สารคัดลอกเนื้อปัญหาสัตว์กินมูกอาหารในภาวะที่ใช้ปัจจัยที่เหมาะสม เซ็นออกซิเดิ้งกลับอินิจากขึ้น แต่ยังไม่มีการเรียกใช้การใช้น้ำมันในบ้าน ภาวะที่ใช้ปัจจัยที่เหมาะสม เช่น การใช้ปัจจัยที่เหมาะสม ตลอดจนการเรียกใช้น้ำมันในบ้าน การใช้น้ำมันในบ้าน ตลอดจนการเรียกใช้น้ำมันในบ้าน การใช้น้ำมันในบ้าน การใช้
(MIC = 2 ppt; MBC = 4 ppt) และสารสกัดเปลือกทับทิม T1 (MIC = 3 ppt; MBC = 20 ppt) และชื่อ V. harveyi พบว่าสารสกัดในอายที่ T2 (MIC = 1 ppt; MBC = 9 ppt) มีประสิทธิภาพในการยับยั้งการเจริญเติบโต T1 (MIC = 1 ppt; MBC = 12 ppt) และไม่ระบาด T1 (MIC = 2 ppt; MBC = 10 ppt)

การทดสอบความเป็นพิษของสารสกัดสมุนไพร โดยหาด้วยความเข้มข้นที่ทำให้ถูกกู้ ผู้จนขนาด PL 15 ถ้า 50% ที่เวลา 96 ชั่วโมง พัวสารสกัดไม่มีระบาดทิม T1 มีระบาดตัวที่สูดต่อกัน (LCso 96 h = 13.26±0.42 ppt) และสารสกัดระยะม้า T1 มีพิษระบาดสูดต่อกัน (LCso 96 h = 0.92±0.07 ppt)

การทดสอบประสิทธิภาพของสารสกัดสมุนไพรในการรักษาโรคหนีในโค โดยการเข้าทำโดยใช้เครื่องบรรจุน้ำ 4-6 กรัม ในน้ำที่มีเชื้อ A. hydrophila 10⁶ cells/ml พบว่าสารสกัดเปลือกทับทิม T1 ที่ความเข้มข้น 4, 9 และ 15 ppt ไม่มีการรักษา T1 ที่ความเข้มข้น 5, 10 และ 40 ppt กระเทียมสด T1 ที่ความเข้มข้น 3, 5 และ 10 ppt ข้าวเช้าอยู่ปุ่ม T2 ที่ความเข้มข้น 5, 10 และ 25 ppt และไข่กลาง T2 ที่ความเข้มข้น 5, 20 และ 30 ppt สามารถใช้ป้องกันและรักษาได้ โดยการเข้าถ้ำไม่มีการรักษาขั้นต่ำ และการยุค

ส่วนทางเทคโนโลยีรักษาโรคหนีโดยการบิน ในกุ้งก้ามสี ขนาด 20-30 ครั้ง ทำโดยใช้เชื้อ A. hydrophila 10⁶ เซลล์ต่อกับ เบื้องต้นก่อนที่จะล้างตัวกู้ แล้วให้ยาทางคลื่นสมุนไพรในปริมาณต่ำต่ำๆ พบว่าสารสกัดเปลือกทับทิม T1 ที่ปริมาตร 9 มิลลิลิตร/อาหาร 100 กรัม ป้องกัน T1 ที่ปริมาตร 10 มิลลิลิตร/อาหาร 100 กรัม กระเทียมสด T1 ที่ปริมาตร 15 มิลลิลิตร/อาหาร 100 กรัม และไข่กลาง T2 ที่ปริมาตร 5 มิลลิลิตร/อาหาร 100 กรัม ให้ผลต่ำที่สูงกว่า oxytetracycline

ต้นนี้สมุนไพรดี 5 ชนิดนี้ สามารถใช้เพื่อรักษาโรคหนีในกุ้งโดยวิธีการเข้า และการกินได้ จึงนำมาใช้ที่เหมาะสมที่จะนำไปพัฒนาเพื่อใช้ในการป้องกันและรักษาโรคดื้อ背叛ที่มีอยู่อย่างแพร่ระบาด

คำสำคัญ: Aeromonas hydrophila, Vibrio parahaemolyticus, V. harveyi, สมุนไพรไทย, กุ้งก้ามสี, การเข้า, การกิน, การบิน
Effective of Thai Herb Extracts to Inhibit Bacterial Pathogens in Giant Freshwater Prawn (Macrobrachium rosenbergii)

Author
Miss Anchalee Tummarongkongsatit

Degree of
Master of Science in Fisheries Technology

Advisory Committee Chairperson
Dr. Jiraporn Rojinnakorn

ABSTRACT

Residues of antibiotics is the particular problem for exported shrimp product. It is because of disease treatment using antibiotics, such as oxytetracycline chloramphenicol etc. Application of herbs is the important alternative way for substitution of antibiotics and solving the residue problem. This study aims to survey effective Thai herb extracts showing inhibition to particular bacteria; i.e. Aeromonas hydrophila, Vibrio parahaemolyticus and V. harveyi. The treatment of A. hydrophila was determined.

Thai herbs 35 species were tested. Herbs were extracted with 50% ethanol (T1) and 50% ethanol then boiled at 70°C for 1 h (T2). Their activities were tested by a disc diffusion method. For A. hydrophila, it was found that the highest activities were Indian almond leaf T2, fresh Indian almond leaf T2 and Indian almond leaf T1 with inhibition zone of 15.78±0.22, 14.20±0.62 and 13.90±0.3 mm, respectively. For V. parahaemolyticus, it was found that the highest activities were Indian almond leaf T2, T1 and fresh garlic T1 with inhibition zone of 19.35±0.85, 18.45±0.05 and 17.58±1.85 mm, respectively. And for V. harveyi, it was found that the highest activities were fresh garlic T1, Indian almond leaf T2 and T1 with inhibition zone of 19.80±3.34, 18.42±1.88 and 18.30±1.1 mm, respectively.

The efficiency value was determined with MIC/MBC (Minimum Inhibitory Concentration / Minimum Bactericidal Concentration) by broth dilution method. For A. hydrophila, it was results that the highest effectives were fresh garlic T1 (MIC = 5 ppt; MBC = 10 ppt), pomegranate peel T1 (MIC = 9 ppt; MBC = 15 ppt) and T2 (MIC = 10 ppt; MBC = 20 ppt), respectively. For V. parahaemolyticus, it was results that the highest effectives were Indian almond leaf T2 (MIC = 2 ppt; MBC = 3 ppt), T1 (MIC = 2 ppt; MBC = 4 ppt) and pomegranate...
peel T1 (MIC = 3 ppt; MBC = 20 ppt), respectively. And for *V. harveyi*, it was results that the highest effective were Indian almond leaf T2 (MIC = 1 ppt; MBC = 9 ppt), T1 (MIC = 1 ppt; MBC = 12 ppt) and chayote leaf T1 (MIC = 2 ppt; MBC = 10 ppt), respectively.

The toxicity was determined by LC$_{50}$ 96 h (50% kill concentration at 96 hours) of PL15 giant freshwater prawn (*Macrobrachium rosenbergii*). It was revealed that the extract of bitter cucumber leaf T1 showed the lowest toxicity (LC$_{50}$ 96 h = 13.26±0.42 ppt) and Belamcanda chinensis T2 showed the highest toxicity (LC$_{50}$ 96 h = 0.92±0.07 ppt).

Prevention and treatment of Motile Aeromonas Septicemia (MAS) with herb extracts were tested. Giant freshwater prawns of 4-6 g were examined. It was found that pomegranate peel T1 4, 9 and 15 ppt, Indian almond leaf T1 5, 10 and 40 ppt, fresh garlic T1 3, 5 and 10 ppt, Japanese green tea T2 5, 10 and 25 ppt and piper leaf T1 5, 20 and 30 ml showed high effective and low toxicity with tendency appropriate concentrations for long-bath, short-bath and dip.

Prawns of 20-30 g were injected intramuscularly with 10^8 cells of *A. hydrophila* and fed with herbs extracts coated feeds. It was found that feed coated with pomegranate peel T1 9 ml/100 g feed, Indian almond leaf T1 10 ml/100 g feed, fresh garlic T1 15 ml/100 g feed, Japanese green tea T2 10 ml/100 g feed and piper leaf T2 5 ml/100 g feed showed effective treat similar to oxytetracycline. Therefore, these 5 herbs are satisfied to develop for prevention and treatment of bacterial diseases.

Keywords: *Aeromonas hydrophila*, *Vibrio parahaemolyticus*, *V. harveyi*, Thai herbs, Giant freshwater prawn, bath, dip, additive