ชื่อเรื่อง การปรับปรุงไคอะทอไมต์โดยวิธีทางเคมีสำหรับใช้ในการ

บำบัดน้ำเสียจากห้องปฏิบัติการเคมี

ชื่อผู้เขียน นายพงศ์เทพ จันทร์สันเทียะ

ชื่อปริญญา วิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมีประยุกต์

ประธานกรรมการที่ปรึกษา อาจารย์ คร.ภูสิต ปุกมณี

บทกัดย่อ

งานวิจัยนี้ได้ทำการศึกษาการคูคซับสารละลายมาตรฐานโลหะหนักของไดอะทอไมต์ก่อน และหลังการปรับปรุง และ ใดอะทอใมต์ชนิด เอ โดยทำการปรับปรุง ใดอะทอใมต์ ด้วยกรดใฮโดร คลอริก โดยวิธีไฮโครเทอร์มอล และทำการติดตามลักษณะเฉพาะที่มีผลต่อประสิทธิภาพการคูดซับ ของไคอะทอไมต์ทั้ง 3 ชนิค โคยการหาองค์ประกอบทางเคมี ด้วยเทคนิคเอ็กซ์เรย์ฟลูออเรสเซนต์ สเปกโทรสโกปี พบว่า องค์ประกอบหลักของใดอะทอไมต์ทั้ง 3 ชนิค คือ ซิลิกอนใดออกใชด์ โดย มีค่า เท่ากับ 63.31, 56.79 และ 82.28 เปอร์เซนต์ ตามลำคับ ซึ่งผลการทคลองสอคคล้องกับการหา องค์ประกอบของธาตุ ด้วยเทคนิคการวัดการกระจายพลังงานทางสเปกโทรสโกปี พบว่า ซิลิกอน และ ออกซิเจน มีค่าระดับพลังงาน เท่ากับ 1.739 และ 0.532 กิโลอิเล็กตรอนโวลต์ ตามลำดับ ทำการ ตรวจสอบลักษณะทางสัณฐานวิทยาของอนุภาคไคอะทอไมต์ ด้วยเทคนิคจุลทรรศนอิเล็กตรอน ชนิดส่องกราด พบว่า รูปร่างของอนุภาคใดอะทอไมต์ก่อนและหลังการปรับปรุงมีลักษณะเป็น ทรงกระบอกมีรูพรุน ส่วนใดอะทอไมต์ชนิด เอ มีลักษณะเป็นจานกลมแบนมีรูพรุน และมีขนาด อนุภาคเฉลี่ย เท่ากับ 11.83, 15.82 และ 18.42 ใมโครเมตร ตามลำคับ ซึ่งสอคคล้องกับขนาคอนุภาค เฉลี่ยซึ่งศึกษา ด้วยเทคนิกการวัคขนาคอนุภาค และการหาพื้นที่ผิวของไคอะทอไมต์ทั้ง 3 ชนิค ด้วย เทกนิกการวัดพื้นที่ผิว มีค่าเท่ากับ 54.26, 55.67 และ 16.40 ตารางเมตร/กรัม ตามลำคับ ส่วน การศึกษาการดูคซับสารละลายมาตรฐานโลหะหนัก ด้วยเทคนิคอะตอมมิกแอ็บซอร์พชัน สเปกโทร เมทรี พบว่า ความจุของการคูคซับสารละลายมาตรฐาน แคคเมียม ตะกั่ว ทองแคง และ สังกะสี ของ ใดอะทอในต์หลังการปรับปรุงมีมากที่สุด มีค่าเท่ากับ 2.527, 0.856, 3.226 และ 6.097 มิลลิกรัม/ กรับ ตามลำดับ

Title Chemical modification of diatomite for chemical

laboratory wastewater treatment

Author Mr. Pongthep Jansanthea

Degree of Master of Science in Applied Chemistry

Advisory Committee Chairperson Dr. Pusit Pookmanee

ABSTRACT

In this research, the adsorption of heavy metal standard solutions of natural diatomite, modified diatomite and diatomite A, were studied. Natural diatomite was modified with hydrochloric acid by hydrothermal method and the specific characteristics related to the effective adsorption of three diatomites were monitored by determining their chemical composition through X-ray fluorescence spectroscopy (XRF). Results showed that silicon dioxide (SiO₂) was the main component of three diatomites and was equivalent to 63.31, 56.79 and 82.28 %, respectively. These corresponded with the element composition data through energy dispersive spectrometry (EDS) which showed that the characteristic energy level of silicon (Si) and oxygen (O) were 1.739 and 0.532 keV, respectively. The morphological investigation of diatomites was done by using the scanning electron microscopy (SEM). Results indicated that natural and modified diatomites were generally cylindrical in shape whereas diatomite A was generally round-shaped with average particle size of 11.83, 15.82 and 18.42 µm, respectively, which were in confirmation with the average particle size distribution. Surface area was determined by specific surface area analysis (BET) with values of 54.26, 55.67 and 16.40 m²/g, respectively. The study on the adsorption of heavy metal standard solutions was determined by atomic absorption spectroscopy (AAS) and results showed that adsorption capacities of cadmium (Cd²⁺), lead (Pb2+), copper (Cu2+) and zinc (Zn2+) ions of modified diatomite were the highest at 2.527, 0.856, 3.226 and 6.097 mg/g, respectively.