยาย 40 ชนิด พบว่ามีลักษณะการติดสีอย่างเพียงต่างกันดังในตารางที่ 3

ตารางที่ 3 แสดงผลการย้อมแกรมของเชื้อแบคทีเรียจากแหล่งน้ำธรรมชาติต่างๆ ยัง
จากภาพที่ 9 เปรียบเทียบอัตราการเจริญเซลล์จากตัวอย่างคีบีที่มีการเจริญแบบย่อยๆ ตามการทดลองของคีบีที่มีการเจริญแบบย่อยๆ ตามการทดลองของคีบีที่มีการเจริย

<table>
<thead>
<tr>
<th>เบอร์</th>
<th>ลักษณะการย้อมศีรษะแมกฟุลเลอร์</th>
<th>รูปภาพของเซลล์</th>
<th>เบอร์</th>
<th>ลักษณะการย้อมศีรษะแมกฟุลเลอร์</th>
<th>รูปภาพของเซลล์</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pw12</td>
<td>แดง</td>
<td>กลม</td>
<td>Pw32</td>
<td>แดง</td>
<td>กลม</td>
</tr>
<tr>
<td>Pw13</td>
<td>ม่วง</td>
<td>ทอน</td>
<td>Pw33</td>
<td>แดง</td>
<td>กลม</td>
</tr>
<tr>
<td>Pw14</td>
<td>แดง</td>
<td>กลม</td>
<td>Pw34</td>
<td>แดง</td>
<td>กลม</td>
</tr>
<tr>
<td>Pw15</td>
<td>แดง</td>
<td>กลม</td>
<td>Pw35</td>
<td>แดง</td>
<td>กลม</td>
</tr>
<tr>
<td>Pw16</td>
<td>แดง</td>
<td>กลม</td>
<td>Pw36</td>
<td>แดง</td>
<td>กลม</td>
</tr>
<tr>
<td>Pw17</td>
<td>แดง</td>
<td>กลม</td>
<td>Pw37</td>
<td>แดง</td>
<td>กลม</td>
</tr>
<tr>
<td>Pw18</td>
<td>แดง</td>
<td>กลม</td>
<td>Pw38</td>
<td>แดง</td>
<td>กลม</td>
</tr>
<tr>
<td>Pw19</td>
<td>แดง</td>
<td>กลม</td>
<td>Pw39</td>
<td>แดง</td>
<td>กลม</td>
</tr>
<tr>
<td>Pw20</td>
<td>แดง</td>
<td>กลม</td>
<td>Pw40</td>
<td>แดง</td>
<td>กลม</td>
</tr>
</tbody>
</table>
ตารางที่ 4 การทดสอบการย้อมสีแบบแกรม (Gram’s staining) ในเชื้อแบคทีเรีย KS1 – KS45

<table>
<thead>
<tr>
<th>ไอโอไลด์</th>
<th>ข้อมูลแกรม</th>
<th>ลักษณะ</th>
<th>เข็ม</th>
<th>ข้อมูลแกรม</th>
<th>ลักษณะ</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS1</td>
<td>+</td>
<td>ทอง</td>
<td>KS24</td>
<td>-</td>
<td>แกรม</td>
</tr>
<tr>
<td>KS2</td>
<td>+</td>
<td>ทอง</td>
<td>KS25</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS3</td>
<td>-</td>
<td>ทอง</td>
<td>KS26</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS4</td>
<td>-</td>
<td>ทอง</td>
<td>KS27</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS5</td>
<td>-</td>
<td>แกรม</td>
<td>KS28</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS6</td>
<td>-</td>
<td>ทอง</td>
<td>KS29</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS7</td>
<td>-</td>
<td>ทอง</td>
<td>KS30</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS8</td>
<td>-</td>
<td>แกรม</td>
<td>KS31</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS9</td>
<td>-</td>
<td>ทอง</td>
<td>KS32</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS10</td>
<td>-</td>
<td>ทอง</td>
<td>KS33</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS11</td>
<td>-</td>
<td>ทอง</td>
<td>KS34</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS12</td>
<td>-</td>
<td>ทอง</td>
<td>KS35</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS13</td>
<td>-</td>
<td>ทอง</td>
<td>KS36</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS14</td>
<td>-</td>
<td>ทอง</td>
<td>KS37</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS15</td>
<td>-</td>
<td>ทอง</td>
<td>KS38</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS16</td>
<td>-</td>
<td>แกรม</td>
<td>KS39</td>
<td>-</td>
<td>แกรม</td>
</tr>
<tr>
<td>KS17</td>
<td>-</td>
<td>ทอง</td>
<td>KS40</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS18</td>
<td>-</td>
<td>ทอง</td>
<td>KS41</td>
<td>+</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS19</td>
<td>-</td>
<td>ทอง</td>
<td>KS42</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS20</td>
<td>-</td>
<td>ทอง</td>
<td>KS43</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS21</td>
<td>-</td>
<td>ทอง</td>
<td>KS44</td>
<td>+</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS22</td>
<td>-</td>
<td>ทอง</td>
<td>KS45</td>
<td>-</td>
<td>ทอง</td>
</tr>
<tr>
<td>KS23</td>
<td>-</td>
<td>ทอง</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ภาพ 10 ตัวอย่างการย้อมสีแบบแกรม (Grams staining) โดยทำจากกล้องจุลทรรศน์ชนิดเลนส์
ประเภท (compound microscope) กำลังขยาย 1000 เท่า

จากผลการทดสอบการย้อมสีแกรมในชื่อแกเรียก KS1 – KS45 พบว่า เป็นแกลเรียก แฟรม
บวกคิวติวิต (crystal violet) รูปางตัว 4 ชนิด และแกลเรียกแกรมบัตติสติกแซฟเรน (safranin) รูปางตัว
4 ชนิด และรูปางตัวแขวน 37 ชนิด (ตารางที่ 4) ซึ่งพบว่าส่วนใหญ่เป็นแกลเรียกแกรมบัตติสติกแซฟเรน
(safranin) ซึ่งออกตัวง่ายนักไม่ดีกว่าเป็นแกลเรียกแกรมบัตติสติกแซฟเรน (safranin) ที่สำคัญมากกับการทำงานวิจัยของ Huy et al. (1999) ที่มีการศึกษาลักษณะของแกลเรียก
ที่สำคัญย่อยนั้นยังเป็นเครื่องมือในการศึกษา สำหรับ DW2-1 ที่มีผลการทำงานแกลเรียกเลนส์
สีต่างกันอย่างมากทางชีวเวชผ่านต่าง ๆ มีรูปางตัวแกลเรียกและติดสีแกรม

การย้อมสีแบบแกรมเป็นการศึกษาการปรังลักษณะและการย้อมสีตัวของเซลล์ จึงทำให้สามารถ
แยกแกลเรียกของผิวภายนอก 2 ชนิด คือ แฟรมแกลเรียกแกรมบวก (gram-positive bacteria) และแกลเรียกแกรม
ลบ (gram-negative bacteria) ซึ่งแกลเรียกแกรมบวกจะติดสีม่วงของควีดสีไวน์นีเดอร์ (crystal violet)
และแกลเรียกแกรมลบจะติดสีแดงจากซาฟเรน (safranin) เหตุที่เป็นเช่นนี้เพราะ โครงสร้างและ
องค์ประกอบของเซลล์ในแบบที่ย้อมแกรมบวกจะมีสารพวกไวน์นีเดอร์ซึ่งนั้นเซลล์แบบแกลเรียกแกรม
บวก แต่กลับมีชั้นของเซลล์ที่ย้อมว่ายังไม่ได้ กระบวนการย้อมสีม่วงเล็กน้อยตลอดเซลล์จะไปลงใน
ไวน์ ทำให้รูปเป็นของแกลเรียกแกรมบวกชีวประณีตสีม่วงคล้ำสีไวน์นีเดอร์ (crystal violet)
และไวน์ซีเดมิมเทนซิส (iodine complex) หรือเป็นเม็ดย้อม ซึ่งมีชั้น ซึ่งปาน (safranin) ซึ่งติดสีแดงของ
safranin แต่ในแบบที่ย้อมแกรมบวก ซึ่งมีชั้นที่มีมิร์เคลด์น้อยกว่าเมื่อส่งในตัวเซลล์เซลล์จะเห็น
เฉพาะภูมิการลูกลิ้นเนื้อ เนื่องจากเซลล์มีผนังเซลล์ใหญ่
กระชับ แกลเรียกเลนส์มากและวิจัยของ oscar ที่มีผลเกี่ยวกับการลูกลิ้นเนื้อไม่ได้เซลล์ย้อมแกรมบวก แต่ย้อมสีแซฟเรน (safranin) จึงไม่ติดสีแดง (นางลักษณ์, 2544)
2. การแยกเชื้อสุสัตว์ที่ระบาด

ระยะที่ 1 นำกลุ่มย่อยตัวอย่างและน้ำในบริเวณน้ำผักชีมาเติมในอาหาร LB broth ตาม workaround เรียบสุสัตว์ให้บริสุทธิ์ได้ 30 ชั่วโมง เป็นสุสัตว์ที่แยกจากตัวอย่างน้ำ 22 ชนิด และสุสัตว์ที่แยกได้จากตัวอย่างที่แยกในบริเวณน้ำผักชี 8 ชนิด การเก็บตัวอย่างน้ำที่มีการเป็นโรคในน้ำผักชี น้ำมีดีในอาหาร LB broth ตาม workaround ที่มีบริสุทธิ์ได้ 11 ชนิด

ระยะที่ 2 จำนวนสุสัตว์ที่พบเพิ่มเติมจากน้ำผักชี จำนวน 38 โคลน (SA1-SA38) จำนวนสุสัตว์ที่พบเพิ่มเติมจากน้ำผักชี จำนวน 40 โคลน (PA1-PA40) และพบจำนวนสุสัตว์ในแหล่งที่ปรับเปลี่ยนน้ำผักชี จำนวน 13 โคลน

ตอนที่ 2 ศึกษาคุณสมบัติทางชีวเคมีของสุสัตว์ที่แยกได้

จากนั้นนำสุสัตว์ที่แยกได้จากตอน 1 ทดสอบความสามารถในการย่อยสลายน้ำมันเครื่องที่ใช้แล้ว เพิ่มปริมาณเชื้อในอาหารสุสัตว์ NB โดยใช้ตัวอย่างเชื้อและโคบที่ได้ว่า ๆ ของเชื้อจากอาหาร NA ใส่ลงในอาหารสุสัตว์ NB ปริมาณ 100 ml ที่อยู่ในกระปุกพร้อมรูจุด 250 ml นำไปแช่ที่ความเร็ว 150 rpm เป็นเวลา 48 ชั่วโมง โดยมีค่าค่าต่อนม (OD600) ที่มีค่าต่อเชื้อเป็นชุดควบคุม (control) ละเมิดเงินเรียกจากค่า Optical Density ที่ความยาวคลื่น 600 nm (OD600) โดยให้แต่ละชุดมีค่า OD600 เริ่มต้นที่กับ 0.5 หมู่น้ำมันเครื่องที่ใช้แล้ว (จำนวนน้ำมันเครื่องสุสัตว์) ลงในแต่ละชุด ขนาด 2 ml นำไปแช่ต่อไปอีก 72 ชั่วโมง ที่อุณหภูมิ 37°C ต้องการปริมาณน้ำมันเครื่องที่มีรายละเอียดของอาหารสุสัตว์ เชื้อและความชุ่มของอาหารสุสัตว์ โดยสังเกตุการณ์อย่างต่อเนื่อง 24 ชั่วโมง และทำการปริมาณรายละเอียดการเปลี่ยนแปลงกับชุดควบคุม (รัฐพงษ์, 2541)

การทดสอบความสามารถในการย่อยสลายน้ำมันเครื่องที่ใช้แล้วด้วยอุปกรณ์ที่มีการหยุดหายที่มาก สามารถปรับปรุงน้ำมันที่ขาดแคลนที่จะเปลี่ยนแปลงเป็น 3 ระดับคือ 0, ++ และ ++ ความคือ

ระดับ 0 : ลักษณะรูปแบบของน้ำมันเครื่องคือน้ำมันเครื่องคือ
เปลี่ยนแปลงเป็น 3 ระดับคือ 0, ++ และ ++ ความคือ
ระดับ 0 : ลักษณะรูปแบบของน้ำมันเครื่องคือ
เปลี่ยนแปลงเป็น 3 ระดับคือ 0, ++ และ ++ ความคือ
ระดับ ++ : ลักษณะรูปแบบของน้ำมันเครื่องคือ
เปลี่ยนแปลงเป็น 3 ระดับคือ 0, ++ และ ++ ความคือ
ระดับ +++ : ลักษณะรูปแบบของน้ำมันเครื่องคือ
เปลี่ยนแปลงเป็น 3 ระดับคือ 0, ++ และ ++ ความคือ
ภาพ 11 การเปลี่ยนแปลงสีกันดีเบื้องต้นของน้ำมัน

จากการศึกษาผลกระทบสิ่งมลปัญหา พบว่าสารละลายของจุลินทรีย์ที่แยกได้จากน้ำขุนฟุรุ่นสันกิ่งแห้ง พบว่าเป็นสารประกอบ 4 ชนิดคือ SO₄, SO₃, SO₂, SO₁ แต่ละชนิด 7 ชนิดคือ SO₄, SO₃, SO₂, SO₁, SO₀, SO₀₂, SO₀₃, SO₀₄, SO₀₁

จากการศึกษาในระยะที่ 2 ได้ทำการตรวจสอบความสามารถในการย่อยน้ำมัน พบว่าผลการย่อยสารประกอบด้วยยีสต์ความสามารถที่ก้าวหน้าขึ้นไป พบว่า

ภาพ 12 แสดงผลการย่อยสิ่งมลน้ำมันเครื่องใช้แล้ว

A คือ แบบที่มีที่สามารถย่อยน้ำมันให้ระดับ 0 มีลักษณะของฝุ่นน้ำมันจะมีเป็นคราบน้ำมัน จับตัวกันเป็นกลุ่มและเป็นฝุ่นเข้มข้นหัว มีทั้งหมด 11 โซนทั้งหมด คือ SA1, SA9, SA17, SA22, SA24, SA25, SA26, SA27, SA28, SA29, SA39

C คือ แบคทีเรียที่สามารถย่อยน้ำมันได้ระดับ ++ มีลักษณะของน้ำมันแตกตัวเป็นเม็ดขนาดเล็กและจับตัวกันที่ชั้น ๆ ชั้น มีทั้งหมด 21 โซนอลิท ได้แก่ SA1, SA6, SA7, SA8, SA11, SA12, SA13, SA20, SA21, SA38, SA16 และ PW1, PW5, PW10, PW17, PW22, PW27, PW32, PW35, PW36, PW38

จากการนี้มีการทดลองเรียนรู้ซึ่งมีลักษณะรูปแบบที่แตกต่างกันออกไป ทั้งนี้อาจเป็นเพราะแรงดึงดูด คือ แรงดึงดูดและแรงดึงดูดในกลุ่มพื้นที่ของแคลเซียมหรือแคลเซียมของเชื้อ ซึ่งปกติแล้วน้ำมันจะแยกตัวกัน โดยน้ำมันจะออกซิเจนบนขอบของน้ำ น้ำมันจะมีแรงดึงดูดและพื้นที่ในห้องและพื้นที่กับวัสดุที่ชั้นล่างกว่าน้ำ ทำให้เกิดการปฏิกิริยาที่มีผลต่อกัปติกับวัสดุที่มีคุณภาพในการทดลอง ตัวอย่างเช่น Bento et al. (2004) กล่าวว่าสาร biosurfactant ที่เป็นที่เรียกเดียวของสนามภูมิยาต่อสารน้ำมันได้บ้างส่วน แต่อาจเกิดสารที่อยู่ในอาหารเลี้ยงเชื้อที่มีการผลิตสาร biosurfactant ซึ่งทำให้สามารถทำให้น้ำมันแตกตัวได้ในภาวะที่เป็นเฉพาะกลุ่มภูมิยาต่ออาหาร ซึ่งวิธีการศึกษาเช่นนี้ถือเพื่อกำหนดสารที่ใช้ในอาหารเลี้ยงเชื้อที่จะใช้ในอาหารเลี้ยงเชื้อที่มีการผลิตสาร biosurfactant ได้ตัวการศึกษาความสามารถในการอยู่สูงน้ำมันเครื่องที่ใช้แล้ว โดยการสังเกตการเปลี่ยนแปลงของปริมาณน้ำมันบริเวณที่กบพื้นคร่อม
ตารางที่ 5 การทดสอบความสามประสานของการออกผลย่อยในน้ำมันเครื่องที่ใช้แล้วของแต่ละไอโอดีน

<table>
<thead>
<tr>
<th>ไอโอดีน</th>
<th>ผลการออกผลย่อยในน้ำมัน</th>
<th>ไอโอดีน</th>
<th>ผลการออกผลย่อยในน้ำมัน</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>KS23</td>
<td>++</td>
</tr>
<tr>
<td>KS1</td>
<td>+</td>
<td>KS24</td>
<td>+</td>
</tr>
<tr>
<td>KS2</td>
<td>+</td>
<td>KS25</td>
<td>++</td>
</tr>
<tr>
<td>KS3</td>
<td>+</td>
<td>KS26</td>
<td>+</td>
</tr>
<tr>
<td>KS4</td>
<td>+</td>
<td>KS27</td>
<td>++</td>
</tr>
<tr>
<td>KS5</td>
<td>+</td>
<td>KS28</td>
<td>++</td>
</tr>
<tr>
<td>KS6</td>
<td>+</td>
<td>KS29</td>
<td>++</td>
</tr>
<tr>
<td>KS7</td>
<td>+</td>
<td>KS30</td>
<td>++</td>
</tr>
<tr>
<td>KS8</td>
<td>+</td>
<td>KS31</td>
<td>+</td>
</tr>
<tr>
<td>KS9</td>
<td>+</td>
<td>KS32</td>
<td>+</td>
</tr>
<tr>
<td>KS10</td>
<td>+</td>
<td>KS33</td>
<td>+</td>
</tr>
<tr>
<td>KS11</td>
<td>+</td>
<td>KS34</td>
<td>++</td>
</tr>
<tr>
<td>KS12</td>
<td>+</td>
<td>KS35</td>
<td>++</td>
</tr>
<tr>
<td>KS13</td>
<td>+</td>
<td>KS36</td>
<td>+</td>
</tr>
<tr>
<td>KS14</td>
<td>+</td>
<td>KS37</td>
<td>++</td>
</tr>
<tr>
<td>KS15</td>
<td>+</td>
<td>KS38</td>
<td>++</td>
</tr>
<tr>
<td>KS16</td>
<td>+</td>
<td>KS39</td>
<td>+</td>
</tr>
<tr>
<td>KS17</td>
<td>+</td>
<td>KS40</td>
<td>+</td>
</tr>
<tr>
<td>KS18</td>
<td>+</td>
<td>KS41</td>
<td>++</td>
</tr>
<tr>
<td>KS19</td>
<td>+</td>
<td>KS42</td>
<td>+</td>
</tr>
<tr>
<td>KS20</td>
<td>+</td>
<td>KS43</td>
<td>+</td>
</tr>
<tr>
<td>KS21</td>
<td>++</td>
<td>KS44</td>
<td>++</td>
</tr>
<tr>
<td>KS22</td>
<td>+</td>
<td>KS45</td>
<td>+</td>
</tr>
</tbody>
</table>
จากเสียงที่สามารถย้อมน้ำมันได้ในระดับ ++ นั้นได้มาทางซ้ายของการวิธีการวิเคราะห์ gravimetric method และคำนวณค่าปริมาณน้ำมันได้ดังแสดงในตารางที่ 6.

ตารางที่ 6 แสดงผลปริมาณการย้อมน้ำมันของรูปตระกูลที่สามารถย้อมน้ำมันได้ในระดับ 2

<table>
<thead>
<tr>
<th>ไอويلเดอร์</th>
<th>เปรอร์เซ็นต์การย้อมน้ำมัน</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>0%</td>
</tr>
<tr>
<td>SA 16</td>
<td>83.33%</td>
</tr>
<tr>
<td>SA 6</td>
<td>83.33%</td>
</tr>
<tr>
<td>SA 7</td>
<td>81.15%</td>
</tr>
<tr>
<td>SA 11</td>
<td>71.42%</td>
</tr>
<tr>
<td>SA 8</td>
<td>70.86%</td>
</tr>
<tr>
<td>SA 38</td>
<td>70.86%</td>
</tr>
<tr>
<td>SA 20</td>
<td>52.89%</td>
</tr>
<tr>
<td>SA 13</td>
<td>49.28%</td>
</tr>
<tr>
<td>SA 12</td>
<td>44.96%</td>
</tr>
<tr>
<td>SA 21</td>
<td>42.75%</td>
</tr>
<tr>
<td>โลโกน์</td>
<td>เปอร์เซ็นต์การสูญเสียน้ำมัน</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>SA 2</td>
<td>26.61%</td>
</tr>
<tr>
<td>Pw1</td>
<td>92.15%</td>
</tr>
<tr>
<td>Pw5</td>
<td>88.40%</td>
</tr>
<tr>
<td>Pw10</td>
<td>94.54%</td>
</tr>
<tr>
<td>Pw17</td>
<td>46.08%</td>
</tr>
<tr>
<td>Pw22</td>
<td>97.61%</td>
</tr>
<tr>
<td>Pw27</td>
<td>86%</td>
</tr>
<tr>
<td>Pw32</td>
<td>87.71%</td>
</tr>
<tr>
<td>Pw35</td>
<td>64.51%</td>
</tr>
<tr>
<td>Pw36</td>
<td>66.55%</td>
</tr>
<tr>
<td>Pw38</td>
<td>64.51%</td>
</tr>
<tr>
<td>KS21</td>
<td>77.27%</td>
</tr>
<tr>
<td>KS23</td>
<td>90.90%</td>
</tr>
<tr>
<td>KS25</td>
<td>0%</td>
</tr>
<tr>
<td>KS27</td>
<td>95.45%</td>
</tr>
<tr>
<td>KS28</td>
<td>72.72%</td>
</tr>
<tr>
<td>KS29</td>
<td>45.45%</td>
</tr>
<tr>
<td>KS30</td>
<td>95.45%</td>
</tr>
<tr>
<td>KS34</td>
<td>31.82%</td>
</tr>
<tr>
<td>KS35</td>
<td>31.82%</td>
</tr>
<tr>
<td>KS37</td>
<td>95.45%</td>
</tr>
<tr>
<td>KS38</td>
<td>81.82%</td>
</tr>
<tr>
<td>KS41</td>
<td>36.36%</td>
</tr>
<tr>
<td>KS44</td>
<td>68.18%</td>
</tr>
</tbody>
</table>

การทดสอบความสามารถในการย้อมสักหินแม่เครื่องที่ใช้แล้วของแบบที่เรียงจากบน 13 โลโกน ด้วยวิธี Partition gravimetric (ตารางที่ 6 และภาพ 14) พบว่า แบบที่เรียงที่มีประสิทธิภาพในการย้อมสักหินแม่เครื่องที่ใช้แล้วมากกว่า 50 % (ภาพ 14, C) จำนวน 8 โลโกน (คือ KS21, KS23, KS27, KS28, KS30, KS37, KS38 และ KS44)
ภาพ 14 สิ่งที่เกิดขึ้นเมื่อน้ำมันที่เหลืออยู่หลังจากนำไปอบที่ 105 °C นาน 30 min

จากผลกระทบต่อผลิตภัณฑ์ที่ทำกับน้ำมัน วิวัฒนาการ (อานุรุทธิ์ 2548) พบว่าถึงที่สามารถย่อยสลายน้ำมันได้ดีที่สุด คือ S27 ถือว่าดีมากน้ำมันได้ 79.39% ซึ่งได้จากปริมาณน้ำมันที่ได้ตกเกินกึ่งของปริมาณน้ำมัน เรียกได้ว่ากิจกรรมที่อยู่ในเยื้องกิจการวิทยาการ และการลงบุคคลที่ไม่สามารถวัดได้ ซึ่งได้จากปริมาณน้ำมันที่ระบายได้ 80.75% และ ปิยะปุระ (2550) พบว่ามีเชื้อแบคทีเรีย 9 ชนิด สำหรับน้ำมันธรรมชาติที่มีประสิทธิภาพในการย่อยน้ำมันได้มากกว่า 50 % ได้แก่ Pw22 Pw10 Pw1 Pw5 Pw32 Pw27 Pw36 Pw35 และ Pw38 สามารถย่อยน้ำมันที่มีปริมาณที่ใช้แล้วได้ ค่าดังนี้ 97.61 94.54 92.15 88.40 87.71 86.00 66.55 64.51 และ 64.51% ตามลำดับ และต่อผลิตภัณฑ์กับ Huy et al. (1999) พบว่า มีแบคทีเรียที่คัดแยกมาจากสุนัขในป่าเงินในเวียดนาม เป็นแบคทีเรียสกุล Pseudomonas sp. และยังพบเชื้อ Acinetobacter sp. มีประสิทธิภาพในการย่อยน้ำมันได้ 95% เช่นเดียวกับภูริ (2548) พบว่าการให้สารกันท้องปฏิบัติการ เมื่อเปรียบเทียบประสิทธิภาพการทำงานของเชื้อ Pseudomonas sp. และ Bacillus sp. เรียบร้อยที่มีผลกระทบต่อผลิตภัณฑ์ที่มีประสิทธิภาพในการย่อยสลายน้ำมันเพิ่มขึ้น 78.09 และ 64.5 % ตามลำดับ

ตอนที่ 3 ทดสอบการย่อยน้ำมันของแบคทีเรียด้ววิธีชีวเคมี

ในงานวิจัยได้ใช้เครื่องความสามารถในการย่อยสลายน้ำมันในกลุ่มไลโคคารบอนด้วยกระบวนการทางชีวเคมี คือ การทดสอบอคิดดีของเอทานอลและโปรตีนต่อการย่อยสลายของน้ำมันดีเอทานอล โดยแสดงผลในตารางที่ 7.
ตารางที่ 7 แสดงค่าน้ำทิพย์ของแอนไพร์โปรตีนจากกลุ่มแอนไพร์โปรตีนต่าง ๆ

<table>
<thead>
<tr>
<th>ไอโซเลต</th>
<th>ค่าน้ำทิพย์มิลเลียร์ (ยูนิต/เซม)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pw1</td>
<td>1.88</td>
</tr>
<tr>
<td>Pw5</td>
<td>1.03</td>
</tr>
<tr>
<td>Pw10</td>
<td>2.90</td>
</tr>
<tr>
<td>Pw17</td>
<td>1.53</td>
</tr>
<tr>
<td>Pw22</td>
<td>2.22</td>
</tr>
<tr>
<td>Pw27</td>
<td>2.39</td>
</tr>
<tr>
<td>Pw32</td>
<td>2.39</td>
</tr>
<tr>
<td>Pw35</td>
<td>0.17</td>
</tr>
<tr>
<td>Pw36</td>
<td>2.05</td>
</tr>
<tr>
<td>Pw38</td>
<td>1.20</td>
</tr>
<tr>
<td>SA 38/2</td>
<td>3.44</td>
</tr>
<tr>
<td>SA 6/4</td>
<td>0.72</td>
</tr>
<tr>
<td>SA 11/4</td>
<td>4.32</td>
</tr>
<tr>
<td>SA 12/1</td>
<td>1.92</td>
</tr>
<tr>
<td>SA 7/1</td>
<td>4.00</td>
</tr>
<tr>
<td>SA 6/3</td>
<td>2.08</td>
</tr>
<tr>
<td>SA 38/4</td>
<td>4.23</td>
</tr>
<tr>
<td>SA 2/5</td>
<td>1.76</td>
</tr>
<tr>
<td>KS27</td>
<td>2.67</td>
</tr>
<tr>
<td>KS30</td>
<td>5.67</td>
</tr>
<tr>
<td>KS37</td>
<td>6.67</td>
</tr>
<tr>
<td>KS23</td>
<td>0.5</td>
</tr>
<tr>
<td>KS38</td>
<td>2.67</td>
</tr>
<tr>
<td>KS21</td>
<td>4.17</td>
</tr>
<tr>
<td>KS28</td>
<td>0.67</td>
</tr>
<tr>
<td>KS44</td>
<td>2.67</td>
</tr>
</tbody>
</table>
ภาพ 15 แสดงการทดสอบค่าเกลือกรดของน้ำมันเครื่อง

(ก) แสดงสารละลายมาตรฐานกรดอะซิด
(ข) สารละลายเอนไซม์จากการทดสอบ colorimetric น้ำมันเครื่อง
(ค) สารละลายเอนไซม์จากการทดสอบ colorimetric ในน้ำมันเครื่องที่ใช้แล้ว
(ง) แสดงความแตกต่างของสารละลายเอนไซม์ในน้ำมันแรกกับน้ำมันเครื่องที่ใช้แล้ว

จากการทดสอบโดยวิธีการวิเคราะห์ค่าเกลือกรดของน้ำมันเครื่อง Colorimetric method
พบว่าเชื้อที่มีค่าเกลือกรดเอนไซม์เอนโทรโนในน้ำมันเครื่องสูงสุด 20 อันดับแรกคือ KS37, KS30, แล้วKS21 มีค่าเกลือกรดเอนไซม์เอนโทรโนในน้ำมันเครื่องเท่ากับ 1.01, 0.53, และ 0.48 U/ml ตามลำดับ

จากการศึกษาของ อณุสิทธิ์ (2550) และปิยะพรรณ (2550) พบว่าเชื้อแรก SA และ PW จัดต้อง
จำแนกเชื้อให้บริสุทธิ์เพื่อทดสอบความคล้ายคลึงได้ชัดเจนขึ้น และนำมาทดสอบค่าเกลือกรดของเอนไซม์
เอนโทรโน พบว่า SA 1/4 เป็นเชื้อที่แยกได้จากเหลิงคั่นกรรมชาติ มีค่าเกลือกรดเอนไซม์เอนโทรโนใน
น้ำมันเครื่องที่ใช้แล้วโดยวิธี colorimetric 4.32 U/ml และมีค่าเกลือกรดเอนไซม์เอนโทรโนโดยวิธี colorimetric
0.74 U/ml และปิยะพรรณ (2550) พบว่าเนื้อเชื้อเบคอนที่เรียกมาตรฐานกรดเอนไซม์เอนโทรโน
ค่ายการเติมทรายน้ำมันเครื่องที่ใช้แล้ว พบว่า Pw27/1 ที่แยกได้จากแหล่งน้ำที่ธรณีคดี มีค่ากิจกรรมแอนไพรอลโรสูงสุดคือ 3.60 U/ml และมีค่ากิจกรรมแอนไพรอลปัจจุบันวิธี colorimetric 1.47 U/ml

จากการศึกษาของ Yoshiki et al., 2007 พบว่า แพร่เชื้ออีโค DW2-1 เพิ่มขึ้นโดยมีแนวโน้มในการลดลงปานกลางที่ส่งความเห็น (1×10^10 [CFU]/ml) ระหว่างฤดูกาลคือ 20°C และ 38°C และอัตราการเจริญเติบโตของน้ำมันผสมอยู่ที่ 90% หลังจากเก็บเฉลี่ยเชื้อคุณที่ 48 hrs ไลป์และกระบวนการแอนไพรอลซิลิกอน (BSF) ของแพร่เชื้ออีโค DW2-1 หลังจากเก็บเฉลี่ยเชื้อคุณที่ 48 ชั่วโมงที่ 1720 U และ 480 U/ml ตามลำดับ การเก็บเฉลี่ยเชื้อคุณที่ต้องไปเพื่อการบันทึกน้ำเสียที่ป่าเป็นนิเวน DW2-1 ควรจะต้องดูให้เกิดการอยู่อาศัยถึง 90% ของน้ำมันผสม ในการเก็บเฉลี่ยเชื้อคุณที่เป็นระยะเวลากว่า 7 วัน

จะเห็นได้ว่า วิธีใดวิธีหนึ่งจะได้สำหรับการเรียนรู้ไอย่างวิธี colorimetric ดังนั้น วิธี colorimetric จึงเป็นการทดสอบสำหรับการเรียนรู้ไอย่างที่จะช่วยให้เราสามารถดู ในจากกิจการเติมทราย ธาตุเหล็กนั้น ๆ ที่อยู่ในสารสกัดจาก การเตรียมสารเคมีที่ใช้ในการทดลองนั้นอาจจะไม่เป็นไปตามมาตรฐาน เพราะว่าตามที่จะเห็นได้ว่าสำหรับการเรียนรู้ไอย่างวิธีที่ข้ามคำนวณตาม ดังนั้นการวิเคราะห์สำหรับการเรียนรู้ไอย่างวิธี colorimetric จึงเป็นวิธีที่รวดเร็วและสะดวกกว่า วิธีโดยตรง ตลอดจนกับการทดสอบของ Saisuburamaniyan et al. (2004) สั่งว่าวิธี colorimetric เป็นวิธีที่ง่ายและรวดเร็วในการวิเคราะห์ค่าแอนไพรอลในต้น การสำเร็จลุล่วงจะควบคุมด้วย cupric acetate pyridine reagent และวัดค่าความยั่งยืน 715 nM การวิเคราะห์ได้ไอย่างวิธีนี้ช่วยให้เราได้รับผลแบบ คิงเลอกซ์กับพบจากไอย่างที่เป็นนิเวนน้ำมัน และน้ำมันเชื้อที่มีค่ากิจกรรมแอนไพรอลสูงสุด 3 อันดับแรก ไปทำการทำงานขั้นตอนต่อไป

Ghanem et al. (2000) รายงานว่า กลุ่มของ Bacillus alcalophilus สามารถผลิตไอย่างและจากการศึกษาพื้นฐานของ AI เริ่มต้นด้วยคำว่าสัมประสิทธิ์และความเป็น nº กลาง ที่จะจนถึง 6°C ความเป็น nº กลาง 10.6 ซึ่งอยู่ในช่วงแบบ

ตอนที่ 4 การตรวจสอบทางพื้นฐานของแอนไพรอลของแบคทีเรีย

ลำดับ DNA เพิ่มปริมาณ 16s rRNA ด้วยเทคนิค PCR (polymerase chain reaction) และหาลำดับของ 16s rRNA นำเชื้อแล้วดับบวกของ 16s rRNA ที่ได้จากแยกที่เรียก SA โชว์ความเป็นเท่านั้นที่จะใช้เป็นของ Gen Bank EMB และ DDBJ โดยใช้โปรแกรมปรับเรียกเก็บที่ http://www.ncbi.nlm.nih.gov/ ซึ่งได้รับ SA 38/2 SA 6/4 SA 6/3 SA 11/4 SA 2/5 และ SA 38/4 มีความคล้ายคลึงกันเชื้อที่อยู่ในสกุล Acinetobacter sp. SA 7/1 มีความคล้ายคลึงกับเชื้อที่อยู่ในสกุล Ralstonia mannitolilytica และ SA 12/1 มีความคล้ายคลึงกับเชื้อที่อยู่ในสกุล Uncultured bacterium ในขณะที่ Pw5/1 Pw5/2 และ Pw35/3 มีความคล้ายคลึงกับเชื้อที่อยู่ในสกุล Uncultured bacterium ซึ่งเป็นเชื้อที่ยังไม่มีการค้นพบเพราะไม่มีความเหมือนกับ Gen Bank Pw27/1
และ Pw35/2 มีความคล้ายคลึงกันเชิงที่อยู่ในสกุล Acinetobacter sp. Pw3/2 และ Pw35/1 มีความคล้ายคลึงกันเชิงที่อยู่ใน Enterobacter sp. Pw10/2 มีความคล้ายคลึงกันเชิงที่อยู่ในสกุล Bacillus cereus และ былารัสติ KS ที่มีค่ากิจกรรมอเนกประสงค์สูงสุด 3 ขั้นตอนที่ได้แก่ เชื้อ KS21 และ KS30 คือเชื้อแบคทีเรีย Bacillus thuringiensis และ KS37 คือเชื้อแบคทีเรีย Lysinibacillus boronitolerans มี % ความเหมือน 100 % เชื้อที่แยกได้อยู่ในกลุ่มของ Bacillus พบว่าตัวคล้องกันงานของ F.L. Toledo, (2005) ที่ศึกษาเชื้อจากต้นไม้ที่สามารถเจริญเติบโตได้ในบริเวณที่มีสารโลหะคาร์บอน และแหล่งจานจังหวะ 16s rDNA ส่วนใหญ่เชื้อ Bacillus เทียบกับ เชื้อที่พบในต้นไม้ของ Bento et al. (2004) กล่าวว่า จุดหนึ่งที่สำคัญของต้นไม้สามารถซักคู่เกิดเป็นตัวกลมได้ แม้จะมีการเคลื่อนไหวพร้อมกัน ซึ่งจะทำให้เกิดการติดต่อกันและสามารถสร้างต้นไม้ที่ไม่มีค่าดีเด่นกันแต่ต่างกัน ที่มีการเคลื่อนไหวพร้อมกัน ซึ่งก็เป็นสกุล Bacillus cereus, bacillus sphaericus, B. fusciformis, Acinetobacter junii, Pseudomonas sp. และ B. pumilus การวิเคราะห์กลุ่มการติดเชื้อของต้นไม้ 16s rDNA ในแบบที่ไม่สนับสนุน ซึ่งทำให้เกิดการติดต่อกัน 70 % กลุ่มที่มีสัญญาณทางชีวเคมีกลุ่มใดก็ตามที่เป็นตัวแกร่งของต้นไม้ที่มีค่าดีเด่นกัน และไม่มีการกระตือรือร้นในการกำเนิดต้นไม้ ตถีบต้นไม้ของต้นไม้ที่มีค่าดีเด่นกัน พบว่าต้นไม้ของต้นไม้ในกลุ่มเดียวกันแต่ต่างกลุ่มเพื่อกันความสวยงามในกลุ่มเดียวกัน

จากงานศึกษาของ Sevapor et al., 2006 พบว่าการจับกลุ่มของรูปร่างทางชีวเคมี ด้วยการใช้เครื่องจักรกลที่เล็กทางชีวเคมีการสร้าง (SDA) แสดงให้เห็นถึงอัตราของกลุ่มที่จำเป็นต้อง ควบคุมความแตกต่างระหว่างตัวอย่าง และสามารถลดลงจาก 11 กลุ่มเป็น 4 กลุ่ม สำหรับ 16s rDNA SDA แสดงให้เห็นถึง 3 กลุ่ม ความคิดเห็นกับการจำแนกซ้ำจาก rDNA (16s rDNA transcripts) ถูกใช้กับในการจำแนกต้นไม้ ประกอบด้วยการแยกต้นไม้ของต้นไม้เชิงจุดเดียวของ Bacillus marisflavi, Microbacterium oxydans และ Pseudomonas oleovorans การวิเคราะห์แบคทีเรียติดเชื้อและในหลีกคิดกัน การใช้ต้นไม้ต้นต้นสุดท้ายที่เป็นต้นไม้ของต้นไม้ สามารถแทนกระตือรือร้นที่ 317 ชนิด มี 3 ชนิดที่แสดงให้เห็นความคล้ายคลึงกันอย่างต่ำเพียง (N96%) ด้วยแบบ 16s rDNA ซึ่งจำนวนโดยการใช้ SDA ทำให้เกิดความแตกต่างเป็นอย่างมาก ระหว่างกลุ่มแบคทีเรีย ซึ่งถูกตรวจสอบได้ในต้นไม้ และการตรวจสอบของกลุ่มของต้นไม้ในการศึกษาต้นไม้ของต้นไม้ของต้นไม้ ที่มีความคล้ายคลึงกันในกลุ่มเดียวกัน ในการศึกษาดังกล่าวเชิงจุดเดียวของต้นไม้จะทำให้การจับกลุ่มต้นไม้เป็นต้นไม้ที่มีประสิทธิภาพมากขึ้น ที่ไม่ผ่านการกัดกัดและหลายที่เป็นต้นไม้จากต้นไม้เชิงจุดเดียว

จากงานศึกษาของ S. Khodijah et al., 2004 พบว่า การใช้ 16s rDNA คืนพบว่าแบคทีเรีย จำนวนทางชีวเคมีติดต่อกันของต้นไม้ใช้ในบริเวณทะเลประเทศญี่ปุ่น ประกอบไปด้วย
แบบที่เรียกภาษาไทยว่า เซิร์ฟทีโอโคส (Streptococcus และ Staphylococcus) และ ปุ๊ปหิรัญ (Streptobacillus). จากการศึกษาล่าสุดกรณีการนำบัคทีเรียในสาขาวิชาการวิทยาศาสตร์การทดลองไวรัสในห้องปฏิบัติการ (ขออนุญาตวิชาการวิทยาศาสตร์การทดลองไวรัสในห้องปฏิบัติการ) ภายใต้เงื่อนไขการตรวจสอบวัคซีนและการวิเคราะห์�เกี่ยวกับราคา 2 วิธี หลักเห็นว่า (1) เวลาเริ่มต้นการหายตัวตายยาที่ได้รับการวิเคราะห์ ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติการทดลองในระดับที่ต้องการ การรักษาตั้ง 2 แบบ และการจัดน้ำมันเชื้อวัคซีนด้วยวิธีการทดลองในระดับที่ต้องการมีผลต่อการรักษาผู้ป่วยและผู้ดูแลผู้ป่วย ที่สำคัญคือแบคทีเรียในร่างกายจะต้องได้รับการรักษาในระดับที่ต้องการอย่างมีนัยสำคัญทางสถิติการทดลองในระดับที่ต้องการ (DO: 1-6 mg/l; Eh:12-300 mV) และเร่งรัดการตอบสนองที่มีความเป็นไปอย่างมีนัยสำคัญทางสถิติ (pH 6.4-8) ด้วย NaCl ความเข้มข้นที่ 3-15% (ECs of 45-200 mS/cm)

จากการใช้เทคนิค 16s rDNA ทำให้ได้ราย DNA ของ 16S rDNA gene ที่มีความแตกต่างในแบคทีเรียแต่ละชนิด สามารถนำมาใช้เพื่อตรวจสอบว่าเป็นแบคทีเรียชนิดใดหรือชนิดใดในฐานข้อมูล (http://www.ncbi.nlm.nih.gov/ entrez หรือ https://rdp.cme.msu.edu/index.jsp) เพื่อนำไปใช้ประโยชน์ในการทำวิจัยต่อไป (ศรีสุรา, 2552)

ตอนที่ 5 การศึกษาการที่เหมาะสมต่อการเจริญเติบโตของแบคทีเรียที่ดัดแปลงได้

นำเชื้อ KS21, KS30, KS37 ที่มีความสามารถในการย่อยสลายน้ำมันเครืองที่ใช้แล้วสูงสุด 3 ร้านค้าแยก และอยู่ในกลุ่มของ Bacillus ซึ่งคัดแยกจากแหล่งเดินที่ปรับเปลี่ยนน้ำมัน และ Pw32, Pw27/1 อยู่ในกลุ่มของ Acinetobacter sp. (ปีที่ 3, 2550) ที่มีความสามารถในการย่อยสลายน้ำมันเครืองที่ใช้แล้วสูงสุด 3 ร้านค้าแยก และอยู่ในกลุ่ม Acinetobacter ที่ดัดแปลงได้ (ปีที่ 3, 2550) ที่มีความสามารถในการย่อยสลายน้ำมันเครืองที่ใช้แล้วสูงสุด 2 ร้านค้านอก ซึ่งคัดแยกจากแหล่งสภาวะแวดล้อมที่ต้องการ และ SA 11/4, SA 6/3 อยู่ในกลุ่ม Acinetobacter sp. (ปีที่ 3, 2550) ที่มีความสามารถในการย่อยสลายน้ำมันเครืองที่ใช้แล้วสูงสุด 2 ร้านค้าแยก ซึ่งคัดแยกจากแหล่งสภาวะแวดล้อมที่ต้องการ และ 100% NaCl เข้าควบคุมการให้อากาศ และ% NaCl เพื่อเพิ่มประสิทธิภาพการย่อยสลายน้ำมันเครืองที่ใช้แล้วโดยแบคทีเรีย (กันติ, 2548)

5.1 ค่าความเป็นกรด-ค่า ที่เหมาะสมต่อการเจริญเติบโตของแบคทีเรีย

ใช้กล่องเชื้อและไกลเนชั่นเพื่อเตรียมตัวเชื้ออยู่ในขนาดเล็กเชื้อปริมาณ 100 ml ที่อยู่ในขวดก๊อกเชื้อ ขนาดขวด 250 ml นำไปใส่เข้าที่ความเร็ว 150 rpm ตุ่นหมุน 37 °C เป็นเวลา 24 hrs วัดปริมาณเชื้อจากค่า Optical Density ที่ความยาวคลื่น 600 nm (OD600) โดยให้ค่าความเข้มข้นที่ OD600 มีค่าเท่ากับ 0.5 แล้วปรับ pH ในอาหาร NB เป็น 8.5, 9.0, 9.5 และซอโดซ์อย่างน้อย 2 หัว นำไปใส่ที่ความเร็วสูง 150
rpm ชุดหญ้า 37 °C นาน 48 hrs หลังจากนั้นนำไปวัดค่าความชื้นและค่าความดับโดยใช้เครื่อง spectrophotometer ที่ความยาวคลื่น 600 nm ขณะเดียวกันกันนำสิ่งที่กัดก่า OD = 0.5 ไปแยกสิ่ง (spread plate) บนอานาจเชื้อ NA เพื่อสังเกตถังทางการเกิดของเชื้อขึ้นได้ผลค่าตาราง 8

ตารางที่ 8 การเจริญเติบโตของเชื้อในสารภาพค่าความเป็นกรดเป็นต่างแตกต่างกัน

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>โลDIV след</th>
<th>ค่า OD600</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 8.5</td>
<td>pH 9.0</td>
</tr>
<tr>
<td>1</td>
<td>KS21</td>
<td>1.139</td>
</tr>
<tr>
<td>2</td>
<td>KS30</td>
<td>1.126</td>
</tr>
<tr>
<td>3</td>
<td>KS37</td>
<td>1.391</td>
</tr>
<tr>
<td>4</td>
<td>PW3/2</td>
<td>0.988</td>
</tr>
<tr>
<td>5</td>
<td>PW27/1</td>
<td>1.099</td>
</tr>
<tr>
<td>6</td>
<td>SA 11/4</td>
<td>1.214</td>
</tr>
<tr>
<td>7</td>
<td>SA 6/3</td>
<td>1.498</td>
</tr>
</tbody>
</table>

จากตารางที่ 8 เชื่อม KS21, KS30, KS37 ซึ่งอยู่ในกลุ่ม Bacillus และ SA 11/4, SA 6/3 ซึ่งอยู่ในกลุ่ม Acinetobacter sp. สามารถเจริญเติบโตได้ที่ความเป็นกรด-ด่าง 8.5 และ PW3/2, PW27/1 ซึ่งอยู่ในกลุ่ม Acinetobacter sp. สามารถเจริญเติบโตได้ที่ความเป็นกรด-ด่าง 9.5 ซึ่งใกล้เคียงกับ Ghanem et al. (2000) รายงานมากกว่ากลุ่มของ Bacillus alcalophilus สามารถผลิตไบโอซ์และผลิตภัณฑ์ที่จะเป็นกรด-ด่างและคุณสมบัติต่อต้านความกรดแย่ในปิโตรเลียม โดยอนุกรมที่สูงสุด คือ 6 °C ความเป็นกรด-ด่าง 10.5 ซึ่งอยู่ในช่วงสูงสุด และลดลงอย่างมากกับ Bacteriella, (2548) ที่ทดลองหลายชุดหินที่มีความสามารถในการต้านยาที่นักมีได้ในสารภาพที่พบจะเป็นสิ่งสำคัญในการเจริญเติบโตของเชื้อได้ที่ความเป็นกรด-ด่าง 9.0

แบคทีเรียเจริญเป็นชิงหลักรักษาถึงอยู่ที่พบจมมามากที่สุด เมื่อเรียบร้อยเก็บกู้สิ่งเหล่นั้นในหมอกกระดาษเศษคัดค้านได้โดยเรียบร้อยก็จะเริ่มส่งผ่านเนื้อมันที่ต้องกัน แบคทีเรียที่พบในคินโดยทั่วไป มีรูปจำ 3 แบบคือ แบบกลม แบบแบน และแบบกลมย่อย แบคทีเรียเจริญเติบโตและเพิ่มจำนวนอย่างรวดเร็วในคินที่มีชีวิตอยู่มีความสัมพันธ์เมื่อค่าความเป็นกรด-ด่างอยู่ระหว่าง 5.5 – 9.0 กิจกรรมของแบคทีเรียในคินมากขึ้น แต่ยังมีความสัมพันธ์กับระบบคืนยง คือ การเป็นผู้อยู่อาศัยในหินสิ่งเหล่านี้ที่มีความกลมแย่และดับได้ที่ความเป็นกรด-ด่าง 9.0 รายละเอียดในปริมาณการเจริญเติบโตในคิน ทำให้เกิดการรับรู้ไปใช้ประโยชน์ได้ และทำให้เกิดกระบวนการเตรียม
ในโครงงานนี้สนใจเป็นต้น แบคทีเรียที่พบและสามารถนำมาใช้ประโยชน์ เช่น Pseudomonas sp., Rhizobium sp., Bacillus sp., Clostridium sp. เป็นต้น (สมสกุล, 2528)

การเจริญเติบโตของจุลินทรีย์แตกต่างกันไปในไขจุกมัน pH ของดิน พบว่า actinomycetes sp. มี pH เฉลี่ยประมาณ 7.0 - 7.5 ทำให้เจริญได้ในครบวงจรฯ จะชะพลังการเจริญเติบโตโดยตรดยา ส่วน Azotobacter chroococcum เจริญเติบโตได้ในดินที่เป็นกลางหรือออกซิเจนชั่วคราวเป็นแบบแดงไม่เจริญในดินที่ pH ต่ำกว่า 4.0 (นิยมวิทธิ, 2532)

pH ที่เหมาะสมในการเจริญเติบโตของจุลินทรีย์แตกต่างกันไป ส่วนมากเจริญได้ที่ pH 6-8 ยิ่งต่ำpwd และส่วนใหญ่เจริญได้ในสภาพเป็นกรด (acidophile) แต่แบคทีเรียส่วนใหญ่เจริญได้ในสภาพเป็นเบส (alkaliphile) และจากการวิจัยของ Hao et al., 2004 พบว่า thermophile bacteria สายพันธ์ TH-2 ที่มีชีวิตอยู่ในบริเวณ Shengli ที่มีน้ำมัน สามารถเจริญเติบโตในอุณหภูมิสูงถึง 85 °C และเจริญเติบโตได้ในสภาพที่เป็นด่าง

เช่นเดียวกัน การทิ้งตามนอนก้าว (2544); Rahman et al., (2002); ปิยโยธิน (2550) พบว่า ในการทดสอบการเจริญเติบโตของจุลินทรีย์ของบริโภคสีโรสี พบว่าสามารถเจริญเติบโตได้ในสภาพที่เป็นด่าง และ จากการศึกษาของ S. Khodijah et al., 2004 พบว่า แบคทีเรียส่วนมากที่ขยายน้ำมันโดยไม่มีการเจริญเติบโตในบริเวณปลูกเป็นการเจริญเติบโตในบริเวณปลูกที่มีภาพพจน์ริบหรือความเป็นกลางในสภาวะเป็นด่าง (pH 6.4-8)

ดังนั้น จะเห็นได้ว่าในสภาพที่เป็นด่าง เชื้อที่คัดแยกได้จากแหล่งสินธุระสารและแหล่งดินที่ป่าเป็นน้ำมันโดยเร็วที่สุดได้ Bacillus และ Acinetobacter sp. สามารถเจริญเติบโตในสภาพที่เป็นด่างอย่างรวดเร็วที่คัดแยกได้จากแหล่งสินธุระสาร

5.2 อุณหภูมิที่เหมาะสมของการเจริญเติบโตของเชื้อ

ใช้ห้องชักเชื้อและเกลือรองผนังแล้วเชื้อชูในอาหารเลี้ยงเชื้อปริมาตร 100 ml ที่อยู่ในขวดปะ บรรจุขนาด 250 ml นำไปแช่ที่ความเร็ว 150 rpm อุณหภูมิ 37 °C เป็นเวลา 24 hrs วัดปริมาณเชื้อ OD_{600} เบื้องต้นเท่ากับ 0.5 เพื่อตรวจสอบช่วงนี้ 2 ขั้นตอนการเจริญเติบโตเชื้อ KS21, KS30, KS37, SA 11/4, SA 6/3 มี pH 8.5 และ Pw27/1, Pw3/2 มี pH 9.5 นำไปแช่ที่ความเร็ว 150 rpm อุณหภูมิ 37, 40 และ 45°C นาน 48 hrs หลังจากนั้นนำไปวิเคราะห์การเจริญเติบโตของเชื้อ โดยใช้เครื่อง spectrophotometer ที่ความยาวคลื่น 600 nm ขณะเดียวกันหน้างานที่วัดค่า OD = 0.5 ไปกระจาย (spread plate)บนเซรามิคแล้วนำเข้าเก็บในเครื่องได้ผลลัพธ์ที่ 9
ตารางที่ 9 การเจริญเติบโตของเชื้อในสาระที่จุลยภูมิต่ำต่างกัน

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>โลโกห์ด</th>
<th>ค่า (OD_{\infty})</th>
<th>ค่า (OD_{\infty})</th>
<th>ค่า (OD_{\infty})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KS21</td>
<td>1.139</td>
<td>1.126</td>
<td>0.692</td>
</tr>
<tr>
<td>2</td>
<td>KS30</td>
<td>1.126</td>
<td>1.138</td>
<td>0.576</td>
</tr>
<tr>
<td>3</td>
<td>KS37</td>
<td>1.391</td>
<td>0.556</td>
<td>0.558</td>
</tr>
<tr>
<td>4</td>
<td>Pw3/2</td>
<td>1.036</td>
<td>0.920</td>
<td>0.906</td>
</tr>
<tr>
<td>5</td>
<td>Pw27/1</td>
<td>1.146</td>
<td>1.135</td>
<td>0.471</td>
</tr>
<tr>
<td>6</td>
<td>SA 11/4</td>
<td>1.170</td>
<td>0.927</td>
<td>0.616</td>
</tr>
<tr>
<td>7</td>
<td>SA 6/3</td>
<td>1.723</td>
<td>1.069</td>
<td>1.066</td>
</tr>
</tbody>
</table>

จากตารางที่ 9 เส้นส่วนใหญ่สามารถเจริญเติบโตได้ที่จุลยภูมิ 37 °C และเร็่ว KS30, KS21, Pw27/1 สามารถเจริญเติบโตได้ที่จุลยภูมิ 37 °C ถึง 40 °C ซึ่งการย่อยสลายของสารประกอบโยกราบได้สำหรับจุลยภูมิ 37 °C ได้แต่กลุ่มจุลยภูมิที่ไม่ได้จุลยภูมิ (Psychrophile) จุลยภูมิปานกลาง (Mesophile) และในจุลยภูมิสูง (Thermophile) พบว่าการย่อยสลายสารประกอบโยกราบได้ในจุลยภูมิที่สูงกว่า 0 °C และดูจุลยภูมิสูงประมาณ 70 °C สำหรับบางชนิดของน้ำมันที่มีผลต่อการย่อยสลายน้ำมันที่เจริญเติบโตได้ในทุกจุลยภูมิต่ำต่างกัน

กะเวลาที่ ข้อ 1.4 จะเกิดการเจริญเติบโตที่สูงกว่า 0 °C และดูจุลยภูมิสูงประมาณ 70 °C สำหรับบางชนิดของน้ำมันที่มีผลต่อการย่อยสลายน้ำมันที่เจริญเติบโตได้ในทุกจุลยภูมิต่ำต่างกัน

จากนี้ทำให้ต้องตรวจสอบการตัดสินใจให้เหมาะสมกับข้อنصที่สูงกว่า 20 °C น้ำมันที่มีความเสถียรภาพ เมื่อยื่นข้ามขั้นที่ฐานของจุลยภูมิที่มีความเสถียรภาพสูง และก่อนที่จะมีการเจริญเติบโต kamfa ซึ่งส่งผลให้ไม่สามารถคัดกรองจุลยภูมิได้

จากนี้จึงจะไปยังการเจริญเติบโตของจุลยภูมิ ทำให้ต้องตรวจสอบการเจริญเติบโต kamfa น้ำมันต่างกันไป (Antai, 2003) โดยเด็กกว่า Susan, 2003 เท่ากับจุลยภูมิสูงและหินที่ดูจุลยภูมิในสาระจุลยภูมิต่ำต่างกันไป เช่น Psychrophilic microbes, Mesophilic microbes, Thermophilic microbes และ extreme thermophiles microbes จุลยภูมิที่คาดว่าจะเกิดการเจริญเติบโต สามารถเจริญเติบโตได้ที่จุลยภูมิ 20-30 °C และจุลยภูมิสูงที่สุดที่จุลยภูมิสูงตามการเจริญเติบโต คือ จุลยภูมิน้อยกว่า 37 °C ซึ่งที่จุลยภูมิสูงสุดที่จุลยภูมิสูงตามการเจริญเติบโต คือ จุลยภูมิคือการเจริญเติบโต kamfa น้ำมันที่มีเป็นเปลือกเปลี่ยน เท่านี้กับงานวิจัยของ (Hao R. et al., 2004; กันยี, 2548) และพบว่า Bacillus sp. สามารถย่อยสลายน้ำมันได้ที่จุลยภูมิ 20 °C – 44 °C (Antai S.P., 1990) เท่านี้กับ KS21 และKS30 ซึ่งย่อยสลายน้ำมันได้ที่จุลยภูมิ 37 °C ซึ่งจุลยภูมิสูงสุดที่จุลยภูมิสูงตามการเจริญเติบโต kamfa น้ำมันมีเป็นเปลือกเปลี่ยนได้ที่จุลยภูมิสูงสุด (Gilber and Higgins., 1979)
จากการศึกษาของ Yoshiki et al., 2007 พบว่า แรงดึงดี DW2-1 เจริญเติบโตอย่างรวดเร็ว ในน้ำเสียระดับเบื้องต้นที่สั่งบรรจุทางสุสาน (>1×10¹⁰ [CFU/ml]) ระหว่างอุณหภูมิที่ 20°C และ 38°C และอัตราการขยายตัวของเข็มจักรกลอยู่ที่ 90% หลังจากการทดลองเพาะเชื้อผันทรีย์ 48 hrs โดยเปลี่ยนและรวบรวมแรงดึงดีซับบริเวณภายนอก (BSF) แรงดึงดี DW2-1 หลังจากการทดลองเพาะเชื้อผันทรีย์ 48 hrs อยู่ที่ 1720 U/ml และ 480 U/ml ตามลำดับ อาการแท้ของเชื้อผันทรีย์ต่อไปเพื่อการนำกลับเข้าเดิมที่เป็นป่าไม้ DW2-1 จะเป็นตัวหลักที่ได้เกิดการย่อยสลายถึง 90% ของน้ำมันสกัด ในภาวะเสียของผันทรีย์เป็นระยะสั้น 7 วัน โดยทั่วไปแล้วจะชุดได้ วัฒนาการผันทรีย์ที่สามารถย่อยละลายสารประกอบนิโอครับได้ สามารถใช้เป็นเครื่องมือในการเบียดออกสารสกัดสัมผัสชีวิกับต่างๆ มีการเป็นเป็นจากสารประกอบนิโอครับหรือไม่ ซึ่งพบว่าในบริเวณที่ไม่มีการเบียดออกสารประกอบนิโอครับจะพบดุจดีคีกับตุ้งต่ำ 1.0% จากผันทรีย์ที่พบน้ำมันแต่กลับมีการเบียดออกสารประกอบนิโอครับจะพบดุจดีคีกับตุ้งต่ำเท่ากันที่เจริญเติบโตได้รวดเร็วเป็น 99.67% ของผันทรีย์ที่พบน้ำมันแต่กลับ

ดังนั้นจะเห็นได้ว่าเชื้อที่คัดแยกได้จากแหล่งน้ำเสียเขตติดและแหล่งน้ำที่เป็นป่าไม้บั้นท่ รักษาธง Bacillus และ Acinetobacter sp. ส่งใหญ่สามารถเจริญเติบโตได้ที่อุณหภูมิ 37°C และสามารถเจริญเติบโตได้ที่อุณหภูมิระหว่าง 37 ถึง 40°C เพราะเป็นช่วงที่เย็นที่ถือว่าสามารถเจริญเติบโตได้ที่สุด

5.3 การให้อาหาร (ความเข้มข้นในอาหารเช้า) ที่เหมาะสมต่อการเจริญเติบโตของเชื้อ

ใช้ลงยาเข็มข้นและโดยที่จะต้องเชื้อทางอาหารเช้าเปรียบผันทรีย์ 100 ml ที่อยู่ในเครื่องระบบขั้นต่ำ 250 ml แล้วทำให้เข้มข้นความเข้ม 150 rpm หรูณภูมิที่ 37°C เป็นเวลา 24 hrs วัตถุประสงค์เชื้อจากค่า OD₅₆₀ เมื่อมีค่าเท่ากับ 0.5 แต่ของอย่างน้อย 2 ขั้น แล้วเชื้อ KS21, KS30, KS37, SA 11/4, SA 63 มี pH 8.5 และ PW27/1, PW2/3 มี pH 9.5 น้ำกินมีอุณหภูมิที่ 37°C ทดสอบการเจริญเติบโตที่ความเข้มข้น 100,150 และ 180 rpm นาน 48 hrs หลังจากนั้นนำไปใช้ในอาหารเจริญเติบโตโดยใช้เครื่อง spectrophotometer ที่ความยาวคลื่น 600 นาโนเมตร ตรวจสอบภายในที่น้ำเชื้อที่ได้ค่า OD = 0.5 ไปเกลียว (spread plate) บนอาหารเช้า NA เพื่อสังเกตการณ์การเปลี่ยนของเชื้อเชิง ได้ผลการทดลองดังตารางที่ 10
ตารางที่ 10 การเรียบคัดโดยตรงในสาระที่ความเร็วรอบในการเผาแตกต่างกัน

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>ไลเซนต์</th>
<th>ค่า OD_{600}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100 rpm</td>
</tr>
<tr>
<td>1</td>
<td>KS21</td>
<td>1.110</td>
</tr>
<tr>
<td>2</td>
<td>KS30</td>
<td>0.931</td>
</tr>
<tr>
<td>3</td>
<td>KS37</td>
<td>0.558</td>
</tr>
<tr>
<td>4</td>
<td>PW3/2</td>
<td>0.772</td>
</tr>
<tr>
<td>5</td>
<td>PW27/1</td>
<td>1.063</td>
</tr>
<tr>
<td>6</td>
<td>SA 11/4</td>
<td>0.860</td>
</tr>
<tr>
<td>7</td>
<td>SA 6/3</td>
<td>0.336</td>
</tr>
</tbody>
</table>

จากตารางที่ 10 เรียบร้อยของการให้อากาศ 150 rpm ยกเว้น KS21 สามารถเรียบร้อยได้ที่ความเร็วรอบของการให้อากาศ 200 rpm ซึ่งเรียบร้อยได้ดีที่ก้านพันธุ์ที่มีความสอดคล้องในการยอมสลายน้ำมันได้ นักวิทยาศาสตร์เรื่องการลดสิ่งมลล์จากการใช้ก๊าซ ได้ตีของเรื่องได้ ที่ความเร็วรอบของการให้อากาศ 150 rpm และเช่นเดียวกับ Grishchenkov (2000) ที่ทำการศึกษา Seudomonas sp. BS2201, BS2203 และ Bacillus sp. BS2202 ซึ่งเป็น Nitratereducing bacterial ที่คัดแยกจากกีดีที่มีน้ำมันเป็นสิ่งอยู่เป็นเรื่อง สามารถขยุดถ่านสาร ไอกิจการขยวดีได้รับการศึกษาในการที่มีอากาศขยุดและในสาระที่ไม่มีอากาศขยุด ซึ่งสามารถขยุด สารแข็งถ่านสาร alkane (C10–C35) ได้ 90-95% ในเวลา 10 วัน สำหรับการขยุดไม่มีอากาศขยุด สามารถขยุดสาร alkane ได้ 20-25% นอกจากนี้ยังสามารถขยุดสาร polycyclic aromatic hydrocarbons ได้ 15-18%

จุดที่คือในการคัดแยกน้ำมัน 90-95% เรียบร้อยได้ในสาระที่มีอากาศขยุด โดยไม่ขยุดในสถานการณ์นี้และผลการขยุดถ่านสารต่างๆ ทำให้การขยุดถ่านสารและการเปลี่ยนแปลงของ สารแข็งถ่านสารเป็นอย่างรวดเร็ว นักวิทยาศาสตร์ที่มีการตกลงถ่านสารได้ ได้ผลการเรียนรู้ถ่านสารในค้น นักวิทยาศาสตร์ที่มีผลต่อการขยุดถ่านสารจะเกิดได้ อย่างรวดเร็ว การเรียนรู้ถ่านสารในค้นนักวิทยาศาสตร์อาจมีผลต่อการขยุดถ่านสารได้ แม้เกี่ยวข้องกันการเรียนรู้ในงานวิจัยทางการศึกษาถ่านสารได้ เรายังคงเป็นนักวิทยาศาสตร์ที่มี ทำงานอยู่ในสถานภาพที่สำคัญ การขยุดถ่านสารได้ในแหล่งน้ำต่างๆ โดยจุดที่คือได้เรียบร้อยได้ใน สถานภาพที่สำคัญที่มีอากาศขยุด ซึ่งอากาศขยุดจะเกิดขึ้นโดยตรงกับปฏิกิริยาในการขยุดถ่านสารน้ำมัน
โดยเฉพาะในปฏิรูปชีววิทยาของจุลินทรีย์ ที่ต้องอาศัยเอนไซมองค์จุลินทรีย์ และสิ่งแวดล้อมที่เป็นแหล่งน้ำนี้ ดอกไม้จากอากาศสามารถที่จะละลายได้โดยตรง ทำให้มีดอกไม้เพิ่มขึ้นต่อจุลินทรีย์สำหรับใช้ในการย่อยสลายนั้นยัง สภาพแวดล้อมที่มีדבר ๆ อย่างเช่น ปริมาณดอกไม้ในคลื่นมืออักขินีตุกจุลินทรีย์ที่สามารถใช้ดอกไม้จากการย่อยสลายนั้นยังมีอยู่ในจุลินทรีย์ (ปัญญูสิริ, 2532)

ดังนั้น จะเห็นได้ว่าในวงจรอุตุนิยมวิทยาเกี่ยวกับ Bacillus มีความสามารถในการย่อยสลาย alkane ได้ดีกว่าในวงจรอุตุนิยมที่ไม่มี ดอกไม้ ซึ่งจุลินทรีย์เหล่านี้คัดกรองดอกไม้ในวงจรอุตุนิยมที่แตกต่างกัน เช่น aerobic type เจริญได้เฉพาะในวงจรอุตุนิยมที่มีดอกไม้ ไม่มีดอกไม้ microaerophile type เจริญได้ในวงจรอุตุนิยมที่มีดอกไม้เล็กน้อย ถ้ามีดอกไม้มากจะเจริญดีๆ anaerobic type เจริญได้ในวงจรอุตุนิยมที่ไม่มีดอกไม้ และ Facultative anaerobic type เจริญได้ทั้งในวงจรอุตุนิยมและไม่มีวงจรอุตุนิยม เนื่องจากสามารถเปลี่ยนแปลงระบบความอิมมิชชูของเซลล์ได้ Faiznazleen (2004) ได้คัดเลือก Bacillus และ Pseudomonas spp. จากเดือนที่มีสารประกอบไฮโดรคาร์บอนเป็นเนื้อเยื่อผ่านวงจออุตุนิยมที่ความเร็วขยัน 150 rpm

อย่างไรก็ตามพบว่าความเร็วลมที่เหมาะสมในการทำเลี้ยงเชื้อและชนิดแตกต่างกันชิ้นใหญ่กับชนิดของเชื้อ (กันติกา, 2548; Mukherji S. et. al., 2003)

5.4 % NaCl ที่เหมาะสมต่ำการเจริญเติบโตของเชื้อ

ใช้วิธีการเลี้ยงเชื้อโดยใส่น้ำเชื้อและสั่นเชื้อในอาหารเลี้ยงเชื้อ ปริมาตร 100 ml ที่อยู่ในกรุป บรรจุน้ำเชื้อ 250 ml แล้วนำไปแปลงที่ความเร็ว 150 rpm ที่อุณหภูมิ 37 °C เป็นเวลา 24 hrs วัดปริมาณ เชื้อจากค่า OD660 เปรียบเทียบกับ 0.5 แต่ละระดับอย่างน้อย 2 ชั่วโมง เชื้อ KS21, KS30, KS37, SA 11/4, SA 6/3 ที่ pH 8.5 และFW27/1, FW3/2 ที่ pH 9.5 เล่นที่อุณหภูมิ 37 °C และระดับความเร็วลม 150 rpm ยกเว้น KS21 นำไปอย่างที่ความเร็วลม 200 rpm และเติม NaCl 0.5, 1.0, 2.0 % บนเนื้อเลือก 48 hrs โดยแค่อาการเจริญเติบโตของเชื้อโดยใช้เครื่อง spectrophotometer ที่ความยาวคลื่น 600 nm ขณะเดียวกันน้ำเชื้อที่วัดค่า OD=0.5 ใส่ในเกลือ (spread plate) บนอาหารเชื้อ NA เพื่อสังเกตกรุปการปิ่นเปื่อยของเชื้อชิ้น ได้ผลการทดลองดังตารางที่ 11
ตารางที่ 11 การเจริญเติบโตของเชื้อในสาระที่ % NaCl แตกต่างกัน

<table>
<thead>
<tr>
<th>สัตชื่อ</th>
<th>ไลโซเลต</th>
<th>ค่า O₆₀₀ 0.5% NaCl</th>
<th>ค่า O₆₀₀ 1.0% NaCl</th>
<th>ค่า O₆₀₀ 2.0% NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KS21</td>
<td>1.094</td>
<td>1.133</td>
<td>1.160</td>
</tr>
<tr>
<td>2</td>
<td>KS30</td>
<td>1.137</td>
<td>1.125</td>
<td>1.055</td>
</tr>
<tr>
<td>3</td>
<td>KS37</td>
<td>0.659</td>
<td>0.697</td>
<td>0.614</td>
</tr>
<tr>
<td>4</td>
<td>Pw3/2</td>
<td>0.745</td>
<td>0.785</td>
<td>0.825</td>
</tr>
<tr>
<td>5</td>
<td>Pw27/1</td>
<td>1.199</td>
<td>1.082</td>
<td>1.019</td>
</tr>
<tr>
<td>6</td>
<td>SA 11/4</td>
<td>1.235</td>
<td>0.898</td>
<td>0.954</td>
</tr>
<tr>
<td>7</td>
<td>SA 6/3</td>
<td>0.885</td>
<td>0.894</td>
<td>0.981</td>
</tr>
</tbody>
</table>

จากการศึกษาของวินิจฉัยโดยพระเจ้า ในสาระที่มีความเค็มสูง เนื้อเยื่อสุราประกอบ
ไม่ได้รับการพร้อมไปในตัวอย่างจากน้ำทะเลอบ Great salt and Great salt lake ที่เมืองรูบ Upshur ประเทศสหรัฐอเมริกา ที่ระดับความเค็มต่างๆ (ตั้งแต่ 3.3 - 28.4 %) พบว่ามีการเจริญเติบโตของ
สารประกอบไม่ได้รับการพร้อมลงไป มกราคม ที่ระดับความเค็มต่างๆ โดยที่ตั้งอยู่ในทะเลอบไม่
ได้รับการปรับปรุงของคาร์บอนhydrates และไม่ได้รับการเจริญเติบโตต่างๆ และยังพบว่าในสาระที่มีจุลินทรีย์ปรับปรุงสูงจะสามารถใช้ในการเจริญเติบโตได้เพียงบางส่วน โดยความเค็มของน้ำทะเลคือไม่
เกิน 20 % (Ward and Brock, 1978)

จากการศึกษาของ Hitoishi et al., 2008 พบว่า ความสามารถของสุราตุกติกทาในมีการอย
สลายน้ำมัน Turbine (TuO) ซึ่งประกอบด้วยส่วนผสมหลักคือ cycloalkanes และ isoalkanes ซึ่งได
รับมาจากตัวอย่างที่เก็บมาจากแหล่งน้ำที่บ้านที่ปลูกและปรับผุติชื้น เนื่องต่อกุ้งของซูซินฟีร์ซี่ที่มีชื่อ Atsuta A. ถูกนำมาดัดแปลงกล่องเพื่อจัดที่ 0.5% (w/v) TuO จะเกิดการป้องกัน 90%

S. Khodijah et al., 2004 พบว่า แพ็ตชีเล็กๆน้อยๆที่öyleกลายไปก็สามารถยึดติดอยู่ในบริเวณพื้นผิวประเทศญี่ปุ่น กระบวนการบัดกรีดผิวจะเกิดขึ้น ภายในเชื้อของแบคทีเรีย (DO: 1-6 mg/l; Eh: 12-300 mV) และเข็มทิ่มของความเป็นกลาง

อย่างไรก็ตามพบว่า % NaCl ที่เหมาะสมในการเพาะเลี้ยงเชื้อและชนิดแต่งต่างกันเรื้อรังกับซอฟหร์รีสก์ (Khan, 2048; Mukherji S. et al., 2003)

สรุปผลการทดลอง

จากผลการเก็บตัวอย่าง พบตัวอย่างเชื้อซูซินฟีร์ซี่ที่มีความสามารถจากตัวอย่างเดิมและจำานวน 39 โคลนโคลน เป็นซูซินฟีร์ซี่ที่แยกจากตัวอย่างเดิม 39 โคลนและจำานวน 39 โคลน (SA1-SA39) จากห้องยังจำานวน 40 โคลน (PW1-PW40) และจำานวนแบคทีเรียจากตัวอย่างเดิมที่ในเป็นน้ำมันเครื่องที่ใช้แล้ว สามารถแยกเอามาได้ 45 โคลน (KS1 - KS45) โดยวิธีการแยกดีออร์กัสจากคำว่า

Dilution techniques (McCourt, 1988) จากนั้น นำเชื้อแบคทีเรียที่แยกบริสุทธิ์ จนได้โคเตตต์ได้ต่างๆ มากพอทราบข้อมูลแบบแยกแยกดีออร์กัส Gram’s staining (McCourt, 1988) พบว่าเชื้อแบคทีเรีย SA1-SA39 ส่วนใหญ่เป็นแบคทีเรียแกรมลบ 35 ชนิดแบคทีเรียแกรมลบ 4 ชนิด มีรูปร่างพอดกัน 20 ชนิด

และรูปร่างกลม 19 ชนิด และพบว่า Pw1 ติดตั้งของ safranin มีรูปร่างพอดกัน 4 ชนิด ติดตั้งของ crystal violet มีรูปร่างพอดกัน 27 ชนิด ติดตั้งของ safranin มีรูปร่างกลม ในขณะที่ KS1 - KS45 เป็นแบคทีเรียแกรมปีสิ่ง (crystal violet) รูปร่างพอดกัน 4 ชนิด และแบคทีเรียแกรมปีสิ่ง (safranin) รูปร่างกลม 4 ชนิด และรูปร่างพอดกัน 37 ชนิด ทั้งนี้พบว่า

เป็นแบคทีเรียแกรมปีสิ่ง (safranin) ซึ่งสอดคล้องกับงานวิจัยของ Huy et al. (2007) ที่มีการถักษา

สัญญาณของแบคทีเรียที่สามารถยืนหยัดในสภาพขัดขวาง ผ่านผ่าน DW2-1 ที่ทำจากแยกการพิษตามกลุ่ม บริเวณพื้นที่สะเดาะบาทจากคีเอ็นที่พบว่า สามารถสืบทอด 37 ชนิด และยังไม่พบแต่เป็นชนิดที่สุด

คุณภาพ (2547) จุดประสงค์ของการสืบทอดเพื่อให้ชัดเจนของแบคทีเรียติศิลป์ทำให้เห็นได้ง่ายใน

การสืบทอดเชิง (shape) ขนาด (size) การเรียงตัวของเซลล์ (cell arrangement) และโครงสร้างต่างๆ

ของเซลล์
จุดเริ่มต้นของผลคัดแยกได้ น้ำมันทดสอบความสามารถในการย่อยน้ำมันได้โดยวิธี Partition gravimetric method และวิเคราะห์ความสามารถในการย่อยของผลคัดแยกงินกั้นในกลุ่ม โทไคร์เซล บันได้ระบบการล้างเชิงเกี่ยวกับการทดสอบผลคัดแยกได้ของเบียร์แอปเปิ้ล ในเบื้องต้นพบว่าผลคัดแยกได้ที่มีค่ากักในการย่อยของผลคัดแยกจำนวน 7 ไอโซเตล

การศึกษาการที่เหมาะสมสำหรับการเจริญเติบโตของ SA11/4, SA6/3 จากแหล่งดินธรรมชาติ และ Pw3/2, Pw27/1 จากแหล่งน้ำธรรมชาติ มีค่าดังนี้ ความเป็นกรด-ด่าง (pH) 8.5 - 9.5, อุณหภูมิ 37 - 40°C, ความเร็วของสารได่อากาศ 150 rpm, และ% NaCl 0.5 ถึง 2.0% ตามลำดับ พบว่าเชื้อที่เหมาะสม Acinetobacter sp.

จากการเปลี่ยนแปลง % การย่อยน้ำมัน จะเห็นได้ว่าเบียร์ที่คัดแยกได้จากแหล่งดินที่ป่าเป็นน้ำมัน % การย่อยน้ำมันมากกว่าเบียร์ที่คัดแยกจากแหล่งน้ำและแหล่งดินธรรมชาติ ในตารางแสดงการย่อยน้ำมันโดยวิธีการทดสอบกรด-ด่างมาได้ผล ด้วยวิธี Colorimetric เบียร์ที่คัดแยกจากแหล่งน้ำและแหล่งดินธรรมชาติมีค่ามากกว่าเบียร์ที่คัดแยกจากแหล่งดินที่ป่าเป็นน้ำมัน ซึ่งแสดงให้เห็นถึงประสิทธิภาพเริ่มต้นของการย่อยของผลคัดแยกเบียร์ที่ใช้แล้วโดยเบียร์ที่เรียกจากแหล่งดินที่ป่าเป็นน้ำมันและประสิทธิภาพของเบียร์ที่เรียกจากแหล่งธรรมชาติในการย่อยของผลคัดแยกเบียร์ที่ใช้แล้ว

ตาราง 12 สรุปคุณลักษณะของเบียร์ที่เรียกที่ป่าจัดต่างๆ

<table>
<thead>
<tr>
<th>ไอโซเตล</th>
<th>สถานะที่เหมาะสมสำหรับการเจริญเติบโตของเบียร์แอปเปิ้ล</th>
<th>% การย่อยน้ำมัน</th>
<th>% การย่อยน้ำมัน</th>
<th>Colorimetric method (U/ml.)</th>
<th>Colorimetric method (U/ml.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ค่ากรด-ด่าง</td>
<td>อุณหภูมิ (°C)</td>
<td>ความเร็วครบ</td>
<td>NaCl</td>
<td>เบียร์</td>
</tr>
<tr>
<td>KS21</td>
<td>Bacillus thuringiensis</td>
<td>8.5</td>
<td>37 - 40</td>
<td>200</td>
<td>2.0 %</td>
</tr>
<tr>
<td>KS30</td>
<td>Bacillus</td>
<td>8.5</td>
<td>37 - 40</td>
<td>150</td>
<td>0.5 %</td>
</tr>
<tr>
<td>ไอโอเลท</td>
<td>ประมาณเวลาผลิตภัยน้ำมันแบบที่เรียก</td>
<td>% น้ำมัน</td>
<td>โคแทร็กตาเลท (U/mL)</td>
<td>Colorimetric method (U/mL)</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>thuringiensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysinibacillus boronitolerans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pw3/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pw27/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA 11/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA 6/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>คำ</th>
<th>สวม</th>
<th>อุณหภูมิ (°C)</th>
<th>ความเร็ว รอบ</th>
<th>% NaCl</th>
<th>โคแทร็กตาเลท (U/mL)</th>
<th>Colorimetric method (U/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>37</td>
<td>150</td>
<td>1.0</td>
<td></td>
<td>77.27</td>
<td>6.67</td>
</tr>
<tr>
<td>9.5</td>
<td>37</td>
<td>150</td>
<td>2.0</td>
<td></td>
<td>-</td>
<td>3.21</td>
</tr>
<tr>
<td>9.5</td>
<td>37 -40</td>
<td>150</td>
<td>0.5</td>
<td></td>
<td>-</td>
<td>3.60</td>
</tr>
<tr>
<td>8.5</td>
<td>37</td>
<td>150</td>
<td>0.5</td>
<td></td>
<td>80.75</td>
<td>3.29</td>
</tr>
<tr>
<td>8.5</td>
<td>37</td>
<td>150</td>
<td>2.0</td>
<td></td>
<td>51.42</td>
<td>2.66</td>
</tr>
</tbody>
</table>
เอกสารอ้างอิง

กรณีการวิจัยโภูพลสุธุส. 2541. การแยกและการตัดสินแบบที่เรียจากรดินที่สามารถช่วยลดลง
ภัณฑ์สัตว์. ปัญญาศิลปวิทยาลัย มหาวิทยาลัยราชภัฏ
พะเยา ประเทศไทย. 2544. การคัดเลือกเรื่องไม้แปลงจากอัตราที่เริ่มถูกต้องไม. [ระบบ
ออนไลน์]. แหล่งที่มา: http://www.geocities.com/yayajang/background.htm (18
พฤศจิกายน 2551)

จิวภาพ แดงสิงห์พันทิ. 2537. การเรียนเรื่องประวัติภาพการช่วยลดลงภัณฑ์เสรีของที่ใช
แพร่ของแบบที่เรียจากรดิน 5 ชนิดของภัณฑ์ที่มีต่าง ๆ. ปัญญาศิลปวิทยาลัย มหาวิทยาลัยราชภัฏ
ศรีสะเกษ. [ระบบออนไลน์]. แหล่งที่มา: http://www.chemtrack.org/
EnvForKids/chem-24.htm (23 มีนาคม 2552)

ณัฏฐาทิพย์ จันดา และ ทรัพย์ศรี สุทธิวงศ์. 2549. เอนไซม์ไฮโดรไลซ์: การผลิต และคุณสมบัติ
ทางเคมีภูมิ. [ระบบออนไลน์]. แหล่งที่มา: http://utcc2.utcc.ac.th/www/
divisions/academicaffairs/journals/26th/May_Aug/theme7th.htm
(18 พฤศจิกายน 2550)

ณภัทร แก้วพิชิต. 2548. การเรียนเรื่องเชื้อโรคสาเหตุต่อสัตว์ที่ถูกครึ่งโดย Pseudomonas sp.
และ Bacillus sp. เพื่อป้องกันโรคดีที่ป่าเป็นเงินออนไลน์. [ระบบออนไลน์]. แหล่งที่มา
http://www.bsru.ac.th/~sci/dept/biot/rubrong.doc (25 พฤศจิกายน 2551)

มหาวิทยาลัยนเรศวร. 2550. สารประกอบในไตรรงค์บาน. [ระบบออนไลน์]. แหล่งที่มา
www.mwit.ac.th/~supawadee/link/CH40124_2.2549/text/HCT.doc (25
พฤศจิกายน 2551)

ผลิตภัณฑ์ ดุสิตทิพย์. 2544. จุลชีวินิยมทั่วไป. จุฬาลงกรณ์มหาวิทยาลัย. 558-560.

ภัณฑ์ ดุสิต ฯ. 2547. การคัดเลือกเรื่องที่สามารถช่วยลดภัณฑ์เสรีของที่ใช้แล้วจากภัณฑ์ที่
มีการปรับเปลี่ยนน้ำมัน. ปัญญาศิลปวิทยา บริษัทจำกัด สารวัติวิทยาเทคโนโลยีเชื้อ
เศรษฐศาสตร์ มหาวิทยาลัยแม่โจ้.

บัณฑิต สุทธิวงศ์. 2532. จุลชีวินิยมทั่วไป. โตเกียวเนชั่น. 173-181
ปีพุทธนิยม 2650. การแยกและคัดเลือกแบคทีเรียจากแหล่งน้ำธรรมชาติที่คลิก เอนไซม์โปรตีนและสารประกอบออกซิเจนในแบคทีเรียที่ใช้แล้ว. ปัญญาศิริภูศิริษา สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยแม่ฮ่องสอน.

ไตรมาส 4 ของปี 2547. การแยกและคัดเลือกแบคทีเรียจากแหล่งน้ำที่สามารถก่อตัว สารประกอบออกซิเจนในแบคทีเรียด้วย. ปัญญาศิริภูศิริษา สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยแม่ฮ่องสอน.

ทรัพยากรคณิตศาสตร์พื้นฐาน. 2539. การทำโปรตีนจากเทคโนโลยี TLS 63 ให้บริสุทธิ์ และการหาลักษณะเฉพาะ. วิทยาศาสตร์ ปัญญาศิริษา สาขาวิชาวิทยาศาสตร์ มหาวิทยาลัยแม่ฮ่องสอน.

เพิ่มเติม ทักษะการอ่าน. 2550. สารประกอบโปรตีน harmless. [ระบบที่มา http://www.e-learning.sg.or.th/ac2_5/content13.html (12 ธันวาคม 2551)

กัณฑ์ มานะสุธน. 2548. การศึกษาการใช้แนวเส้นของแบคทีเรียต่อการยับยั้ง แบคทีเรียที่เกี่ยวข้อง. ปัญญาศิริษา สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยแม่ฮ่องสอน.

วัฒนา จงสุทธิ. 2541. การแยกและคัดเลือกแบคทีเรียจากแหล่งน้ำที่เกี่ยวข้อง ที่ใช้แล้ว. วิทยาศาสตร์ ปัญญาศิริษา สาขาวิชาวิทยาศาสตร์ มหาวิทยาลัยแม่ฮ่องสอน.

วัฒนา แสงสว่าง. 2551. บทที่ 4 คุณสมบัติทางกายภาพของดิน (Solv Physic Properties) [ระบบที่มา http://krudaeng.wikispaces.com/%E0%B8%89%E0%B8%94%E0%B8%9K%E0%B8%97%E0%B8%9E%E0%B8%B5%E0%B9%88+4+*&E0%B8%81%E0%B8%B2%E0%B8%A2%E0%B8%A0%E0%B8%B2%E0%B8%9E%E0%B8%B9%E0%B8%A1%E0%B8%84%E0%B8%97%E0%B8%9E%E0%B8%B5%E0%B9%88+4+*&E0%B8%92%E0%B8%9E%E0%B8%AD%E0%B8%87%E0%B8%94%E0%B8%B4%E0%B8%97=print (25 มิถุนายน 2552)

วิทยาศาสตร์ ดุลลานนา ปาร์ค. 2552. พื้นฐานเทคโนโลยี Polymerase Chain reaction.[ระบบที่มา http://microbio.md.kku.ac.th/site_data/mykku_microbio/17/Basic_PCR_June_08.pdf (23 มิถุนายน 2552)

วัฒนา จงสุทธิ. 2550. คุณลักษณะดิน. [ระบบที่มา http://www.rspg.org/microbiology/micro_01.htm (3 ธันวาคม 2551)

Dyer, JC, AS Vemick, and HD Feiler, Handbook of Industrial Wastes.145

PTT. 2008. MATERIAL SAFETY DATA SHEET. [online]
http://pttweb2.pttpc.com/weblub/Files/Lube/attach/139_MTRDS.pdf (25 March 2009)

