การพัฒนาวิธีการแยกการสอนออนไลน์ รวมถึงวิธีการฝึกหัดชัดเจนตั้งแต่หลักสูตร

ประธาน ฟองยวด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของความสมบูรณ์ของการศึกษาตามหลักสูตร
ปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาแก่ปรุง
ส้านักงานบัณฑิตศึกษา มหาวิทยาลัยแม่โจ้

พ.ศ. 2551

ลักษณะของมหาวิทยาลัยแม่โจ้
ไบร้างวิทยานิพนธ์
สำนักงานบัญชีศึกษา มหาวิทยาลัยมหิดล
ปริญญาโทด้านเศรษฐศาสตร์
สาขาวิชาเศรษฐศาสตร์

ชื่อเรื่อง
การพัฒนาวิธีการแยกสารแบบออนไลน์ รวมถึงวิธีคัดลอกเนื้อหาของเรียลไทม์

อนุทิษฐา สำหรับปริญญาตรีด้านการจัดการมัลติ

โดย
พรพนา วงษ์ดง

พิการเนื้อที่ขอบโดย

ประธานกรรมการที่ปรึกษา

(อาจารย์ ดร.ศักดิ์ชัย เสรียร์พิรุฬห์)
วันที่ 15 เดือน ๖ ค. พ.ศ. ๒๕๕๑

กรรมการที่ปรึกษา

(อาจารย์ ดร.ภูมิพัฒน์ บุญมี)
วันที่ 15 เดือน ๖ ค. พ.ศ. ๒๕๕๑

กรรมการที่ปรึกษา

(อาจารย์ ดร.สมศักดิ์ แสงศรีสังข์)
วันที่ 15 เดือน ๖ ค. พ.ศ. ๒๕๕๑

ประธานกรรมการประจำหลักสูตร

(อาจารย์ ดร.ศักดิ์ชัย เสรียร์พิรุฬห์)
วันที่ 15 เดือน ๖ ค. พ.ศ. ๒๕๕๑

สำนักงานบัญชีศึกษา ร.บ. ๒๔๗.
ที่วิ่ง

การพัฒนาวิธีการแยกสารแบบออนไลน์ รวมถึงวิธีคอมมิวนิส
เซนต์ฟลอริดาเชซั่น อะนอลิชิส สำหรับวิเคราะห์ซิลฟิคใน
อาหารมกคอง

ชื่อผู้เขียน

นางสาวพรdana พงษ์ศร

ชื่อปริญญา

วิทยาศาสตรมหาบัณฑิต สาขาวิชาคอมมิวนิส

ประธานกรรมการที่ปรึกษา

อาจารย์คร.ศักดิ์ชัย เสียบพีรดำกุล

บทคัดย่อ

ในการเรียนรู้ให้คิดจินตนาการแยกสารแบบออนไลน์ ชินเดฟอร์ฟรองรับชัน ฟลอริดาเชซั่น (ฟิ
โจเอเลีย-ชอโดย) และก่อขึ้นกับวิชาม์ฟอร์ฟรองรับชัน (โจเอเลีย-ชอโดย) รวมกันบรรดาจิตวิทยา
คมรูปแบบของ
สำหรับการวิเคราะห์ซิลฟิคในสารอาหารมกคอง ซึ่งมีพื้นฐานจากการวิเคราะห์ของสิ่งมกคองที่แสดง
การแยกสารแบบคอมมิวนิสซั่นจากปฏิกิริยาของสารระหว่างการแยกสารแบบคอมมิวนิส โดยใช้สาร这些东西มาติด
หรือดูดซับซิลฟิคให้เข้าไปในกระเพาะตัวให้กระชับฟอร์จิวิคแล้วเกิดปฏิกิริยาเชิงเป็นทางชัดเจนไฟฟ้า
ออกไฟล์ตามไปยังน้ำยาฟอร์ฟรองรับชัน (ฟิโจเอเลีย) หรือก่อขึ้นกับวิชาม์ฟอร์ฟรองรับชัน (โจเอเลีย)
เมื่อก่อกับซินเดฟอร์ส์
โดยออกไฟฟ้าผ่านเยื่อเลือดผ่านไปยังสารละลายกระเพาะตัวรับโดยเจริญและควบคุมไฟฟ้าใน
กระเพาะฟอร์จิวิค และรังไข่ มีปัญหาด้วยเนื่องจากลักษณะไปพบกับแอนเจนเหล่านี้สารละลาย
ไฟฟ้าจะเชื่อมองแก่เส้นในกระเพาะตัวรับที่สืบต่อมา ที่ละทำซ้ำ ที่ละตรวจสอบการเกิดปฏิกิริยาคอมมิวนิสซั่นที่
เกิดต่อเนื่องตลอดไฟฟ้าโดยมีลิฟท์ไฟฟ้าที่เหล่านี้ที่ต่ำต่ำมีค่าสูงกว่า 1.0 กิโลวัตต์ ภายใต้
ภาวะที่เหมาะสม สำหรับการวิเคราะห์ปริมาณซิลฟิคด้วยระบบการแยกสารแบบออนไลน์ ได้ครับ
มาตรฐานเป็นนั้นจากรอย 0.5-6.0 และ 0.5-10.0 มิลลิกรัมต่อชั่วโมง สำหรับไฟฟ้าที่รองรับชัน
ไฟฟ้าเพิ่มเติมและก่อขึ้นกับวิชาม์ฟอร์ฟรองรับชัน ตามลำดับ โดยมีค่าเป็นระดับมาตรฐานส่วนที่
มีค่าเท่ากับ 2.77% และ 1.81% สำหรับสารละลายมาตรฐานซิลฟิคซ์ซั่น 2 มิลลิกรัมต่อชั่วโมง (12
ครั้ง) มีชีวิตจัดการจัดการวิเคราะห์เท่ากับ 0.2 และ 0.1 มิลลิกรัมต่อชั่วโมง ที่มีค่าร้อยละและการกลับคืน
ในช่วง 91.1-104.8 และ 91.3-105.6 ตามลำดับ ขณะที่อัตราส่วนในการวิเคราะห์ต่อช่วงมีค่าเท่ากับ
40 และ 60 ค็อควัน ในขณะที่วิธีการแยกสารแบบออนไลน์มีประสาทตัวใช้ในการวิเคราะห์ปริมาณซิล
ไฟฟ้าในอาหารมกคอง และทำให้ตรวจสอบปริมาณได้ชัดเจนมาตรฐาน ดีฟเพอร์เรน
เชียล พิลาโรราฟี
ABSTRACT

In this research study, the novel pervaporation flow injection with chemiluminescence detection (PFI-CL) and gas diffusion flow injection with chemiluminescence detection (GDFI-CL) procedures were proposed as on-line separation techniques for the analysis of contaminated sulphite in pickled food samples. Both methods involve the injection of standard and/or sulphite samples solution into a sulfuric acid donor stream, which was then transported to the pervaporation module or the gas diffusion unit furnished with semi-permeable PTFE membrane. Resulting sulfur dioxide gas diffused across the semi-permeable membrane into an acceptor solution containing a sodium hexametaphosphate, phosphoric acid and rhodamine B. The solution mixture then merged at a T-piece with a reagent stream consisting of potassium permanganate in sodium hexametaphosphate in phosphoric medium. The elicited chemiluminescence intensity of the resulting reaction mixture was measured at a red sensitive photomultiplier tube operated at an applied voltage of 1.0 kV. Under optimal experimental conditions where results showed that the determination of sulphite for both on-line separation techniques were investigated, linear calibration curves were observed over the concentration ranges within 0.5-6 mg L$^{-1}$ and 0.5-10 mg L$^{-1}$ of sulphite for PFI and GDFI, respectively, with relative standard deviation for 12 replicate injection at 2.77% and 1.81% for 2 mg L$^{-1}$ of sulfite standard solution and detection limit of 0.2 mg L$^{-1}$ and 0.1 mg L$^{-1}$. The percentage recoveries were found to be in the range of 91.1-104.8 and 91.3-105.6, respectively, while samples throughout were found to be 40 and 60 h$^{-1}$, respectively. The PFI procedures were proposed for application to determine the amount of sulphite in pickled foods samples and to compare with standard differential pulse polarographic method.
กิตติกรรมประกาศ

ข้าพเจ้าขอขอบพระคุณ อาจารย์ ดร.สังกิจัย เสรีธิ์พิรุชคุล ซึ่งเป็นประธานกรรมการที่ปรึกษา ให้คำแนะนำในการวางแผนการดำเนินงานทดลอง ตลอดจนช่วยสนับสนุนวิสัยทัศน์ สำหรับใช้ในการดำเนินงาน จนกระทั่งงานทดลองสำเร็จ และได้รูปมาให้คำแนะนำ ตรวจสอบแก้ไข จนสำเร็จลุ้นไปด้วย

ขอขอบพระคุณอาจารย์ ดร.ธวัช ปุญมณี อาจารย์ ดร.สุภาพร แสงชัยจันทร์ กรรมการที่ปรึกษา และรองศาสตราจารย์ ดร.สายสุนันต์ เหลี่ยมเรืองรัตน์ กรรมการผู้ทรงคุณวุฒิ ที่ได้ให้คำแนะนำตลอดจนช่วยตรวจสอบแก้ไขข้อขัดข้องที่มีการตั้งคำถามเป็นวิทยานิพนธ์อย่างสมมุติ

นอกจากนี้ ข้าพเจ้าขอขอบคุณผู้สนับสนุนโครงการทุนสนับสนุนการวิจัย (ศกย) ที่สนับสนุนที่ได้สนับสนุนค่าใช้จ่ายในการวิจัย โดยผ่านโครงการทุนวิจัยมหาบัณฑิต ศกย. มหาวิทยาลัยสงขลานครินทร์ และเทคโนโลยี-มหาวิทยาลัยแม่โจ้ สัญญาเลขาธิการ MRG-WII5055056

ขอขอบคุณที่춥ะมารคและทุ่ม ๆ คนในครอบครัวที่คอยเป็นกำลังใจให้ตลอดระยะเวลาในการศึกษา

พระนาม พฤทธิจง

ชันวันคม 2551
ตาราง

<table>
<thead>
<tr>
<th>บทที่</th>
<th>หัวข้อ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>การวิเคราะห์แบบโฟโตอินเจกชันและอัลซิเซส</td>
</tr>
<tr>
<td>2</td>
<td>ประวัติความเป็นมา</td>
</tr>
<tr>
<td>2</td>
<td>การพัฒนาอินเจกชันเพียงบัน</td>
</tr>
<tr>
<td>3</td>
<td>หลักการพื้นฐานของเทคนิค FIA</td>
</tr>
<tr>
<td>5</td>
<td>การแพร่กระจาย (Dispersion)</td>
</tr>
<tr>
<td>6</td>
<td>การกระจายที่ถูกควบคุม (Dispersion controlled)</td>
</tr>
<tr>
<td>7</td>
<td>เทคนิคการแยกแบบออโตโคลน</td>
</tr>
<tr>
<td>8</td>
<td>กิ่งชืดฟีฟิวชัน (Gas diffusion)</td>
</tr>
<tr>
<td>10</td>
<td>เทอร์วา泼อราชัน (Pervaporation)</td>
</tr>
<tr>
<td>12</td>
<td>ตัวตรวจจับที่ใช้ในการแพร่กระจาย</td>
</tr>
<tr>
<td>13</td>
<td>การตรวจจับแบบเคมีมิเนเจอร์เนต</td>
</tr>
<tr>
<td>14</td>
<td>หลักการวิเคราะห์ของเคมีมิเนเจอร์เนต</td>
</tr>
<tr>
<td>19</td>
<td>ข้อศิลปะของการวิเคราะห์แบบเคมีมิเนเจอร์เนต</td>
</tr>
<tr>
<td></td>
<td>FIA-chemiluminescence โนนภาค</td>
</tr>
<tr>
<td>20</td>
<td>ขั้นตอน</td>
</tr>
<tr>
<td>21</td>
<td>ขั้นตอนทั่วไปของขั้นตอนฟิลด์</td>
</tr>
<tr>
<td>21</td>
<td>คุณสมบัติทางกายภาพและทางเคมี (Physical and chemical properties)</td>
</tr>
<tr>
<td>21</td>
<td>ความคงตัวและการเกิดปฏิกิริยา (Stability and reaction)</td>
</tr>
<tr>
<td>22</td>
<td>อันตรายต่อสุขภาพ</td>
</tr>
</tbody>
</table>
บทบาทสารเข้าไฟดีในอาหาร 22
ปัจจัยที่มีผลต่อปริมาณสารเข้าไฟดีในอาหาร 23
ชนิดของอาหารที่ใช้สารเข้าไฟดี 24
ปริมาณของสารเข้าไฟดีที่อนุญาตให้ใช้ในอาหาร 25
ความเป็นพันธุ์ของสารเข้าไฟดี 26
วิธีการทำฐานในการวิเคราะห์ปริมาณสารเข้าไฟดี 26
ตัวอย่างการทดสอบการใช้ 29
ประโยชน์ที่คาดว่าจะได้รับ 29
ชอบแผลของการศึกษา 29
บทที่ 2 การตรวจเอกสาร 31
สรรพสิการ์สำคัญจากเอกสารที่เกี่ยวข้อง 31
บทที่ 3 วิธีการดำเนินการวิจัย 35
สถานที่ดำเนินการวิจัย 35
ขั้นตอนการทดลอง 35
วิธีการทดลอง 38
บทที่ 4 ผลการวิจัยและวิจารณ์ 59
การออกแบบ Flow diagram สำหรับวิเคราะห์หาปริมาณสารเข้าไฟดี 59
โดยเทคนิค CL-FI 59
การออกแบบ Flow diagram สำหรับวิเคราะห์หาปริมาณสารเข้าไฟดี 66
โดยเทคนิคไฟวิทยาเพาะเชื้อนิโออินโจกซัน 66
การออกแบบ Flow diagram สำหรับวิเคราะห์หาปริมาณสารเข้าไฟดี 82
โดยเทคนิคกราฟฟิคไฟวิชั่น ไฟโอดิโอนอลกินเนคอมส์เนอร์ 82
การวิเคราะห์หาปริมาณสารเข้าไฟดีในอาหารมากดองโดยวิธีคีฟิโอซิเมทวิค 95
พัฒนา ไฟโลโรกราฟี (DPP) 95
บทที่ 5 สรุปและข้อเสนอแนะ 97
วิจารณ์ผลการวิจัย 97
สรุปผลการวิจัย 100
ข้อเสนอแนะ 101
บรรณาธิการ 102
ภาคผนวก ก การเทนวน
ภาคผนวก ข ประวัติผู้วิจัย

108
109
116
สารบัญตาราง

1 ตัวตรวจจัดที่ใช้ระบบ FIA 13
2 สถานการณ์ของการดำเนินการควบคุมและจัดเก็บเรื่องย่อเปลี่ยนพลังงานไฟฟ้า 27
3 ตัวอย่างการศึกษาการปริมาณของสารซัลไฟด์ โดยเทคนิคทางไฟล์อินเจ็กชันเกลือมิมเบอร์เกน 32
4 ตัวอย่างการวิเคราะห์ซัลไฟด์เกลือมิมเบอร์เกนการแยกแบบออนไลน์ (on-line) 34
5 สถานการณ์ในการวิเคราะห์ระบบปริมาณซัลไฟด์ด้วยระบบ CL-FI 61
6 การปริมาณซัลไฟด์ของสารที่ใช้ในตัวตรวจภูมิคุ้มกันและสารแพร่เชื้อโรค 61
7 สถานการณ์ที่เหมาะสมในการวิเคราะห์ระบบปริมาณซัลไฟด้วยระบบ CL-FI 65
8 สถานการณ์ในการวิเคราะห์ระบบปริมาณซัลไฟด้วยระบบทอราว์พุ่งขึ้นเกลือมิมเบอร์เกน (PFI-CL) 68
9 สถานการณ์ที่เหมาะสมในการวิเคราะห์ระบบปริมาณซัลไฟด้วยระบบ PFI-CL 75
10 ผลการศึกษาความเป็นเลิศของสารที่ใช้ในการวิเคราะห์ระบบปริมาณซัลไฟด์ 76
d้วยระบบ PFI-CL
11 ผลการศึกษาความมีดุษณ์ 79
12 ผลการวิเคราะห์ซัลไฟด์จากวิธีการเพาะมัง ust และการติดตามสารภูมิคุ้มกัน 80
13 วิธีการวิเคราะห์ซัลไฟด์ในตัวอย่างอาหารมัน 81
14 สรุปผลการที่เหมาะสมในการวิเคราะห์ระบบปริมาณซัลไฟด้วยระบบ GDFI 86
15 ช่วงเวลาขณะที่เป็นเลิศของสารภูมิคุ้มกันที่ได้จากวิธี GDFI-CL และ วิธี PFI-CL 87
16 ผลการศึกษาความถูกต้องของเครื่องมือ GDFI-CL และ วิธี PFI-CL 88
17 ผลการศึกษาความแม่นยำของการวิเคราะห์ด้วยเทคนิค GDFI-CL และ วิธี PFI-CL 90
18 ผลการศึกษาคุณค่าด้านการควบคุมของเครื่องมือ GDFI-CL และ วิธี PFI-CL 92
19 การวิเคราะห์ซัลไฟด์ด้วยวิธีการเพาะมัง ust และ วิธีการติดตามสารภูมิคุ้มกัน 93
20 วิธีการวิเคราะห์ซัลไฟด์ในตัวอย่าง 94
21 ผลการศึกษาการสร้างกราฟมาตรฐานโดยวิธีติดตั้งเพื่อเรื่องอิเล็กทรอนิก 95
พลังไฟไฟฟ้า (DPP)
<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>เอกสาร</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>ผลการวิเคราะห์ปริมาณชั่วไฟดับในอาคารด้วยวิธีดับเพื่อเรนเจอร์พอล์ทอร์โฟลาโพรฟารี (DPP)</td>
<td>96</td>
</tr>
<tr>
<td>23</td>
<td>ผลการเปรียบเทียบปริมาณชั่วไฟดับในอาคารมัลติทาวเวอร์ PFI-CL และ DPP</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>การเปรียบเทียบวิธีการวินาทีที่ทำให้การฟื้นสภาพในระบบก๊าซซิลิโíchซั้นฟิวชั่น</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>ไฟล์อินเจ็กชั่น และน้ำหนักก๊าซฟิวชั่น</td>
<td>ไฟล์อินเจ็กชั่น และน้ำหนักก๊าซฟิวชั่น</td>
</tr>
<tr>
<td>25</td>
<td>ผลการศึกษาปริมาณของสารละลายไอโอดีน ไอโอดีนพอด</td>
<td>111</td>
</tr>
<tr>
<td>26</td>
<td>ผลการศึกษาปริมาณสารละลายไอโอดีน</td>
<td>112</td>
</tr>
<tr>
<td>27</td>
<td>ผลการศึกษาปริมาณสารละลายไอโอดีน</td>
<td>113</td>
</tr>
<tr>
<td>28</td>
<td>ผลการหาความเข้มข้นของชั่วไฟดับในน้ำหนักไม่คงอยู่โดยวิธีการเติมสารมาครูฐาน</td>
<td>114</td>
</tr>
</tbody>
</table>
สารบัญภาพ

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>หัวข้อ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>แผนภาพอย่างง่ายของระบบโฟลเดนเซสชันแรกติชิต</td>
</tr>
<tr>
<td>2</td>
<td>รูปแบบต่าง ๆ ของการกระจายที่เกิดขึ้นของสารตัวอย่างในพืทำ</td>
</tr>
<tr>
<td>3</td>
<td>การเพาะกระจายในสารตัวอย่างในระบบ FIA</td>
</tr>
<tr>
<td>4</td>
<td>กระแสการดัดแปลงของสารตัวอย่างในก้าชีพพิวชัน</td>
</tr>
<tr>
<td>5</td>
<td>หน่วยก้าชีพพิวชันแบบแผ่นบาง (flat plate)</td>
</tr>
<tr>
<td>6</td>
<td>หน่วยก้าชีพพิวชันชนิดท่อที่มีเปลี่ยนหูม (tube in a shell)</td>
</tr>
<tr>
<td>7</td>
<td>หน่วยพราวพราวจิน (Pervaporation unit)</td>
</tr>
<tr>
<td>8</td>
<td>การคายแสดงผลกับมิมิเซนเซชันในสารละลายที่คงตัว</td>
</tr>
<tr>
<td>9</td>
<td>ค่าความชื้นของกับมิมิเซนเซชันเมื่อมีมวลเปลี่ยนแปลง</td>
</tr>
<tr>
<td>10</td>
<td>ค่าแหล่งของจุดสั้นอันที่มีความถี่มั่นคงถึงกับเส้นได้ของระยะเวลาที่มีการเปลี่ยนแปลงของแรงเสริจ (emission-time curve)</td>
</tr>
<tr>
<td>11</td>
<td>ส่วนประกอบของ CL-FI</td>
</tr>
<tr>
<td>12</td>
<td>โครงสร้างของโฟลเดนเซสชันไฟด์</td>
</tr>
<tr>
<td>13</td>
<td>คิวฟิโอแนนซ์ชั่นฟิโอเลตโฟล่าโรเกอร์</td>
</tr>
<tr>
<td>14</td>
<td>พ่อการจ้างตรวจข้อมูลสำหรับการวิเคราะห์ข้อมูลไฟด์ภูมิวิศ CL-FIA</td>
</tr>
<tr>
<td>15</td>
<td>การต่อ spiral coil ต่อกระดาษอินฟร่าในกล่องอุปกรณ์</td>
</tr>
<tr>
<td>16</td>
<td>พ่อการจ้างตรวจข้อมูลสำหรับการวิเคราะห์ข้อมูลไฟด์ภูมิวิศ PFI-CL</td>
</tr>
<tr>
<td>17</td>
<td>ระบบการวิเคราะห์ข้อมูลไฟด์ภูมิวิศพอมป์เวอร์ เกมมิเลนเซชัน</td>
</tr>
<tr>
<td>18</td>
<td>หน่วยแยกสารใหญ่ของพริบชัน</td>
</tr>
<tr>
<td>19</td>
<td>การจัดเรียงเม็ด glass beads ใน donor chamber</td>
</tr>
<tr>
<td>20</td>
<td>พ่อการจ้างตรวจข้อมูล PFI-CL ในการยกเลิกการทยอยการไหลข้ามพิวชัน</td>
</tr>
<tr>
<td>21</td>
<td>พ่อการจ้างตรวจข้อมูลสำหรับการวิเคราะห์ข้อมูลไฟด์ภูมิวิศ GDFI-CL</td>
</tr>
<tr>
<td>22</td>
<td>ระบบการวิเคราะห์ข้อมูลไฟด์ภูมิวิศก้าชีพพิวชันโฟลเดนเซสชัน</td>
</tr>
<tr>
<td>23</td>
<td>เกมมิเลนเซชัน</td>
</tr>
<tr>
<td>24</td>
<td>การจัดจุดอุปกรณ์สำหรับการวิเคราะห์ข้อมูลไฟด์โฟลเดนเซสชัน</td>
</tr>
<tr>
<td></td>
<td>พืชส์ โฟลเดนเซสชัน</td>
</tr>
<tr>
<td>25</td>
<td>ระบบคอมมิวเนชันไฟด์อินเจ็คชัน</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td>페이지</td>
<td>หัวข้อ</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>25</td>
<td>ผลการศึกษาความเข้มข้นที่เหมาะสมของกรดฟอสฟอไรค์</td>
</tr>
<tr>
<td>26</td>
<td>ผลการศึกษาค่าพิกัดที่เหมาะสมที่ถ่ายผ่านคลีต PMT</td>
</tr>
<tr>
<td>27</td>
<td>ผลการศึกษาความเข้มข้นที่เหมาะสมของสารละลายไคลไซเมเทอกมาตาฟอสเฟต</td>
</tr>
<tr>
<td>28</td>
<td>ผลการศึกษาความเข้มข้นที่เหมาะสมของสารละลายไกลเซนเมิร์อเรย์</td>
</tr>
<tr>
<td>29</td>
<td>แม่เหล็กในกระแสตัวฟ้า</td>
</tr>
<tr>
<td>30</td>
<td>ระบบฟองรัวฟอสฟอรัสฟิลินเจอร์เรย์ เคมิสซิ่งเจเนอร์ (PFI-CL)</td>
</tr>
<tr>
<td>31</td>
<td>ผลการศึกษาความเข้มข้นที่เหมาะสมของกรดฟอสฟอไรค์</td>
</tr>
<tr>
<td>32</td>
<td>ผลการศึกษาความเข้มข้นที่เหมาะสมของสารละลายไกลเซนเมิร์อเรย์</td>
</tr>
<tr>
<td>33</td>
<td>แม่เหล็กที่ใช้ใน squeeze สารละลายไคลサイเมเทอกมาตาฟอสเฟต</td>
</tr>
<tr>
<td>34</td>
<td>ผลการศึกษาอัตราการไหลของกระแสตัวฟ้าและกระแสเอนไซม์</td>
</tr>
<tr>
<td>35</td>
<td>ผลการศึกษาปริมาตรครอสเซอร์ตัวย่อยที่เหมาะสมที่ถ่ายผ่านระบบ</td>
</tr>
<tr>
<td>36</td>
<td>ผลการศึกษาความเข้มข้นที่เหมาะสมของกรดฟอสฟอไรค์</td>
</tr>
<tr>
<td>38</td>
<td>ตัวอย่าง PFI-CL gram ของสารละลายมาตรฐานชั้นฟิล 2 มิลลิกรัม/คิลิลิตร</td>
</tr>
<tr>
<td>37</td>
<td>ที่เยิ้มฟองกรดอร์ฟอร์บาร์มิเนียติ</td>
</tr>
<tr>
<td>39</td>
<td>ผลการศึกษาความเข้มข้นที่เหมาะสมของ Rhodamine B</td>
</tr>
<tr>
<td>40</td>
<td>การศึกษาค่าความเข้มข้นของกรดวิเคราะห์ปริมาณชั้นฟิล</td>
</tr>
<tr>
<td>41</td>
<td>ตัวอย่าง PFI-CL ของสารละลายมาตรฐานชั้นฟิล คั่วระบบ PFI-CL</td>
</tr>
<tr>
<td>42</td>
<td>การพิจารณาของกรดวิเคราะห์กรดวิเคราะห์ชั้นฟิล คั่วระบบ PFI-CL</td>
</tr>
<tr>
<td>43</td>
<td>ตัวอย่าง PFI-CL ชั้นฟิลที่ความเข้มข้นต่าง ๆ</td>
</tr>
<tr>
<td>44</td>
<td>ระบบกัณฑ์ฟิลวัน ฟิลอินเจคชั่นเพลย์เมทิมีเนชัน (GFDI-CL)</td>
</tr>
<tr>
<td>45</td>
<td>ผลการศึกษาความเข้มข้นที่เหมาะสมของกรดวิเคราะห์ฟิลวิสก์ที่ใช้เป็นกระแสตัวฟ้า</td>
</tr>
<tr>
<td>46</td>
<td>ผลการศึกษาอัตราการไหลของกระแสตัวฟ้า</td>
</tr>
<tr>
<td>47</td>
<td>กระแสมาตรฐานของกรดวิเคราะห์ชั้นฟิล ระหว่าง GFDI-CL และ PFI-CL</td>
</tr>
<tr>
<td>48</td>
<td>ตัวอย่าง GFDI-CL ชั้นฟิลและ PFI-CL ชั้นฟิลในการศึกษาความเข้มข้น</td>
</tr>
<tr>
<td>49</td>
<td>ตัวอย่าง GFDI-CL ชั้นฟิลและ PFI-CL ชั้นฟิลในการศึกษาความเข้มข้นของเครื่องมือ</td>
</tr>
<tr>
<td>50</td>
<td>ผลการศึกษาค่าจังหวัดสุทธิของเครื่องมือของกรดวิเคราะห์</td>
</tr>
<tr>
<td>51</td>
<td>ระหว่าง GFDI-CL และ PFI-CL</td>
</tr>
<tr>
<td>หน้า</td>
<td>ภาษา</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 95 | ภาพ ภาพมาตรฐานของภาพวาดหัวประจำยามชั้นให้ตั้งอยู่บนบัตรพิมพ์บนชิ้น。
<p>| | พลรัศมี โพลิโทรปี |
| 115 | กราฟกราฟคุณสมบัติชั้นให้ตั้งอยู่บนชิ้น โดยวิธีการเดิมมาตรฐานภูมิศาสตร์ |</p>
<table>
<thead>
<tr>
<th>ชื่อชั้น</th>
<th>อังกฤษชื่อ</th>
<th>คำอธิบาย</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Continuous Flow Analysys</td>
<td>ความเข้มข้นของสารด้วิเคราะห์</td>
</tr>
<tr>
<td>C<sub>0</sub></td>
<td>原い foule of the analyte</td>
<td>ความเข้มข้นของสารด้วิเคราะห์</td>
</tr>
<tr>
<td>CL</td>
<td>Chemiluminescence Flow Injection</td>
<td>เคมิลูมิเนเซนซ์</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion coefficient</td>
<td>ต่อจุดไม่ถี่</td>
</tr>
<tr>
<td>DPP</td>
<td>Differential Pulse Polarography</td>
<td>ดีพอลาร์กราฟรี</td>
</tr>
<tr>
<td>FI, FIA</td>
<td>Flow Injection Analysis</td>
<td>ฟล็อวอินเจคชั่นแอนะลิซิส</td>
</tr>
<tr>
<td>GDIF</td>
<td>Gas Diffusion Flow Injection</td>
<td>แกสดิฟฟูชั่นโฟลว์อินเจคชั่น</td>
</tr>
<tr>
<td>h<sup>-1</sup></td>
<td>ต่อจุดไม่ถี่</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
<td>โมลาร์</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
<td>มิลลิกรัม</td>
</tr>
<tr>
<td>mg<sup>-1</sup> l<sup>-1</sup></td>
<td>Milligram per liter</td>
<td>มิลลิกรัมต่อลิตร</td>
</tr>
<tr>
<td>ml/min</td>
<td>Milliliter per minute</td>
<td>มิลลิลิตรต่อนาที</td>
</tr>
<tr>
<td>m/V</td>
<td>Millimicrometer</td>
<td>มิลลิเมตร</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolt</td>
<td>มิลลิวอลท์</td>
</tr>
<tr>
<td>nA</td>
<td>Nanocoulomb</td>
<td>นาโนแคลอมป์</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
<td>นาโนเมตร</td>
</tr>
<tr>
<td>pH</td>
<td>pH</td>
<td>ความเป็นกรด-ด่าง</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier Tube</td>
<td>โฟโตมัลติพิลเลอร์ทับ</td>
</tr>
<tr>
<td>PFI</td>
<td>Pervaporation Flow Injection</td>
<td>พริวการเอ็นมโฟลว์อินเจคชั่น</td>
</tr>
<tr>
<td>PTFE</td>
<td>Poly (tetrafluoroethylene)</td>
<td>โพลี (เทตร้าฟลูอโรเอทานอล)</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
<td>หน่วยในสิบล้าน</td>
</tr>
<tr>
<td>%RSD</td>
<td>Relative Standard Deviation</td>
<td>เปอร์เซ็นต์ค่าเบี่ยงเบนมาตรฐานสัมพัทธ์</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
<td>ส่วนเบี่ยงเบนมาตรฐาน</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume to Volume</td>
<td>ปริมาตรต่อปริมาตร</td>
</tr>
<tr>
<td>x</td>
<td>ค่าเฉลี่ย</td>
<td>ค่าเฉลี่ย</td>
</tr>
<tr>
<td>μl</td>
<td>Microliter</td>
<td>ไมโครไลตร์</td>
</tr>
</tbody>
</table>
บทที่ 1
บทนำ

เนื่องจากไม่ป้องกัน ให้ความก้าวหน้าทางวิทยาศาสตร์และเทคโนโลยีอย่างไม่หยุดยั้ง ท้า
ให้นักวิเคราะห์พัฒนาการวิเคราะห์ต่าง ๆ ขึ้น เพื่อใช้ในการติดตามตรวจสอบสารพิษ สารปนเปื้
ต่าง ๆ ทั้งในธรรมชาติ สิ่งแวดล้อม และอาหาร ตลอดจนมีการพัฒนาวิจัยเพื่อชี้เรื่อย ๆ ทั้ง
งานวิจัยทางเคมีวิศวกรรมและเคมีประยุกต์ ซึ่งจะมาป้องกันการพัฒนาเทคโนโลยีและเครื่องมือต่าง ๆ ขึ้นมา
มากมายเพื่อรองรับงานวิจัยใหม่ ๆ โดยเฉพาะระบบอัตโนมัติที่สามารถป้องกันสารต้องห้าด้วย
เครื่องมือ ซึ่งจะมีความจำเป็นอย่างมากสำหรับการวิเคราะห์สารต่าง ๆ ที่มีความรู้สึกมาก
ด้วยอย่างมากกว่า เพื่อให้ได้ทราบวัตถุดิบด้วยความรวดเร็ว ประหยัดค่าใช้จ่าย และได้ข้อมูลเป็น
ที่น่าเชื่อถือได้ ซึ่งนอกจากจะนำมาใช้ในการแก้ปัญหาทางการวิเคราะห์ที่เกี่ยวข้องอยู่ในปัจจุบัน
แล้ว ยังเป็นเป็นพื้นฐานหรือวัสดุที่ในการวิจัยพัฒนาสิ่งใหม่ ๆ ให้เกิดขึ้น

ผลจากการพัฒนาการวิเคราะห์แบบระบบอัตโนมัติที่มีความสามารถใช้ในย้อนปฏิบัติการที่มีงาน
วิเคราะห์เป็นประจำ เช่น โรงไฟฟ้า โรงผลิตถ่านหินและองค์กรต่าง ๆ ที่มีการวิเคราะห์สาร
ต่าง ๆ ที่มีการใช้เพื่อตรวจดูผลแล้วเกิดขึ้นในระบบอัตโนมัติที่มีระบบหนังสือที่ป้องกันได้รับความสนใจอย่าง
มากคือ Flow Injection Analysis หรือ FIA หรือ FIA

การวิเคราะห์แบบโฟล์วอินเจคชั่นอินเล็กซิส (วิวัฒ. เรื่องศรี elevate, 2548)

ในช่วงระยะเวลาที่ผ่านมา นักเคมีได้ใช้ทฤษฎีการวิเคราะห์แบบอัตโนมัติที่สะดวก
รวดเร็ว ที่จะช่วยลดขั้นตอนในการทดสอบ หรือทำให้ประหยัดเวลาที่ใช้ในการวิเคราะห์ รวมทั้ง
ลด้วยการใช้อุปกรณ์และสารต่าง ๆ ลดการวิเคราะห์ที่ ตกค้าง และสามารถทำงานได้ทันทีที่ต้องการ โดยเฉพาะอย่างยิ่งใน โรงไฟฟ้าเชิงินเจริญ
อุตสาหกรรมที่ต้องการตรวจค้นค่าใช้จ่ายหรือวัตถุลับ หรือแม้กระทั่งในอุตสาหกรรมที่ต้องการ
ยกตัวอย่างเช่น ซึ่งมีการเรียบระบบการวิเคราะห์แบบโฟล์วอินเจคชั่นอินเล็กซิส (Flow
injection analysis) หรือ FIA ที่พัฒนาขึ้นโดย ป. อ. ช. Ruzicka นาและ E. H. Hansen (Ruzicka and Hansen,
1988) ในปี ค.ศ. 1975 มาปรากฏกับใช้ในการแก้ปัญหาดังกล่าวเรื่องการวิเคราะห์ซินโคที่มี
ความสามารถสำหรับการวิเคราะห์สารต่าง ๆ ที่มีความแตกต่าง ที่มีความสามารถใช้ในอุตสาหกรรมวิเคราะห์และเคมีประยุกต์ โดยถือเป็นได้รับรายงาน
วิจัยมากกว่า 16,500 ฉบับภายในช่วง 30 ปีที่ผ่านมา (Hansen, 2007: 4)
ประวัติความเป็นมา (กฤษ กรุตพันธ์, 2539: 9)

ประวัติความเป็นมาของเทคนิคโฟลิโอเน็คตันส์ตรอมอิลิโซกราม หรือ เฟิร์ม (FIA) นั้นได้ผู้พิมพ์ผลงานแสดงความคิดเห็นตามแนวคิดของตนเองชี้แจงต่อกันออกไปในแต่ละบุคคล

ในปี 1957 Skeggs แกรมมาร์วิทยาศาสตร์เพิ่มเติม เบื้องต้นเรียกว่า Continuous Flow Analysis (CFA) ซึ่งประกอบด้วย flow system รวมกับเครื่องมือวัดต่าง ๆ เช่น ตะป quá โรสโคหรือ อิลิโซกราม พบในชีวิทวิชีชีวิตหรือเป็นต้น หลักการก็คือให้เริ่มต้นสารด้วยคลาสและอากาศไหลผ่านท่อเหล็ก ๆ ด้วยอัตราเร็วที่เหมาะสมและคงที่ภายใต้การควบคุมของปั๊ม แล้วมานำกันกล่องเชิงที่ส่วนผสม หรือ mixing coil ซึ่งมีความยาวที่เหมาะสม ตามนั้นเจ้าของเครื่องตรวจสอบการไหลแบบต่อเนื่องนี้ภายในที่จะมีสูงของอากาศก็มีเช่น ๆ

Ruzicka ผู้นำกลุ่มนักวิทยาศาสตร์ชาวอเมริกัน ซึ่งเป็นผู้ที่ชื่นชอบเทคนิคโฟลี่โอเน็คตันส์ตรอมอิลิโซกราม ได้เขียนบทความแสดงความคิดเห็นว่าเทคนิค FIA มีหลักที่ได้คิดถึงอยู่ 3 ประการที่เป็นหลักเหตุперв้ คือ การติดสารตัวอย่าง (sample injection) การพร้อมกระจายที่ถูกควบคุม (controlled dispersion) และความจุในการระบาย (reproducible timing) และมีความที่น่านำเทคนิค FIA นั้นมีความกล้าศึกษาถึงเทคนิคโกรมาโทกราฟีของเท evasion liquid chromatography) ได้มากกว่าก็มีโกรมาโทกราฟี

การพัฒนาเนื้อถึงปัจจุบัน (กฤษ กรุตพันธ์, 2539: 9)

จากการกันиватьเอกสารที่เกี่ยวกับเทคนิค FIA พบว่า การพัฒนาเทคนิค FIA ถึงปัจจุบันอาจแบ่งได้เป็น 3 ช่วงใหญ่ ๆ ดังนั้นคือ
ในช่วงแรก (ระหว่างปี ก.ศ. 1975-1981) เป็นช่วงที่เกี่ยวข้องกับการพัฒนาเทคนิค FIA เพื่อให้เป็นวิธีการที่ไม่ซับซ้อน ที่มีประสิทธิภาพในการวิเคราะห์ โดยยืดโมเดลของเทคนิคนี้บางส่วน ๆ ที่มีความกลับกลิ่นกันที่ใช้ในการวิเคราะห์สารตัวอย่างที่เป็นของเหลว

ในช่วงที่สอง (ระหว่างปี ก.ศ. 1981-ปัจจุบัน) เป็นช่วงที่เทคนิค FIA ได้รับการพัฒนาอย่างกว้างขวางเพื่อเป็นแบบการวิเคราะห์แบบใหม่ สำหรับการวิเคราะห์องค์ประกอบในระบบของกระแสที่ไหล (flow stream) โดยใช้วิธีการวิเคราะห์โดยอุปกรณ์ชนิดต่าง ๆ เพื่อใช้ในการวิเคราะห์ขั้นสูงที่ yoğunของสาระทางซิวภาพที่มีความซับซ้อน และการสร้างแนวคิดพื้นฐานใหม่สำหรับการวิเคราะห์ทางจุดสารคลาสของเหลวโดยวิธีการอินิเม็ด

ในช่วงที่สาม ซึ่งเริ่มจากปัจจุบัน เป็นช่วงที่เยอะมากนักได้รับการพัฒนาให้เป็นวิธีการวิเคราะห์ที่สังกัดและมีประสิทธิภาพสำหรับสาระเคมีที่ใช้ในการวิเคราะห์อย่างมากและทำให้เกิดความเป็นไปได้สำหรับการออกแบบระบบอินิเม็ดในกลีกสำหรับการควบคุมในระบบการควบคุมและควบคุมกระบวนการทางอุตสาหกรรม และเพื่อศึกษาผลสารคลาสและกลีกของปิฏกิธานทางเคมี ตลอดจนกระบวนการทาง ๆ ทางกายภาพ เคมี ในสาระสำคัญ

ในปัจจุบันเทคนิค FIA ได้ถูกนำไปประยุกต์ใช้ในการวิเคราะห์ทางด้านต่าง ๆ อย่างกว้างขวางช่วยให้ในการวิเคราะห์ทางเคมี เคมีคลินิก เคมีกราม อุตสาหกรรม การเกษตรสิ่งแวดล้อม และ

หลักการพื้นฐานของเทคนิค FIA (Flowinstrument, no date.)

![Diagram](image)

ภาพ 1 แผนภาพอย่างง่ายของระบบโฟลว์อินสทริมเม้นท์ชีวิชิส

โฟลว์อินสทริมเม้นท์ชีวิชิส (FIA) เป็นเทคนิคการวิเคราะห์ทางเคมีอย่างอินสเตร์ของมิติใหม่ (Continuous Flow Analysis; CFA) ซึ่งที่ท้ายสุดการไหลอย่างต่อเนื่องจะภาพ 1แสดงแผนภาพอย่างง่ายของระบบ FIA ซึ่งทำโดยใช้สิ่งคลาร์ตัวอย่างปริมาณน้อย ๆ เข้าไปในกระแสตัววิ่งที่ไหลด้วยอัตราการไหลที่อย่างต่อเนื่องภายในที่มีภูมิคุณทางคลาสตัววิ่งจะเข้าตามกับกระแสตัววิ่งแล้วทำให้เกิดการเปลี่ยนแปลงทางกายภาพหรือทางเคมีและสามารถวัดการเปลี่ยนแปลงของตัวอย่างได้ เช่น การดูดกลืนแสง การเปลี่ยนค่าของกระแสไฟฟ้า ความเป็นกรด
คำเป็นต้น คุณภาพที่ได้จะเป็นลักษณะที่พื้นฐานที่จะถูกบันทึกและสามารถปรับปรุงของสารด้วยอย่างได้โดยวิธีการจากกราฟมากราบ ดังนั้นเพื่อให้ผลการทดลองเป็นที่น่าเชื่อถือ จึงต้องมีการควบคุมการระดมของสารตามกราบและสารด้วยอย่างให้เหมือนกัน ซึ่งในระบบ FIA จะขั้นหลักการพื้นฐาน 3 ประการ คือ

1) การใดถีสารตัวอย่าง (sample injection) เป็นการนำสารตัวอย่างเข้าไปในกระแสตัวว่า
 ที่ไหลอย่างต่อเนื่องที่จะได้รับนิวตรัลวิทยาศาสตร์ของสารด้วยอย่างที่ถูกค่อยละแบ่งทุกครั้ง

2) เวลาในการใดถีสารที่แน่นอน (reproducible time) ต้องใช้วาล์ที่แน่นอนและสม่ำเสมอ
 เพื่อให้ทุกครั้งจะไม่ซ้ำนั้นสารตัวอย่างจะทำปฏิกิริยากับกราฟสัมพันธ์อย่างต่อเนื่องที่ไม่คงที่ทำให้
 "residence time" ไม่แน่นอน ซึ่งจะมีผลต่อการวัดของเครื่องตรวจวัดสัญญาณ

3) การแพร่ใจถูกควบคุม (controlled dispersion) การแพร่ที่ถูกควบคุมของ sample zone ที่
 เกิดขึ้นในระหว่างการไหล และทำให้การแพร่เคลื่อนต่อเนื่อง ซึ่งส่งผลให้การคิด ที่เกิดขึ้นแบบ
 ลำดับของเครื่องบันทึกสัญญาณ ที่มีลักษณะเฉพาะของระบบ FIA เหนื่อน ซึ่งกระบวนการ
 แพร่ของสารตัวอย่างนั้น สามารถแบ่งได้ 3 ชนิด คือ การแพร่แบบจำกัด (limited dispersion) การ
 แพร่แบบปานกลาง (medium dispersion) และการแพร่แบบมาก (large dispersion) โดยลักษณะและ
 การนำไปใช้ของสารละลายโดยไม่เหมือนกัน ภาพแบบต่าง ๆ ของการกระจายแสดงได้ดังภาพ 2

![Direction of flow](image)

![Analyte concentration](image)

ภาพ 2 ภาพแบบต่าง ๆ ของการกระจายที่เกิดขึ้นของสารด้วยอย่างในท่อ
(ก) ไม่มีการแพร่กระจาย (ข) การแพร่กระจายเมื่อจากรถเข้า
(ค) การแพร่กระจายโดยการพานและแพร่ตั้งตั้งจากรถเข้า
(ง) การแพร่กระจายเมื่อจากรถเข้า
การแพร่กระจาย (Dispersion) (Informavorld, no date.)

ขั้นที่ sample zone เทียบกับฟิล์ท์สั้น ๆ ในระบบ FIA นั่น การกระจายตัวของ sample zone จะเพิ่มขึ้น การกระจายตัวของสารปริมาณน้อย D ซึ่งมีชนิดของชนิดสารเครื่องคือ

\[D = \frac{C_0}{C} \]

เมื่อ Co และ C แทนความเข้มข้นของสารที่จะวิเคราะห์ในสารตัวอย่างที่มีเข้าไปในระบบ FIA และความเข้มข้นของสารที่จะวิเคราะห์ที่จุดตรวจจะสั้นมาก D สามารถหาได้โดยการใช้ค่าสารละลายตัวอย่างที่ทราบความเข้มข้น Co เข้าไปในระบบ FIA วัดค่าความเข้มข้นของสารละลายตัวอย่างในขณะที่จุดตรวจวัด (C) ในระบบ FIA โดยแสดงการแพร่กระจายตัวภาพ 3

![Graph](image)

ภาพ 3 การแพร่กระจายในสารตัวอย่างในระบบ FIA

การแพร่ (D) เป็นสัดส่วนโดยตรงกับ อัตราการไหล ความยาวของท่อ และขนาดหรือปริมาตรของสารตัวอย่างที่ใช้นั้น เมื่อสารตัวอย่างปริมาณมาก การแพร่จะมีค่าเป็น 1 ภายใต้สารละลายในกรณีนี้จะไม่มีการฝักของสารตัวอย่างที่ถูกการในกระแสตัวท่อหรือเครื่องมือ ซึ่งไม่มีการแพร่ของสารตัวอย่างเกิดขึ้นด้วย ในการวิเคราะห์โดยวิธี FIA ส่วนมากจะมีการให้มีปริมาณของสารตัวอย่างกับกระแสตัวท่อที่ต่าง ในกรณีนี้การกระจาย หรือ D จะมีค่ามากกว่า 1 เสมอ

พบว่าในเทคนิค FIA จะมีการกระจายตัว 3 แบบ คือ การกระจายตัวแบบฝักก้น การกระจายตัวแบบปานกลาง และการกระจายตัวอย่างมาก ซึ่งมีค่าการกระจาย (D) อยู่ในช่วง 1-3, 3-10 และมากกว่า 10 ตามลำดับ
การกระจายที่ถูกควบคุม (Dispersion controlled)

เมื่อศึกษาที่ข้างหลังการกระจายตัวของสารด้วยการในกระแสตัวพาซึ่งอาจเป็นเรือเจนส์หรือตัวทำละลาย เช่นสูตรเครื่องสำหรับ
c และตัวย่อยจะมีการกระจายตัว 3 ลักษณะคือ

1. การกระจายตัวแบบจำกัด (limited dispersion) มีการกระจายตัวของ sample zone น้อยมาก (D มีค่าอยู่ระหว่าง 1-3) พบมากในสารวัสดุบางประเภทซึ่งมักจะมีการควบคุมของน้อยที่สุด เช่นคูหมาต่ำความเป็นกรดเป็นเจนส์ (pH) การน้ำทิ้ง (หรือ ionic strength) ของสารตัวอย่างสารละลายที่ใช้เป็นกรดและสารละลายที่ไม่มีผลกระทบต่อการวิเคราะห์สารตัวอย่างได้เพียงเท่านั้นที่เป็นตัวควบคุมตัวอย่างซึ่งสูตรเครื่องตรวจวัดได้ ทำให้การกระจายตัวของ sample zone แบบนี้จะมีปัญหาในการวิเคราะห์สาร โดยใช้ส่วนตรวจวัดขนาดของมิกเนเชอร์พันธุ์สามารถไปยังคุณสมบัติที่พื้นเบื้องต้นมา หรือใช้การระบบ FIA ที่ใช้เครื่องตรวจวัดชนิดไฟฟ้าเท่านั้น

2. การกระจายตัวแบบเบาบาง (medium dispersion) มีการกระจายตัวของ sample zone ปานกลาง (เช่นข้างย่อยในระดับปานกลาง) ในกระแสตัวพาที่ทำน้ำที่เป็นเรือเจนส์ และตัวทำละลายจนที่จะเข้าสู่เครื่องตรวจวัด การกระจายตัวของ sample zone แบบนี้มีค่า D มีค่าอยู่ระหว่าง 3-10 ซึ่งเป็นช่วงที่เหมาะสมสำหรับใช้ในการวิเคราะห์โดยวิธี FIA เป็นส่วนมาก เพราะเป็นเวลาที่เหมาะสมที่จะให้เกิดการผสมของสารตัวอย่างจากกระแสตัวพา และสารละลายของเรือเจนส์ ทำให้เกิดสารประกอบหรือสารประกอบอื่นซึ่งสามารถดูดกลืนเรือเจนส์เพื่อให้การแสดงแบบพื้นที่ขนาดเล็ก (fluorescence) ซึ่งสามารถตรวจจับโดยเครื่องตรวจวัดได้ การกระจายของ sample zone แบบนี้จะต้องให้สารที่ปฏิกิริยาร่วมเกิดออกในอนุณที่ความสูงของพิกช์จะลดลงเมื่อการกระจายตัวของ sample zone เพิ่มขึ้น ดังนั้นจึงเป็นต้องที่เหมาะสมของยานวิเคราะห์หลอดอัตราสารตัวอย่าง และดูแลตรวจวัดให้เหมาะสม

3. การกระจายตัวอย่างมาก (height dispersion) จะมีการกระจายตัวของ sample zone อย่างมากในกระแสตัวพา ซึ่งมีค่า D มากกว่า 10 ทำให้ความยาวที่ทำให้ mixing coil หรือ reaction part ระหว่างพิกช์ไปสู่เครื่องตรวจวัดอย่างมาก ทำให้จะรวมมันการกระจายตัวของ sample zone แบบนี้จะมีปัญหาในการวิเคราะห์สาร โดยวิธี FIA–titrimetry ความกว้างของพิกช์ที่จุดกั้นกลางของความสูงของพิกช์จะเป็นสัดส่วนโดยตรงกับความเข้มข้นของสารที่จะวิเคราะห์ ซึ่งใช้ส่วนการวิเคราะห์เชิงปริมาณได้

การเปลี่ยนแปลงที่เกิดขึ้นนี้ไม่จำเป็นต้องเกิดขึ้นสมบูรณ์เสมอไป สิ่งที่สำคัญคือการ
ที่ใช้ในการทดลองทั้งของสารละลายมาตรฐาน และสารตัวอย่างต้องเหมือนกันทุกกระบวนการ คือ residence time อุณหภูมิ และการแพร่ของสารจะต้องคงที่

ระบบ FIA จัดเป็นระบบที่ใช้เวลาสอบสวนที่สั้น ให้ดูถูกต้อง FIA ใช้เวลาเป็นวินาทีที่สั้น ให้วิเคราะห์ตัวอย่างได้อย่างรวดเร็ว (หลาย ๆ ตัวอย่างในระยะเวลาอันสั้น) ให้ตัวอย่างและเรียบเรียงในปริมาณเท่ากันในระยะไมโครอิลิตร เมื่อระบบ FIA พร้อมที่จะใช้งานได้ จะใช้เวลาประมาณ 2-3 นาทีในการวิเคราะห์ตัวอย่างซึ่งต่างจากเทคนิคที่ไม่ใช้ FIA

อย่างไรก็ตามในบางการทดลองในขั้นตอนการเตรียมสารตัวอย่างพบว่า ในการใช้สารเสริม เพื่อเป็นนูนเย็นในการสกัดแยกสารตัวอย่างเพื่อติดตามตรวจสอบสารไปเป็นเครื่องมือแพร่พิม ต่างๆ เหล่านี้ ในบางครั้งกับการใช้งานสารเสริมที่มีพิษมากก็ไม่สามารถทำให้สารต้องการทดสอบเกิดขึ้น บางครั้งที่ขั้นตอนต่าง ๆ ซึ่งซับซ้อนในการเตรียมตัวอย่างเพื่อให้เหมาะสมกับเครื่องมือวิเคราะห์ที่พัฒนาขึ้น ดังนั้นจึงได้มีการพัฒนาเทคนิคใหม่ ๆ มาเพื่อช่วยลดขั้นตอนการวิเคราะห์และลดการใช้งาน สารเสริมเหล่านี้ในนวัตกรรม โดยเฉพาะในขั้นตอนการสกัดแยกสารตัวอย่างที่ใช้ออกจากแมตริกซ์ หรือสิ่งปนเปื้อนในตัวอย่าง ซึ่งเป็นที่มาของเทคนิคการแยกแบบออนไลน์ (online separation) แบบ ต่าง ๆ ซึ่งเป็นเทคนิคที่มีวิธีการและขั้นตอนการวิเคราะห์ที่พัฒนามาจากวิธีให้อัลตร้าซาวนด์ไวช์ นิสสีและหลักการของกลุ่มสาระเคมีเฉพาะที่เหมาะสมกับการวิเคราะห์เชิงเคมี ที่สามารถอุ่นมนต์ตัวอย่างได้โดยตรงที่ไม่ต้องใช้เครื่องมือวิเคราะห์ที่มีประสิทธิภาพสูง ซึ่งตัว ตรวจวัดที่มีใช้เช่น สะเกตไพรโอโลจีเมตร หรือเครื่องมือตรวจวัดที่มีใช้เช่น เทคนิคการแยกแบบออนไลน์ (online separation) จะช่วยลดขั้นตอนการเตรียมสาร ตัวอย่างที่อุ่นมนต์และสามารถควบคุมสารเคมีและสารตัวอย่างต่างไปมา มีค่าอย่างชัดเจนที่มีข้อเสียจาก การทดลองนี้อย่างชัดเจน

นอกจากนี้เทคนิคการแยกแบบออนไลน์ มีโอกาสพัฒนาต่อยอดเป็นเครื่องมือจากสามเหลื่อม ของกระรัดคัลล์ ที่มีราคาไม่สูงมาก ที่หน่วยงานหรือสถาบันประกอบการขนาดเล็กสามารถสร้างขึ้น หรือซื้อขายได้ในทางประการชี้วัดของตนเองได้ โดยยังคงประสิทธิภาพของเครื่องย่อยที่สร้างขึ้นเอง เหล่านี้ให้มีความสามารถในการติดตามสารเปลี่ยนที่มีอยู่ในปริมาณน้อย ๆ (trace analysis) ได้

เทคนิคการแยกแบบออนไลน์ (Online separation) (Informaworld, no date.)

การแยกแบบออนไลน์ เป็นระบบการแยกสารหรือการเพิ่มความเข้มข้นของสาร ตัวอย่างในระบบที่มีการไหลอย่างต่อเนื่องโดยในปัจจุบันมีการพัฒนาวิธีการต่าง ๆ ในการแยกสาร
แบบสอนใหม่เข้ามาขยายการใช้คลอเมอร์ชนิดแยกเปลือยออซอนพาเติล (Ion-exchange microcolumn) การสกัดด้วยสารละลาย (solvent extraction) โดยโอโซน (dialysis) การพิสูจน์ผ่าน (gas diffusion) และเอาเวอร์เปอร่าช์ (perovaporation) เป็นต้น ซึ่งกระบวนการเหล่านี้จะช่วยให้การวิเคราะห์สารตัวอย่างที่มีบรรจุอยู่ในส่วนขนาดนูนีมีสารในเกลือไข่ สารแขวนลอย สารที่มีอุณหพลังก้อนสูง สามารถนำมาวิเคราะห์ด้วยระบบ FIA ได้โดยตรงโดยไม่จำเป็นต้องผ่านการเตรียมตัวอย่างขั้นตอนก่อนแต่อย่างใด ทำให้การวิเคราะห์สามารถทำได้อย่างสะดวกมากขึ้น

ก้าวที่สี่ (Gas diffusion) (Globalfia, no date.)

วิธีก้าวที่สี่เป็นเทคนิคการแยกสารตัวอย่างแบบหนึ่งที่อาศัยการละลายและการผ่านด้วยกันที่อยู่ในสถานะก้าวหรือสามารถเปลี่ยนให้อยู่ในสภาพของก้าวโดยปฏิกิริยาทางเคมี โดยใช้ผ่านเยื่อผ่าน (gas membrane permeable) ในการแยก ซึ่งเทคนิคก้าวที่สี่ที่จะอาศัยการผ่านเยื่อผ่านของสารตัวอย่างบางชนิดที่ระเหยได้ง่าย วิธีการนี้ไม่เพียงแต่ใช้สำหรับแยกก้าวที่และแอลกอฮอล์ได้เท่านั้น แต่ยังใช้สำหรับคัดแยกสารที่เหลืออีกด้วย วิธีก้าวที่สี่ยังเป็นเทคนิคที่มีรายงานครั้งแรกโดย Banden Huijsten และ Deuren-Jacobs เพื่อใช้ในการแยกสารตัวอย่างในภาพสามและเสี้ยด (Baadnhuijsten and Seuren-Jacobs, 1979: 443) และตรวจวัดด้วยเครื่องแปรโปรตโอโลมิตร

โดยวิธีก้าวที่สี่นั้นถูกออกแบบมาเพื่อใช้กับการส่งผ่านมวล (mass transfer) ด้วยกระแสการไหล 2 กระแส ที่ลูกออกจากก้าน โดยใช้เยื่อผ่านผ่านแผนบัง ฯ ที่มีการผ่านผ่านของสารตัวอย่างผ่านผ่านของเยื่อผ่านซึ่งสามารถนับได้ดังภาพ 4

![ภาพ 4 กระแสการน้ำม่วงของสารตัวอย่างในก้าวที่สี่](Globalfia, no date.)

จากในภาพ 4 จะมีกระแสไหลหนึ่งเรียกว่ากระแสตัวให้ (donor stream) ซึ่งสามารถเป็นได้ทั้งของเหลวหรือก้าวซึ่งมีลักษณะเรียกว่ากระแสตัวรับ (receptor stream หรือ acceptor stream) ซึ่งจะมีกระแสที่มีกระแสตัวอย่างหรือเรียกที่ไหลอยู่ในชั้นชิดสารเคมีบางอย่างเข้าไปที่ปฏิกิริยาเน์สารที่อยู่ในกระแสตัวให้สารตัวอย่างเจริญผลติดกันที่อยู่ในสถานะก้าวที่ละลายอยู่จะเกิดการเปลี่ยนแปลง (semi-permeable) เหนี่ยวน้ำเปลี่ยน
ผ่านเข้าสู่กระบวนการดังกล่าวได้โดยมีสารบางดัชนีที่จะแพร่ผ่านเยื่อเลอกผ่านโดยวิธีการเหลวมวดไปยังสารละลายที่อยู่ในกระแสตัวรับได้

เนื่องจากการวิ่งไปไม่เพียงก้านที่จะแพร่ผ่านได้แต่ยังผ่านเยื่อเลอกผ่านไปแต่ก็จะต้องทำการน้ำที่อยู่ในกระแสทางกายภาพหรือทางเคมีที่มีอัตราการที่จะสามารถน้ำมาใช้สำหรับการแสดงสารภายในเจริญภาพได้อย่างต่อเนื่อง

ชนิดความแตกต่างของเยื่อเลอกผ่านที่ใช้ก้านในกระแสแพร่ผ่านเยื่อเลอกผ่านสำหรับระบบ FIAมีอยู่หลายชนิด และตัวอย่างที่พบว่ามีการใช้งานเมื่อ 3 ชนิด ดังนี้

1. Porous membrane เช่น microporous Teflon หรือ PTFE
2. Nanoporous membrane เช่น silicone rubber
3. Ionic membrane เช่น nafion®

การย้ายมวลผ่านผนังของเยื่อเลอกผ่านจะขึ้นอยู่กับปัจจัยหลายชนิด เช่น ความหนาของเยื่อเลอกผ่าน หรืออัตราการไหลของ donor และ acceptor stream ดังนั้นเยื่อเลอกผ่านที่บางจะไม่นำมากถึงนิยมได้โดยทั่วไปในระบบที่ใช้คิดพิทวิชั่น ได้ผลิตภัณฑ์ของเยื่อเลอกผ่านจะต้องอยู่ระหว่าง 0.01 มิลลิเมตร ถึง 0.2 มิลลิเมตร

ชนิดของระบบเยื่อเลอกผ่านที่ใช้ในหน่วยก้าวคิดพิทวิชั่นและการออกแบบหน่วยก้าวคิดพิทวิชั่นให้ได้ก้าวพื้นที่เพียงพอในงานวิเคราะห์ตน แต่สำหรับหน่วยที่มีใช้ในระบบเป็นชนิดแบบบาน (flat plate) หรือชนิดท่อที่มีเป็นหลอดหรือท่อ (tube in a shell) โดยตัวอย่างการออกแบบหน่วยก้าวคิดพิทวิชั่นชนิดแบบบาน แสดงดังภาพ 5

![Diagram](attachment:image.png)

ภาพ 5 หน่วยก้าวคิดพิทวิชั่นแบบบาน (flat plate) (Globalfia, no date.)

การใช้เยื่อเลอกผ่านกันระหว่างกระแสตัวรับให้ช่องอยู่ช่วงหนึ่งของหน่วยก้าวคิดพิทวิชั่น และอีกช่องหนึ่งเป็นกระแสตัวรับโดยสารตัวอย่างจะถูกเคลื่อนที่ไปในกระแสของกระแสตัวรับให้ช่องมีเวลาระยะทางของขนาดและระยะทางที่ขาตัวอย่างจะแพร่ผ่านรูรูช่องเยื่อเลอกผ่านไป
ยังกระแสน้ำรับและทำปฏิกิจภักดีสารที่อยู่ในกระแสน้ำให้เกิดการเปลี่ยนแปลงซึ่งสามารถตรวจวัดการเปลี่ยนแปลงนี้ได้โดยใช้เครื่องตรวจวัดค่าที่ทำการเปลี่ยนแปลงทางกายภาพต่าง ๆ ซึ่งสามารถตรวจวัดได้โดยคัดคットหรือกล่าวโดยความเหมาะสม ปัจจัยการละลายและการแพร่ของสารตัวอย่างของระบบไฟฟ้าคิวชั่นแบบเรียบลักษณะอยู่กับปริมาตรของสารตัวอย่างที่ถูกติดความหนาของเยื่อเลือกผ่านที่หนาตั้งของเยื่อเลือกผ่าน ขนาดของช่องในเยื่อเลือกผ่าน และอัตราการไหลของกระแสน้ำในกระแสน้ำให้เกิดการแพร่รับ

ส่วนที่น่ายกิจให้พบชนิดที่มีเปล็อกทูม (tube in a shell) แสดงจากภาพ 6 มุ่งกิจให้พบชนิดนี้คือใช้ fiber membrane ชนิดที่เป็นอย่างบางที่มีเปล็อก (shell) ถูกบรรจุขึ้นโดยทั่วไปกระแสน้ำรับจะถูกผ่านผ่านท่อภายใน (hollow fiber) และกระแสน้ำให้ผ่านเปล็อกผ่านทูม (shell) ซึ่งล้อนรอบของผูานอก

![Image](image-url)

ภาพ 6 มุ่งกิจให้พบชนิดที่มีเปล็อกทูม (tube in a shell) (Globalaffia, no date.)

เพื่อร่วมพะรัวซั่น (Pervaporation) (ธุรทิพ ปุญเกศ, ม.ป.ป.)

วิธีเพื่อร่วมพะรัวซั่น ถูกกันพบโดย Kober ในปี ค.ศ. 1917 และได้มีการศึกษาพัฒนามาต่อเรื่อยมาจนถึงปัจจุบัน คำว่า pervaporation นั้นมาจากคำว่า permeation และ evaporation (การซึมผ่านและการระเหยเป็นไอ) วิธีเพื่อร่วมพะรัวซั่นนี้ เป็นกระบวนการที่อาศัยเยื่อเลือกผ่านในการแยกสารโดยใช้เยื่อเลือกผ่านที่มีรูรูรู กล่าวถึงวัสดุที่มีวิศวกรรม

แต่ในการแยกโดยใช้ วิธีเพื่อร่วมพะรัวซั่นนั้น จะมีขั้นตอนการแยกวิวัฒนาเยื่อเลือกผ่านที่แตกต่างจากวิธีกิจคิวชั่นอยู่ 3 ขั้นตอนคือ
1. กระบวนการดูดซับของสารตัวอย่างสู่เยื่อเลือกผ่าน
2. กระบวนการแห้งผ่านเยื่อเลือกผ่าน
3. กระบวนการขยายหรือเรียบร้อยของสารตัวอย่างออกจากเยื่อเลือกผ่านสู่ชนอนอก

โดยสารที่ผ่านเยื่อเลือกผ่านออกมาจะอยู่ในสภาพไอ เมื่อจากความดันจากออกมามีค่าเท่ากับความดันไอที่ข้างเขา การทำให้ความดันตั้งบิน ยังสำคัญในวิธีนี้คือเยื่อเลือกผ่านเจริญคือเยื่อ
เครื่องมือที่เหมาะสมโดยชนิดของถังเลือกแบบเป็น hydrophilic membrane ซึ่งใช้แยกน้ำออกจากสารละลายในเครื่อง และ hydrophobic membrane ซึ่งใช้แยกสารอินทรีย์ออกจากน้ำ

การแยกสารที่สนใจออกจากตัวอย่างแบบนี้โดยอาศัยวิธีที่เรียกว่าแพร์พาวเวอร์ชั่น นั่นเป็นวิธีการแยกด้วยถังเลือกผ่านที่ถูกพัฒนาขึ้นจากวิทยาจุลพืชชิม โดยกลุ่มนักเคมีชาวปีนี้เพื่อใช้แยกสารที่ระเหยได้หรือละลายได้บางส่วน (volatile and semi-volatile) ออกจากตัวอย่างที่แตกต่างหรือมีการเปลี่ยนคุณชิม เช่นตัวอย่างที่มีสารคลอรีนีฟิวส์ สารกั้นของรูนูร์ สารนิโคโลสิต ไนโอ หรือนิโคลาเมนท์ที่ไม่เจาะลึกอยู่ในสารละลายตัวอย่าง ซึ่งไม่อาจในทางน้ำได้ด้วยวิธีการจุลพืชชิมแบบธรรมดา เนื่องจากระบบเป็นแบบหลักเครื่องมันรายละที่เกิดการเคลื่อนภาพของถังเลือกผ่าน หรือทำให้เกิดการจุดต่ำของรูนูร์ในถังเลือกผ่าน ทำให้ประสิทธิภาพในการแยกตัวอย่าง โดยเทคนิคแพร์พาวเวอร์ชั่นนี้จะช่วยในการเพิ่มประสิทธิภาพของถังเลือกผ่าน เนื่องจากมีช่องอากาศ (air-gap) ระหว่างกิ่งก้านของกระแสของตัวอย่างและถังเลือกผ่านดังภาพ 7

![Diagram](image)

ภาพ 7 หน่วยแพร์พาวเวอร์ชั่น (pervaporation unit)

จากข้อคิดที่กล่าวมาข้างต้นทำให้สามารถใช้เครื่องมือที่มีการเปลี่ยนสูงไม่สัมพันธ์กับถังเลือกผ่านโดยตรง ทำให้สามารถใช้เครื่องด้วยถังที่แยกおすすめในการแพร์พาวเวอร์ได้โดยตรง เมื่อสารที่สนใจในสารตัวอย่างทำปฏิกิริยาขั้นสำเร็จที่เหมาะสมในกระแสผ่าน ที่จะทำให้สารที่สนใจเปลี่ยนไปอยู่ในสภาพก้าว และผ่านช่องอากาศ (air gap) ที่กว้างหน้าของสารตัวอย่างแปรตัวอยู่ขั้นเย็นนี้ถังเลือกผ่านซึ่งสูงขึ้นระดับต่ำอีกกระแสนั้น ทำให้สำหรับที่เย็นชุดอยู่ช่วงเวลายาวนานที่เหมาะสมต่อไป

การนวัตกรรมแพร์พาวเวอร์ชั่นไปใช้งานนี้ จะสามารถประหยัดพื้นที่ใช้งานในด้านต่าง ๆ ได้ดังนี้
1. การแยกน้ำ (dehydration) เป็นการแยกน้ำจากการลงถังของสารอินทรีย์ เช่น การแยกน้ำออกจากแอลกอฮอล์ (ethanol, isopropanol)

2. การแยกสารอินทรีย์ออกจากสารละลายของสารอินทรีย์-น้ำ เช่น การแยกพิษออกจากรน้ำทั้งหมด การแยกสารได้กลับมา

3. การแยกสารอินทรีย์ออกจากสารผสมอินทรีย์ เช่น α-xylene, p-xylene เป็นต้น

โดยสารอินทรีย์หรือสารในน้ำใน 2 ข้อสิ้นสุดเป็นอยู่ตามที่ระบบได้ระบุและในผลิตภัณฑ์ที่กล่าวถึงไม่ได้

จากกลุ่มสมมติที่กล่าวมาข้างต้น จึงทำให้กระบวนการแยกสารบนระบบพิษพะพูนทันสมัยสามารถแก้ไขปัญหาในการวิเคราะห์สารด้วยจอยที่สกปรก เช่นด้วยยังطفักน้ำน้ำที่เครื่องย่อยอาหารที่เป็นสิ่งมีชีวิตในน้ำน้ำหรือเป็นย่อยเดี

ตัววิจัยที่ใช้ในระบบโฟตอนเล็กเช่นและมีผลชีวิต (เก็ตุ้น กรุณา, 2539)

สิ่งสำคัญที่ควรทำการที่จะทำให้การวิเคราะห์แบบโฟตอนเล็กเป็นนวัตกรรมชีวิต เป็นการวิเคราะห์สารน้ำที่น้ำได้อย่างมีประสิทธิ์และมีประสิทธิ์สูง คือการเลือกใช้ตัววิจัยที่เหมาะสมกับสารตัวอย่างที่สาคัญมาก ระบบในการวิเคราะห์โดยเทคนิค FIA จะทำให้การวิเคราะห์ปริมาณของสารตัวอย่างโดยละเอียดสมบัติโดยสมบัติที่เรียกชื่อสารตัวอย่าง สมบัติของเครื่องวัดวิเคราะห์สัญญาณของระบบ FIA จะต้องมีสมบัติตั้งแต่

1. มีการตอบสนองที่รวดเร็ว
2. มีความจำพอ
3. มีสัญญาณความดันและมีความไวสูง
4. สัญญาณที่ได้จากเครื่องวัดจะต้องไม่ขึ้นอยู่กับการเปลี่ยนแปลงของอุณหภูมิอัตราเร็วของการไหล และอื่น ๆ
5. มีความแน่นอนและให้สัญญาณที่คงที่
6. ให้สัญญาณที่น่าเชื่อถือและกับความเข้มข้นของสารตัวอย่าง
7. มีชนิดที่หลากหลาย
8. มีสภาพแบบที่ไม่เข้าข้อง

โดยด้วยการวิเคราะห์เปลี่ยนแปลงที่เกิดขึ้นสามารถออกแบบทั้งทางการเปลี่ยนแปลงคุณสมบัติทางกายภาพ และการเปลี่ยนแปลงทางเคมี โดยอาศัยการทำปฏิบัติภัยที่เรียกชื่อที่เหมาะสม ซึ่งในปัจจุบันมีเครื่องตรวจจัดหลายชนิดที่นำมาใช้งานได้ البلدระบบ FIA ได้จัดตารางที่สามารถทำให้

<table>
<thead>
<tr>
<th>SPECTROMETRY</th>
<th>ELECTROCHEMICAL TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. UV/VIS spectrometry</td>
<td>1. Amperometry</td>
</tr>
<tr>
<td>2. Turbidimetry/Nephelometry</td>
<td>2. Conductometry</td>
</tr>
<tr>
<td>3. Refractometry</td>
<td>3. Potentiometry</td>
</tr>
<tr>
<td>4. Atomic absorption spectrometry</td>
<td>Ion selective electrode</td>
</tr>
<tr>
<td>5. Chemoluminescence/Bioluminescence</td>
<td>Redox electrode</td>
</tr>
<tr>
<td>6. Fluorimetry (both molecular and atomic)</td>
<td>Voltammetry</td>
</tr>
<tr>
<td>7. ICP-AES</td>
<td>- polarography</td>
</tr>
<tr>
<td>8. MS & ICP-MS</td>
<td>- Anodic or cathodic stripping</td>
</tr>
<tr>
<td>9. Molecular emission cavity</td>
<td>5. Choromophotentiometry</td>
</tr>
<tr>
<td>10. Flame photometry</td>
<td>- Potentiometry stripping analysis (PSA)</td>
</tr>
<tr>
<td>11. IR/FTIR spectrometry</td>
<td></td>
</tr>
<tr>
<td>12. Raman spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>

โดยตัวตรวจวัดส่วนใหญ่ที่ใช้ทางเภสัชโฟกุร์สกี้ และ การตรวจวัดดีนแนบบิลิทซ์ไฟฟ้า มักจะมีความจุเพราะที่ดี และมีความไว้ดี และมีสัญญาณบวกค่อนข้างสูง และมีขนาดคือใหญ่ ดังนั้น ปัจจุบันยังมีการพัฒนาใช้เทคโนโลยีตรวจวัดที่มีความจุเพราะที่สูง แม่นยำ และมีการตอบสนองที่รวดเร็วและมีภาพแบบที่ไม่ซับซ้อน เช่น โดยตัวตรวจวัดที่กล่าวถึงนี้ไม่ใช่ปัจจุบัน คือเทคโนโลยี

มีรูปแบบที่ซับซ้อนได้อย่างมากในโครงร่างหรือในกรันเดียต

การตรวจวัดแบบคลื่นอินเฟอร์เรนซ์

แกล้มรูปแบบมีรูปแบบ (Harvey, 1957) หมายถึง คลื่นแม่เหล็กไฟฟ้าที่เกิดขึ้นจากปฏิกิริยาทาง เกลี่ยโดยอาจเป็นรังสีลอกตราไวโอลัค วิสบิลล์ หรือ รังสีอิมพัลสร้างที่ได้จากการแกิน์มีรูปแบบชนิดนี้

จะเกิดการเปลี่ยนแปลงระดับพลังงานจากสารบางคู่ไปยังสภาวะที่ของโมเลกุลหรือ

ไอออน ซึ่งก็คือจากการกระตุ้นด้วยปฏิกิริยาทางแกล้มแล้วมีการปล่อยพลังงานแสงออกมา ซึ่งก็

คล้ายกับกระบวนการทการทำงานของโฟโตคลื่นอินเฟอร์เรนซ์ (photoluminescence)
ความแนะนำในการวิเคราะห์แบบเกิดมุ่งมั่นเสนอข้อมูล ถึงคือความสามารถในการสร้างโมดลที่จะปลอดภัยหลังจากสอบออกมาได้โดยไม่จำเป็นต้องมีการระดุนด้านการรายรับค่อนข้างจะช่วยให้หลักสิ่งปัญหาที่เกี่ยวกับการเปลี่ยนแปลงจากแรงงานรวมไปถึงปัญหาทางด้านกระบวนการกระตุ้นให้เกิดแสงและความไม่เสถียรของเหล็กลำเนินการต่อไป
dโดยทั่วไปการวิเคราะห์และการนำไปใช้ประโยชน์ของคอมมิวนิสม์ในด้านที่เป็นของเหลว สามารถเปล่งออกมาได้เป็น 2 ประเภทคือ ประเภทแรกเป็นกระบวนการเกิดปฏิกิริยาแบบเกิดมุ่งมั่นเสนอข้อมูลแบบทั่วไป โดยจะเป็นการใช้ประโยชน์จากการเกิดปฏิกิริยาของสารพุทธของโรมัล luminal, acridinium esters, peroxoalates, dioxetanes และ tris(2,2΄-bipyridyl) ruthenium(II) ทั้งนี้ประเภทที่สองเป็นประเภทที่มีความกังวลด้านกับปฏิกิริยาชนิด oxidant-analyte ซึ่งจะเป็นสารตัวตัวโดยตรงที่ใช้ในกระบวนการเปล่งแสง เกิดมุ่งมั่นเสนอข้อมูลที่เรียกว่า“direct CL determination” เกิดมุ่งมั่นเสนอข้อมูลที่เรียกว่า “direct CL determination” เกิดมุ่งมั่นเสนอข้อมูลที่เรียกว่า

หลักการวิเคราะห์แบบเกิดมุ่งมั่นเสนอข้อมูล (Zamora, et al. 2001: 4301)

หลักการวิเคราะห์แบบเกิดมุ่งมั่นเสนอข้อมูล โดยทั่วไปแล้วจะเกิดการเกิดปฏิกิริยาที่สามารถเปล่งแสงหลังจากที่มีความเข้มข้นของสารออกมาก่อนค่อนข้างในระยะเวลานาน ซึ่งจากปฏิกิริยาที่จะทำให้สามารถที่มีการตัวการหรือวิธีการความเข้มข้นของสารที่เปล่งแสงออกมาได้โดยอาศัยเครื่องมือหรือวิธีการว่า ๆ ไม่ซับซ้อน โดยจะสามารถวัดความเข้มข้นของแสงได้ด้วยหลอดแสง (photomultiplier tube; PMT) เพร้าว่าแสงเกิดนัยเห็นจะอยู่ในสารคุณที่ในการทำปฏิกิริยาก่อนแล้วจึงไม่จำเป็นที่จะต้องใช้เครื่องแบ่งแสงความยาวคลื่นเพื่อมายแยกความค่าด่างของช่วงความยาวคลื่น เหมือนกับแขวนในกระบวนการตรวจวัดขั้นสูงที่อยู่ในเครื่องมือหลอดชนิด โดยระบบการตรวจวัดจะมีการเปลี่ยนแปลงเพื่อให้เกิดชัดเจนที่สุด ไม่ว่าจะเป็นกระบวนการแบบใช้แรงงานคอมพิวเตอร์ หรือกระบวนการแบบอัตโนมัติ เช่น การเดินเรือจนค์ การรวบรวมและประมวลผลข้อมูลเป็นตน

วิธีวัดค่าของคอมมิวนิสม์ มีอยู่ 2 แบบ คือ
1. ทำให้วัดค่าในสารละลายที่คงที่ (static solution)
จะมีการผสมเกิดในสารละลายที่คงที่ให้เกิดปฏิกิริยาที่เกิดมุ่งมั่นเสนอข้อมูลและตัวอย่างที่นั้น อาจเน้นจำนำนกตัวอย่างที่ใช้ในการวัด แล้วนำเข้าเข้าตรวจวัดของมุ่งมั่นเสนอข้อมูล (luminometer chamber) ที่มีส่วนของตลอด เป็นส่วนประกอบโดยใช้หลอดซีดิก เป็นตัวค้นสารเคมีที่ทำให้เกิดมุ่งมั่นเสนอข้อมูล ไปในมุ่งมั่นเสนอต่อไปตามในคิวเวตต์ในภาพ 8 และในภาพ
9 แสดงการเปลี่ยนแปลงของค่าความเข้มแสงภูมิคุ้มกันในช่วงเวลาที่มีการทำปฏิกิริยา ความสูงของเส้นโค้งหรือพื้นที่ใต้เส้น ได้เปลี่ยนแปลงจากความเข้มข้นของตัวอย่างในทางกลับกันส่วนของความยาวหรือส่วนของเส้นโค้งที่สามารถให้เป็นค่าปริมาณการวัดได้

ภาพ 8 การตอบกลับภูมิคุ้มกันในสารละลายที่คงตัว

ภาพ 9 ค่าความเข้มแสงของเคมีภูมิคุ้มกันเมื่อเวลาเปลี่ยนแปลง Alwarthan et al. (1986: 635.)

2. ทำการวัดค่าในตัวกลางที่อยู่ในระบบที่มีการไหลแบบต่อเนื่อง (continuous-flow stream หรือ segment-flow stream)

วิธีวัดที่ทำให้เกิดภูมิคุ้มกันและสารตัวอย่างนี้ จะถูกส่งผ่านช่องทางที่แยกกันอยู่ และจะใช้ผลผสมกันที่จะถึงส่วนของตัวตรวจวัด โดยจะมีการวิเคราะห์อย่างต่อเนื่อง ดังภาพ 10 และต้องการศึกษาต่างก่อนหน้าที่มีการผสม และหลังมีการผสมกัน เพื่อให้การทำปฏิกิริยาดัง
ของเราทั้งสองเกิดขึ้นอย่างสมบูรณ์ โดยจะมีการนิยามของความแตกต่างระหว่างค่อนท่าปฏิกิริยา และหลังการเข้าท่าปฏิกิริยาร่วมไปยังการนำไปใช้ในการคำนวณค่าระยะเวลาในการทำปฏิกิริยาร่วมไปยังการเปลี่ยนแปลงของความเข้มของแสงในช่วงเวลาท่าปฏิกิริยาถือว่า

![Diagram](image)

ภาพ 10 ค่าหนึ่งของจุดสัมภัตติที่ความมั่นคงข้นกับเม็ดได้แก่ของระยะเวลาที่มีการปล่อยรังสีแสงสั้น (emission-time curve) ในกระบวนการวิเคราะห์ของเคมีมีเส้นขนด.แบบ Flow-through โดยพื้นที่ส่วนแวดล้อมได้แก่ยวดรายย่อยส่วนที่ตรวจสอบของการปล่อยรังสีแสงสั้น Alwarthan et al. (1986: 635)

ส่วนประกอบที่สำคัญสำหรับการวิเคราะห์ในระบบที่มีการไหลแบบคู่เนื่องของเคมีมีเส้นขนด คือ ส่วนผสม (reagent mixing chamber) เซลล์ (flow cell) เครื่องตรวจจับแสง (photodetector หรือ photomultiplier tube) และส่วนรวบรวมและจัดการข้อมูล (electronic data acquisition and processing device) โดยอุปกรณ์ต่าง ๆ อาจออกแบบให้มีหน้าที่ต่าง ๆ กัน รวมไปถึงอุปกรณ์สำคัญข้างต้นจะสามารถนำมาใช้สำหรับวิเคราะห์แบบเคมีมีเส้นขนด หรือไปถึงอุปกรณ์ เซนเซอร์ได้ ซึ่งความหมายเป็นจุดเด่นในการวิเคราะห์แบบ FIA นั้นมักจะมีการปรับปรุงพื้นผิว เครื่องมือให้มีความเหมาะสมกับงานอยู่แล้ว.
ในภาพ 11 แสดงให้เห็นถึงการติดตั้งระบบ FIA ที่สำคัญสำหรับการวิเคราะห์แบบคีโมที่มีเรือนสั่น โดยตัวอย่างจะถูกนำเข้าไปยังกระดาษด้วยการมีการปรับต่ำ pH ให้เหมาะสม จากนั้นจะให้เรือนสั่นสู่ในไม่เพียงกับตัวอย่างที่ซึ่งต่อต่อกับ T ซึ่งจะยืดให้เกิดปฏิกิริยาของเคมีพิษเส้นงานอย่างรวดเร็ว ระหว่างเรือนสั่นและตัวอย่าง โดยที่เรือนสั่นและตัวอย่างจะต้องมีผสมกันให้ถูกต้องในระหว่างระหว่างผ่านผ่าน (flow through cell) ให้มีขนาดที่สุดเท่าที่จะเป็นไปได้ ในสาระที่มีระดับพลังงานต่ำเย็นอยู่ระดับนั้น จากนั้นจะทำการวัดค่าพลังงานแสงที่ผลิตเพื่อออกบ้านโดยอาษาหลอด PMT ที่เชื่อมต่อกับอุปกรณ์ในการรวบรวมข้อมูล ซึ่งสามารถวัดค่าของเคมีพิษเส้นงานได้ภายในเวลาเท่านั้นวินาทีที่ถูกต้องจากมีการผสมกันของตัวอย่างเรือนสั่น ซึ่งรวดเร็วถูกใช้ประโยชน์มากในการติดตามการเปลี่ยนแปลงของพืชที่จะเกิดขึ้นในการเกิดปฏิกิริยาและการปล่อยพลังงานแสงที่ซึ่งจะมีการเปลี่ยนแปลงอย่างรวดเร็ว

ในส่วนของ stop-flow mode นั้น เทียบเท่าการผสมเรือนสั่นและตัวอย่างแล้ว จะมีการกำหนดที่จะยืดให้ได้ที่มีความคล้ายคลึงกันที่ส่งออกต่างกัน ทำให้การวัดค่าจะมีการปรับต่ำในการสร้างการผลิตได้ของค่าความข้นและกับราก ข้อมูลทางอนุกรมศาสตร์จะได้มากจากการวิเคราะห์ผลจากการ_DIMENSIONED 图

รีของความข้นและกับราก interdisciplinary ค่าที่จะมีความจำเป็นและสะท้อนถึงการตัดสินใจของส่วนที่ได้เลือกใช้เพื่อประโยชน์ต่อการวิเคราะห์แบบคีโมที่มีเรือนสั่นและวิธีโฟตอนเจาะช่องอนิลิชิต ทำให้ร่วมกันจะเกิดผลิตเป็นอย่างมาก เนื่องจากความไวของวิธีการวิเคราะห์แบบคีโมที่มีเรือนสั่นที่มีอยู่สูง รวมไปถึงความจำเป็นของวิธีโฟตอนเจาะช่องอนิลิชิต หรือเมื่อทำการใช้งานคีโมที่มีเรือนสั่นกับวิธีไวยากรพื้นผิวที่ใช้สิ่งปฏิกิริยาต่างกัน

การตอบแบบพื้นหลังจะมีความหลากหลายและมีความสำคัญอย่างยิ่งต่อการวิเคราะห์แบบคีโมที่มีเรือนสั่น แม้ว่าความเป็นจริงแล้วการวิเคราะห์ต่างผ่านของสภาวะและระยะทางกันตัว...
ตรวจสอบค่าก่อนเวลาต่างกันนัก แต่ลักษณะการออกแบบที่ใช้กันมากในการวิเคราะห์แบบ FIA จะเป็นแบบเกี่ยวในแนวราบ (flat spiral) ซึ่งจะมีการจัดวางให้ยุ่งเกลาส่วนของหลอด PMT ให้มากที่สุดเท่าที่จะเป็นไปได้

ตั้งยังคงเป็นแม่สำหรับการออกแบบเช่นกอน จะต้องให้ปฏิกิริยาในผลิตภัณฑ์ผังงาน แสงออกมาให้ได้ตามความเข้มข้นสูงสุดในขณะที่สารตัวอย่างนั้นอยู่หน้าตัวตรวจวัดดำ เพราะการเกิดปฏิกิริยาในจะเป็นไปอย่างรวดเร็ว ดังนั้นการใช้เชื้อดวงเลือกใช้เทคนิคที่มีปริมาณที่เหมาะสม ซึ่งจะส่งผลให้ปฏิกิริยาดังกล่าวยุ่งเกลาตอบสนองต่อกำลังดังกล่าวไม่ได้อย่างถูกต้องเน้นได้ ซึ่งจะทำให้จุดอ่านดำของตัวอย่าง โค้งการเพิ่มความยาวของเกลียวเชื้อดวงเลือกอยู่ในอุณหภูมิที่ไม่ได้ส่งผลใด ๆ เลย อย่างไรก็ตามแม้เป็นการจัดตั้งการผังงานของตัวอย่างให้อยู่ที่สุด ซึ่งจะต้องเพิ่ม พอำนาจของปฏิกิริยาที่ส้นของผังงานออกมาได้ เพื่อให้การปริมาณที่เกิดขึ้นในนิวิชั่นการวิเคราะห์แบบเปลือกหรืออื่น ๆ พบว่าเชื้อดวงเลือกพร้อมที่จะปรับปรุงถังน้ำซักที่ที่จะต้องเพิ่มกล้า

ตัวตรวจวัด (detectors) ที่เหมาะสมที่สุดสำหรับการวิเคราะห์แบบเกลียวเชื้อดวงเลือก หลอดเกลียวเชื้อดวงเลือก photomultiplier tubes ที่จะเป็นแบบวงกลมกับการริบอิงที่ให้เกิดเป็นซึ่งจะปลดล็อกอินเตอร์erah ออกมาเป็น cascade-amplified และแม้ว่า PMTs จะมีประสิทธิภาพน้อยกว่า liquid scintillation counters (LSCs) แต่มีข้อดีตรงที่สามารถนำไปให้ได้หลากหลายกว่าเพราะว่าลักษณะการตอบสนองของเคเบิลไม่ได้เป็นแบบเดียวกัน PMT จะมีการตอบสนองอย่างจำกับ ข้างความยาวสั้นต่าง ๆ หรือข้างความยาวสั้นที่มีการปลดล็อกพลังงานแสงออกมาและในกรณีที่ความเข้มแสงเกลียวเชื้อดวงเลือกในระบบต่าง ๆ ความแน่นย่นของการวิเคราะห์จะมีข้อดีการเลือกใช้ PMT ที่เหมาะสมเพราะการเลือก PMT ที่เหมาะสมจะช่วยให้มีค่า signal-to-noise ratio สูง ซึ่งในการนี้จะช่วยให้ยุ่งเกลาการวิเคราะห์ในการประยุกต์ใช้และสาระการที่เหมาะสมและในการที่มีการปลดล็อกเกลียวเชื้อดวงเลือกในปริมาณที่เหมาะสมสำหรับการใช้ตัวตรวจวัดที่ชื่นชอบต่อบา

ระบบที่เกี่ยวกับพื้นฐานที่เป็น multimater หรือ recorder หรือคอมพิวเตอร์ได้
ข้อดีของกระบวนการวิเคราะห์แบบคิวเมติลิมิเนนซ์ (Alwarthan et al. 1986: 635)

ข้อดีของกระบวนการวิเคราะห์แบบคิวเมติลิมิเนนซ์ นอกจากจะมีความจำเพาะสูงแล้วยัง
พบว่ามีข้อจำกัดในการตรวจวัดคิวเมติลิมิเนนซ์มาก เช่น กระบวนการวิเคราะห์แบบคิวเมติลิมิเนนซ์ได้
โดยทั่วไปไม่ดีต่อการตรวจวัดคิวเมติลิมิเนนซ์ที่มีสภาวะสารติดซึ่งทำให้ผลลัพธ์ที่ได้มีความผิดพลาด
ของ Raman และ Rayleigh และยังช่วยลดการส่งรบบนจากแหล่งที่มีความแสงได้ ซึ่งจำกัดผลเหล่านี้
ทำให้สามารถใช้ทัดเทียมเพื่อให้เจาะจงได้แม้จะต้องมีของผล (photomultiplier voltage) ได้ในระดับสูงและถ้วยผล
ทำให้เพิ่มอัตราส่วนความเร็วนั้นจะต้องต่ำกว่า signal-to-noise มากกว่ากระบวนการวิเคราะห์แบบฟิลิตู
โกรมิลลิมิเนนซ์ เท่า ๆ ไปยังด้วย การวิเคราะห์ในลักษณะนี้จะวิเคราะห์ได้ในช่วง femtomole และใน
บางกรณีอาจมีการตรวจวัดได้ถึงส่วนของ attomole region ดังนั้น จึงถือได้ว่าคิดว่ากระบวนการ
โดยทั่วไปมาก ซึ่งความจำเพาะสูงสูงจะสามารถวิเคราะห์ได้ที่ขนาดโมเลกุลประมาณ โมเลกุล
ซึ่งเล็กพอ ๆ กับแอนไซเมทีคและความร่วมมือของความเป็นส่วนตัวที่กว้าง

FIA-chemiluminescence ในอนาคต (Garcia-Campana and Baeyens, 2001)

การวิเคราะห์แบบคิวเมติลิมิเนนซ์มีความจำเพาะในเป็นอย่างมาก เนื่องจากสามารถใช้
เครื่องมือแบบง่าย ๆ ในกระบวนการ และยังมีข้อจำกัดต่ำ ๆ ในกระบวนการวัสดุดำมหากาฬ ขาดเหตุผล
เหล่านี้จึงมีความนิยมทำให้การวิเคราะห์แบบคิวเมติลิมิเนนซ์ทั้งแบบพื้นฐานและแบบถูกระยะ ขึ้น จากการพัฒนาคิดค้นเทคนิคการวิเคราะห์นี้รวมกันของกลุ่มธุรกิจกลุ่มที่ 5 ซึ่งอาจใช้ในนั้น ได้
ทันสมัยทันสมัยคิวเมติลิมิเนนซ์ที่ชัดเจน ๆ เสมอ โดยเฉพาะการ “direct” เทคนิคนี้จะช่วยเพิ่มขีด
ความสามารถด้านจำนวนของตัวอย่าง ทำให้สามารถวิเคราะห์ตัวอย่างได้มากต้นขีด และเพื่อที่จะ
บรรลุไปยังนั้น จึงมีความจำเพาะในอย่างยิ่งที่จะต้องสร้างความรู้เกี่ยวกับกลไกของการ
แก้ปัญหาริบเพื่อEffectiveness การควรพัฒนาคิดค้นเทคนิคการวิเคราะห์ของคิวเมติลิมิเนนซ์

ในปัจจุบันนี้การวิเคราะห์แบบคิวเมติลิมิเนนซ์ก็สามารถพิสูจน์ให้เห็นแล้วว่ามี
ความจำเพาะสูงต่อตัวอย่างหลากหลายและไม่จำเป็นต้องการทำการแยกตัวอย่างก่อนที่การวิเคราะห์ต้น
ด้วย ซึ่งจะเห็นได้ว่าการวิเคราะห์ที่ซับซ้อนของคิวเมติลิมิเนนซ์จะมีความจำเพาะสูง และเมื่อ
นั้นจะมีการพัฒนาการตรวจวัดที่จะให้ได้ข้อมูลด้านบนนี้สามารถช่วยเสริมกลับเทคนิคโครมาโท-
กราฟิกของตัวอย่าง หรือการแยกแบบคิวเมติลิมิเนนซ์ที่ถูกต้องก็จะทำให้เกิดเป็นตัวตรวจวัดในอุปกรณ์
ได้

ปัญญานี้การค้นคว้าวิจัยเกี่ยวกับคิวเมติลิมิเนนซ์นั้นมีจะใช้ตัวอย่างที่ทำขึ้นเองเป็นส่วน
ใหญ่จึงยากที่จะทำการปรับเปลี่ยนคำาหรือวิธีการวิเคราะห์ เพราะว่ามีการใช้ตัวอย่างที่หลากหลาย
และยิ่งไปกว่านี้ ยังไม่มีเรย์มีเนเธอร์ซี襚เคนซ์ที่จะใช้เป็นตัวมาตรฐานสากล ดังนั้นควรจะมีการศึกษาและเผยแพร่เครื่องมือและวิธีการในวิเคราะห์ทีมประสิทธิภาพ และเราอาจจะเห็นเพื่อนนำไปใช้ในการสืบค้นได้เป็นสากล โดยเฉพาะอย่างยิ่งในการศึกษาด้านการแพทย์ รวมไปถึงด้านสิ่งแวดล้อมอีกด้วย

ในการจัดทำแม่แบบเครื่องเล่นในการทดลองบางชนิดที่มีความช้าชัดขึ้นนั้น ได้มีการศึกษาเกี่ยวกับเทคนิคการวิเคราะห์แบบ FIA-direct CL emission เพิ่มมากขึ้นเรื่อย ๆ เพื่อให้มีสูตรและผลิตภัณฑ์ของเครื่องมือชนิดนี้ที่มีค่าสูงสุดจากหลายๆ อย่าง ทั้งทางด้านประสิทธิภาพของการวิเคราะห์ ข้อจำกัดในการวิเคราะห์ ความถูกต้องของข้อมูลความเป็นส่วนต่อไปก็ไม่เพียง ความเสี่ยงของการบันทึก และการมุ่งมั่นเลขสมการใช้ประโยชน์ต่อวิเคราะห์นั่นคือการวัด เมื่อมีการสูญเสีย ได้มีการพยากรณ์เกี่ยวกับการข้อมูลต่อระหว่างโมเลกุล (molecule connectivity) เพื่อช่วยให้สามารถทำนายและคาดการณ์ผลิตภัณฑ์ของเครื่องมือชนิดนี้ได้ง่ายขึ้น

ข้อทั่วไป (วรินทร์ เบี้ยจันทร์, ม.บ.ป.)

สารฆ่าเชื้อพื้นเป็นสารเคมีที่นิยม ใช้เป็นสารตกเลี้ยงเพื่อป้องกันและยับยั้งการเจริญของจุลินทรีย์ ใช้เป็นสารกันเสียเพื่อป้องกันและยับยั้งการเจริญของจุลินทรีย์ ใช้เป็นสารกันเสียเพื่อป้องกันการเกิดปฏิกิริยากำลังขึ้นของเชื้อในอาหารที่จะทำให้เกิดการเหม็นที่ในผลิตภัณฑ์นี้ และที่สำคัญยังสามารถใช้เป็นสารฟอกขาวถูกต้อง เมื่อจากมีความสมบัติของปฏิกิริยากำลังเปลี่ยนแปลงเป็นน้ำตาลซึ้งเกิดขึ้นในอาหาร เช่น คัพ ผลไม้ น้ำผลไม้ น้ำหวานจากพืช และอาหารทะเล พวกถุง ปุ๊ป ปลา ปลาหัวปก เป็นต้น ด้วยจุดสมบัติเหล่านี้ทำให้มีการปั๊มน้ำมันกันด่างในผลิตภัณฑ์ต่าง ๆ สารในกลุ่มฆ่าเชื้อที่นิยมใช้ในกลุ่มโรคติดเชื้อโรคคือฆ่าเชื้อ

\[
\left[\begin{array}{c}
O \\
\vdots \\
S \\
O
\end{array} \right]^{2-} \left[\begin{array}{c}
\text{Na}^+
\end{array} \right]_2
\]

ภาพ 12 โครงสร้างของโอเดียมซัลไฟด์
ข้อมูลต่ำาไปของซัลเฟท (รายงานเป็ดูจักมณฑล, ม.บ.ป.)

ชื่อเคมี IUPAC : Sodium sulfite
ชื่อเคมีทว่าไป : Disodium sulfite; Exsicated sodium sulfate; Anhydrous;
Sulftech sulfurous acid sodium salt
ชื่อฟ้าของบ้าน : Disodium sulfite; Sulfurous acid disodium salt; Sulftech;
Sulfurous acid sodium salt (1:2); Sodium sulfite (Na₂SO₄);
สูตรโมเลกุล : Na₂SO₄
การใช้ประโยชน์ : ใช้เป็นสารฟอกขาวและยับยั้งเชื้อจุลินทรีย์

คุณสมบัติทางกายภาพและทางเคมี (U.S. Food and Drug Administration, no date.)

สถานะ : แดงของเชื้อ
สี : ขาว
กลิ่น : ไม่มีกลิ่น
น้ำหนักโมเลกุล : 126.04
จุดติ่งค์ : 900 องศาเซลเซียส
จุดหลอมเหลว : >500 องศาเซลเซียส
ความถ่วงอิจฉาพะ (น้ำ = 1) : 2.63
ความสามารถในการละลายน้ำ (กรัม/100 มล.) : 17 ที่ 10 องศาเซลเซียส
ความเป็นกรด-ค้าง (pH) : 9.8 ที่ 10 องศาเซลเซียส
โครงสร้างผลิตภัณฑ์ : เฮซิการ โพโมดิส (hexagonal (anhydrous))
โมโนคลินิก (monoclinic (heptahydrate))
ความหนาแน่น : 2.633 กรัมต่อดูลบัตร์เช่นดิมีตร (anhydrous)
1.561 กรัมต่อดูลบัตร์เช่นดิมีตร (heptahydrate)

ความคงล้ำและการเกิดปฏิกิริยา (Stability and reaction) (ศูนย์ข้อมูลสารวัตถุยั้งรายละเอียดมีกันมณฑล, ม.บ.ป.)

สิ่งที่ควรหลีกเลี่ยง คือ สารเคมีที่มีสูตรทูมิสูง และสารที่ควบคุมกลื่น คือสารที่ออกซิไดซ์อย่างแรง จะทำให้เกิดปฏิกิริยาความร้อนอย่างรุนแรง โดยการจะทำให้เกิดก้าซิลเฟอร์ไคออกซิได และกลายตัวของซัลเฟท คือ ก้าซิลเฟอร์ไคออกซิได เป็นก้าซิลพิบและมีถูกลักษณ์
ไอยีนชั้นใหม่ที่เกิด สามารถลดไข้ได้ มีความเสี่ยงต่อการเกิดอันตรายเนื่องจากไฟไหม้ ทำให้
ผิวหนัง และเมื่อใช้ก็เกิดอาการระคายเคืองอย่างรุนแรง
อันตรายต่อสุขภาพ (ศุภชัยธวัฒน์ สมบูรณ์, ม.ป.ป.)
สารขัดไฟฟ้าที่มีอยู่ทางธรรมชาติ ได้แก่เมหนันไชยา, ผันเขี้ยว และยาบิชชวิตได้ อาจก้าวขัดเพอร์โคไลซ์ และหากสิ่งมีค่าทาง
ฝีมือจะทำให้ความระคายเคืองและฮีมส์เรื้อนเป็นเวลานาน สำหรับกรณีหรือปั้นเขี้ยวไปให้ระบบ
การย่อยสลายสาร ระคายเคือง ถ้ามีอยู่เป็นโรคพยาธิที่จะเกิดอาการอักเสบอย่างรุนแรง รูดแผลลึก
หรือกินเขี้ยวไปปรุงมันมาก ๆ อาจทำให้เกิดการเสียดสีและท้องร่วงอย่างรุนแรง เนื่องจากผักอก
ตา ทำให้เกิดอาการระคายเคืองและแผลใหม่ สารขัดไฟฟ้าผลกระทำต่อพันธุ์หกระ และมีความเป็นพิษ
ระดับป่านกคลา

บทบาทสารขัดไฟฟ้าในอาหาร (ศุภชัยธวัฒน์, ม.ป.ป.)
สารขัดไฟฟ้ามีคุณสมบัติสำคัญหลายประการในการรอนมอาหาร คือ

1. ป้องกันและยับยั้งการเจริญเติบโตของเชื้อสุนัขทับศีรษ์ โดยมีผลต่ออุตุนิยมภูมิตามลำดับจาก
มำกไปน้อยดังนี้ gram negative bacteria, gram positive bacteria รำและย้อเสื้ะ ประทัศเกิดจะขึ้นอยู่
กับความเป็นกรด-ด่างของสารละลาย ซึ่งความเป็นกรด-ด่าง ประทัศเกิดจะขึ้นอยู่
ความเป็นกรด-ด่างที่รับ 7 ซึ่งผ่ำไว้ของไซโอทินจะไม่มีผลต่อการยับยั้งการเจริญเติบโตของอุตุนิยม รำ
และย้อเสื้ะปรุงมันมากนัก 1,000 มิลลิกรัมต่อกิโลกรัม ซึ่งสามารถยับยั้งการเจริญเติบโตของอุตุนิยม
แบบที่เรียกได้ ส่วนไซโซทินจะมีประสิทธิภาพน้อยกว่ากรดชิตฟิวช์

2. ยับยั้งปฏิกิริยาการเปลี่ยนแปลงเป็นน้ำตาลที่เกิดขึ้นในกล่องไข่ ปฏิกิริยาที่ส่วนใหญ่
เกิดขึ้นกับผลและผลไม้สด ซึ่งเมื่อถูกทานหลังของดั้งและพืชสัมผัสกับอากาศในอากาศจะ
เกิดปฏิกิริยาออกซิเด้นท์เป็น olefinic compound ซึ่งไม่มีสีเป็นสาร o-quinone ที่มีสีซึ่งเป็น
แหล่งจากปฏิกิริยาของเอนไซม์ phenolase เอนไซม์นี้อยู่ในผลและผลไม้สด ส่วนเอนไซม์อื่น ๆ
เช่น tyrosinase, catecholase, phenoloxidase และ ascorbinase ก็ให้ปฏิกิริยาแช่ด้วยกัน สารที่เกิดขึ้น
เกิดขึ้นนี้สามารถ polymerize และตกออกไส้ได้ต่อเมถุนน้ำตาลแข็ง เมื่อดื่มสารขัดไฟฟ้าลงไปจะ
เกิดปฏิกิริยาแช่อีกไข่เป็นผลบวกให้กับไข่ทั้งหมด

3. ยับยั้งปฏิกิริยาเปลี่ยนเป็นน้ำตาลที่ไม่เกิดขึ้นในกล่องไข่ อาหารที่ผ่านกระบวนการ
ผลิตที่ดีที่จะเกิดปฏิกิริยาเปลี่ยนแปลงฝีมือระหว่างน้ำตาลกับโปรตีนหรือกรดอะมิโน
ให้สารที่มีสีเกิดขึ้น หรือเกิดปฏิกิริยาการเปลี่ยนแปลงของฝีมือเนื่องจากความร้อนทำให้โมเลกุล
ของน้ำตาลสูญเสียนั้นแล้ว polymers ได้สาร hydroxymethyl furfural ซึ่งมีสีน้ำตาล รวมทั้ง
ปฏิกิริยาการผสมระหว่างวิตามินซี (ascorbic acid) สารชิลเล่ยที่เดิมคงไปจะทำปฏิกิริยาตกบั้นไปติด
หรือน้ำตาล หรือวิตามินซี ทำให้ไม่เกิดปฏิกิริยาการเปลี่ยนแปลง

4. เป็นสารต้านอนุมูลอิสระ และเป็นตัวรักษา ด้วยคุณสมบัติการเป็นตัวต้านอนุมูล
อิสระ และตัวรักษาซึ่งมีบทบาทอย่าง

ป้องกันการสูญเสียวิตามินซีในระหว่างการแปลงเวลาและการเก็บผลิตภัณฑ์ของผักและ
ผลไม้

ป้องกันการเหยื่อของไขมัน น้ำมันระเหยและสารพิษอื่น ซึ่งจะทำให้เกิดกลิ่น รส ที่
ผิดปกไป และใช้เป็นสารฟอกสิ้น พลังน้ำตาลและแป้ง

ปัจจัยที่มีผลต่อปริมาณสารชิลเล่ยในอาหาร (หมอDRAWanny, ม.ป.ป.)

1. ชนิดของอาหารและปริมาณของสารชิลเล่ยที่ติดมลไปในอาหารที่มีองค์ประกอบที่สาย-
มารถทำปฏิกิริยาบกป่าการที่เดิมคงไปในปริมาณที่มาก เช่น ได้รับ น้ำตาล และวิตามิน จะมีผลทำให้
สารชิลเล่ยที่สวนใหญ่ย่อยในอาหารชิลเล่ยรวม ปฏิกิริยาบกป่าอาหารบางชนิดได้ sulfonates ที่คงตัว
เช่น 3-deoxy-4-sulphophenylsulphate และ 3-deoxy-4-sulphohexylsulphate อาหารที่มีกิจของขี้เจน
แทรกอยู่หรือบรรจุในภาชนะที่มากพอจะทำให้สารชิลเล่ยที่ย่อยในอาหารถูก
ออกไข่ชิลเล่ยเป็นชิลเล่ย (SO₃⁻) ซึ่งมีความคงตัวรวมทั้งปริมาณชิลเล่ยที่เดิมคงไปในอาหาร ถ้ามี
ผล่ายไปในปริมาณที่มากทำให้สารชิลเล่ยที่เดิมคงไปในอาหารในสภาพชิลเล่ยย่อยบางส่วนซึ่ง
ต่างกับการย่อยในอาหาร น้อยจากนั้นอาหารที่มีค่า
ความเป็นกรด-ด่าง ต่ำกว่า 4 จะทำให้ชิลเล่ยย่อยบางส่วนไปในสภาพของกิจชิลเล่ยโดยออกไข่

2. กรรมวิธีการผลิต อาหารที่ผ่านกรรมวิธีการผลิตที่ต้องใช้ความร้อนจะทำให้ชิลเล่ยย่อย-
ส่วนเล็กพันธุ์กิจชิลเล่ยโดยออกไข่ระยะยาว หรือกิจชิลเล่ยเป็นชิลเล่ยและบางส่วนทำ
ปฏิกิริยาบกป่าอาหาร ยังขึ้นต่อการผลิตมีมากหรือมีอุณหภูมิสูงปริมาณตกต่างในอาหารที่จะยิ่ง
ลดน้อยลง

3. ระยะเวลาและอุณหภูมิในระหว่างการเก็บรักษาอาหารที่เต็มสารชิลเล่ย เมื่อกำกับไว้เป็น
เวลาสั้นและเก็บไว้ในสภาพที่ไม่เหมาะสมซึ่ง อุณหภูมิหรืออาหารสัมภัตถ์กับออกไข่ในอาหาร
จะทำให้สารชิลเล่ยย่อยไปในสภาพของชิลเล่ยโดยออกไข่ หรือกิจชิลเล่ยเป็นชิลเล่ย ดังนั้น
ยังเก็บไว้น้ำมันปริมาณชิลเล่ยโดยออกไข่ที่เดิมคงอยู่ในอาหารยิ่งลดลง
ชนิดของอาหารที่ใช้สารซักไฟฟ์ (หมอชวาร์ช, ม.ป.ป.)
สารซักไฟฟ์ใช้ในการบดเนื้ออาหารหลายชนิดดังนี้

1. ผลิตภัณฑ์กินและผลไม้
 ผลไม้และผลไม้แห้ง เครื่องใช้สารซักไฟฟ์ในผักและผลไม้แห้งเพื่อช่วยย่อยเม็ด กลิ่น วิธีมินี
 และการเตรียมยา นอกจากนี้ยังเป็นกลิ่นการนกแก้วเนื้อ ของอู่ฮั่นหรือ ช่วยย่อยอาหารเก็บไว้ใน
 ผลไม้ใช้วิธีแบบตัวเองที่ใช้ซักไฟฟ์โดยการใช้เครื่องพิษ หรือพ่นเป็นแอ่งกับผลไม้ของสารละลายซึ่งในภาพ
 ของสารละลายจะให้ผลไม้ดีมากเนื่องจากผลไม้แห้งจะไปในเนื้อเยื่อของผลไม้ได้น้อยและถูกสูญ
 ออกด้วยน้ำตาล ภูเขาซักไฟฟ์โดยการใช้จะมีผลในระหว่างการเก็บไว้ ซึ่งอยู่ที่บ้านในการ
 ระบายและอุดมภูมิ ถูกเหนือระดับ 110-120 องศาเซลเซียส

2. ผลไม้สด เพื่อควบคุมการเปลี่ยนเป็นน้ำมัน ผลไม้สดมินี และป้องกันการหมัก
 เลี้ยงจากเชื้ออู่ฮั่นหรือ
 ผลไม้มีน้ำ เช่น ผลไม้สด เชื้อและแอนไพร ให้ป้องกันการมีน้ำมันจากการซักไฟฟ์ตลอดจนเรื่องยา

2. เครื่องใช้สารซักไฟฟ์สารซักไฟฟ์มีความสำคัญในการทำให้ผลไม้เนื้อแข็งด้นนั้น เช่น การใช้สารซักไฟฟ์ในการทำให้ผลไม้เนื้อแข็งด้นนั้น เช่น การใช้สารซักไฟฟ์ในพืชของสารละลายทำให้สารได้ผลในระหว่างการหมัก สารซักไฟฟ์จะ
 เป็นตัวป้องกันการเปลี่ยนแปลงของสารละลายจากการซักไฟฟ์ในการทำให้ผลไม้เนื้อแข็งด้นนั้น เช่น การซักไฟฟ์ที่เหมาะสมคือ 50-100 มิลลิกรัมต่อตัน ปริมาณที่ใช้เชื้อกรอบพืชของสารละลายสารซักไฟฟ์ที่เหมาะสมคือ 50-75 มิลลิกรัมต่อตัน

3. ผลไม้แห้งและเครื่องไม้ที่ไม่มีผลไม้สด ใช้สารซักไฟฟ์เพื่อป้องกันการเปลี่ยนสีที่ไม่ได้
 เกิดจากเจลเชื้อ ซึ่งเป็นการป้องกันการเปลี่ยนสีของเชื้ออู่ฮั่นหรือเป็นหลักที่เนื่องผักและผลไม้สดมินี
 ปริมาณของสารซักไฟฟ์ที่ใช้เชื้อกรอบพืชของสารละลายสารซักไฟฟ์คือ 50-75 มิลิกรัมต่อตัน ผลไม้ที่ใช้สารซักไฟฟ์จะมีผลในระหว่างการบดเนื้อ ผลไม้ที่ใช้สารซักไฟฟ์จะมีผลในระหว่างการบดเนื้อ
 ผักไม่ใช่ผลไม้และผลไม้แห้งที่ใช้สารซักไฟฟ์ได้ประสิทธิผลในการบดเนื้อเนื่องจากผลไม้ที่ใช้สารซักไฟฟ์จะมีผลในระหว่างการบดเนื้อ ผลไม้ที่ใช้สารซักไฟฟ์จะมีผลในระหว่างการบดเนื้อ

4. ผลิตภัณฑ์เนื้อ สารซักไฟฟ์สามารถควบคุมการเจริญของแบคทีเรียเนื้อสด และผลิตภัณฑ์
 เนื้อเนื้อ การใช้สารซักไฟฟ์ในการบดเนื้อเนื้อสด และผลิตภัณฑ์จากเนื้อสดและเนื้อปลาเนื่องจากเป็นแหล่งของวิตามิน B1
 แต่ไม่มีการใช้สารซักไฟฟ์ในผักเพื่อป้องกันการเกิดจุดดำ บางคนพบเห็นสมุนไพรให้ใช้สารซักไฟฟ์ได้
ในบางผลิตภัณฑ์ ส่วนประเทศสหราชอาณาจักรและประเทศกลุ่มภาคภูมิใจยุโรปมีการตั้งต่อแสดงปริมาณของซิลิโคนในผลิตภัณฑ์อาหารที่มีปริมาณซิลิโคนเกินกว่า 10 มิลลิกรัมต่อดีซีร์ในอาหารมักจะดองและเครื่องดื่ม

ปริมาณของสารซิลิโคนที่อนุญาตให้ใช้ในอาหาร (หมายข้าวบ้า น.ป.ป.)

ปริมาณของซิลิโคนที่อนุญาตให้ใช้ในอาหาร แตกต่างกันไปแล้วแต่ชนิดของอาหารและแตกต่างกันไปในแต่ละประเทศ เช่น

ประเทศญี่ปุ่น อนุญาตให้ใช้สารซิลิโคนในอาหาร ดังนี้

<table>
<thead>
<tr>
<th>ผลไม้เบร็ง (อีสทิน)</th>
<th>2,000 มิลลิกรัมต่อดีซีร์</th>
<th>SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผัก</td>
<td>500 มิลลิกรัมต่อดีซีร์</td>
<td>SO₂</td>
</tr>
<tr>
<td>เครื่องดื่มที่มีมอลลัสส์</td>
<td>350 มิลลิกรัมต่อดีซีร์</td>
<td>SO₂</td>
</tr>
<tr>
<td>น้ำดื่ม</td>
<td>150 มิลลิกรัมต่อดีซีร์</td>
<td>SO₂</td>
</tr>
<tr>
<td>น้ำ</td>
<td>100 มิลลิกรัมต่อดีซีร์</td>
<td>SO₂</td>
</tr>
<tr>
<td>อาหารย่อย (ยกเว้นในผลิตส)</td>
<td>30 มิลลิกรัมต่อดีซีร์</td>
<td>SO₂</td>
</tr>
</tbody>
</table>

อนึ่งประเทศญี่ปุ่นได้อนุญาตให้ใช้สารซิลิโคนในโครงซิลิโคนในอาหารได้ด้วย

ประเทศอเมริกา ชาวบ้าน อนุญาตให้ใช้สารซิลิโคนในอาหาร ดังนี้

ไวน์	200-400 มิลลิกรัมต่อดีซีร์
มันฝรั่ง	10-300 มิลลิกรัมต่อดีซีร์
แป้ง	1,500-2,000 มิลลิกรัมต่อดีซีร์
น้ำมัน	500 มิลลิกรัมต่อดีซีร์

ประเทศไทยอนุญาตให้ใช้สารซิลิโคนเป็นวัตถุดิบปิปในอาหาร ดังนี้

น้ำยาสีขาว	40 มิลลิกรัมต่อดีซีร์	SO₂
น้ำยาสีขาว	40 มิลลิกรัมต่อดีซีร์	SO₂
น้ำยาสีขาว	500 มิลลิกรัมต่อดีซีร์	SO₂
น้ำยาสีขาว	1,500 มิลลิกรัมต่อดีซีร์	SO₂
น้ำยาสีขาว	100 มิลลิกรัมต่อดีซีร์	SO₂

ส่วนอาหารประเภทหมักของ เช่น หมืดไม่ต้อง กระชุนแช่ยิ้ม จึงทักเพื่อน ไม่อนุญาตให้ใช้
ความเป็นพันธุ์ของสารซัลไฟด์ (หมอชวะบาน, น.ปป.)

ความเป็นพันธุ์ในคน เกิดจากการเห็นติ้งชัด เสื้อหัก นอกจากจะมี ผิวหน้าท้อง คลั่งได้ อาจเนื่องจากความในระบบหายใจเกิดขึ้นที่บริเวณ โคนที่เกิดการอักเสบ น้ำตาล น้ำตาล น้ำตาล น้ำตาล น้ำตาล น้ำตาล น้ำตาล และอาจมีการเกิดขึ้นในผิวหน้าท้อง ผิวหน้าท้อง ผิวหน้าท้อง ผิวหน้าท้อง ผิวหน้าท้อง ผิวหน้าท้อง ผิวหน้าท้อง ผิวหน้าท้อง

ความเป็นพันธุ์ในสัตว์ ในหนูท้องค่อนเมื่อให้สารซัลไฟด์ซอส 0.5% ของอาหารทำให้เกิดการกระพรายอาหารอักเสบ ผิวหน้าท้อง เหลืออยู่ จากการศึกษาระยะสั้นเป็นเวลา 10-56 วัน โดยให้ชุดผู้ดูแลรัฐ 5 ในอาหารพบว่าทำให้เกิดการโรคพิษจระเข้ทะเล น้ำมันโต การกระพรายอาหารมี เหลืออยู่ เมื่อเป็นการกระพรายอาหารอักเสบ ระหว่าง สารไฮเดรโอไฮเดรโอซัลไฟด์จะทำให้ กลับเนื้อระหว่างกระแทกทะเล โดยไม่มีผลต่อช่วงการด้านของหัวใจ ความดันเลือดกล้ามและมี เลือดคดใจในอวัยวะต่าง ๆ

วิธีมานวนในกระวาระการปริมาณซัลไฟด์

ปัจจุบันมีวิธีมาตรฐาน (AOAC Method) (Association of Official Analytical Chemists, 1990) ในการวัดวิธีการปริมาณซัลไฟด์ และได้รับความนิยมในการวัดกระชังมานวนซัลไฟด์ ในการอาหาร และผลิตภัณฑ์อาหาร ดังเช่น

1. Iodometric method

การวัดวิธีการวัดวิธีการที่มีชื่อเสียงโดยการใช้สารซัลไฟด์ในคดอย่างเป็นของเหลวสามารถวิเคราะห์ปริมาณได้โดยการใช้กระดาษที่ใช้ในการวัดวิธีการคัดเลือกสารและละลายโคลิเนียมมาตรฐาน โดยปิดผนังด้านอย่างมากในปริมาณที่พอประมาณแล้วดึง การชั่วคราว 10 มิลลิลิตร ที่ใช้ที่ถูกสมบูรณ์ของกาแฟประมาณ 5 นาที เมื่อครบแล้วให้เสียสารละลายยี่ค้นซึ่งใน อาจมีการใช้สารละลายสารละลายมาตรฐานเป็นเครื่อง (ไม่มีผลเสียที่เป็นสีน้ำเงินม่วง) และกำหนดมานวนปริมาณของซัลไฟด์ในออกซีจากปริมาณของไอโอตินที่ใช้ไปจนหมด
2. Differential Pulse Polarographic method

วิธีการวิเคราะห์หาเริมสำหรับเปอร์โตร์หรือไฟฟ้ารังสี ได้รับการศึกษาเมื่อ ค.ศ. 1987 เป็นวิธีการวิเคราะห์ที่ถูกใช้ในระบบการวัดเริมเข้มข้นโดยใช้เครื่องวัด (acid distillation) ในการแยกซอลไฟฟ้าออกจากฮอร์ โดยเติมกรดซอลฟีวิร์ก 35% (v/v) ลงในตัวอย่างแล้วทำการนำเกิดในไตรมาส Foster โดยใส่กรดซอลฟีวิร์ก 35% (v/v) ลงในตัวอย่างและทำการนำเกิดในไตรมาส Foster โดยใส่กรดซอลฟีวิร์ก 35% (v/v) ลงในตัวอย่างและทำการนำเกิดในไatri.
ภาพ 13 ติ่งเพื่อเรนซี่คอลฟัลซ์ไฟล์โอดโรเมน

3. Optimized Monier-Williams method

วิธีการวิเคราะห์แบบปริมาณซีลไฟล์ โดย Monier-Williams ได้เริ่มทำการศึกษาเมื่อ ค.ศ.-1989 มีหลักการคือสารตัวอย่างที่มีปริมาณซีลไฟล์นำไปให้ความร้อนด้วยการรีフレ็กซ์กับกรด ซึ่งจะทำให้เกิดการซีลไฟล์โดยตรงไปต่อ ทำให้เกิดการฟักสารในโครงสร้างของสารและสารประกอบของซีลไฟล์ที่มีผลต่อการวิเคราะห์ โดยที่ซีลไฟล์โดยตรงจะเกิดการกลับออกมามากขึ้นไปอย่างชัดเจนที่ไม่มีสารประกอบของซีลไฟล์อยู่ ซึ่งทำให้เกิดการซีลไฟล์โดยตรงจะสูงกว่าซีลไฟล์โดยตรงใช้เป็นชิ้นวิชิต แล้วทำการวิเคราะห์ตามชุดฐานโดยใช้เครื่องวัดซือซีต้ที่มีการตัดกล่าส่วนชัดเจนของซีลไฟล์ที่มีความเข้มข้นมากกว่า 10 มิลลิกรัมต่อปิกิลิตร

4. Flow Injection analysis method

วิธีการวิเคราะห์แบบปริมาณซีลไฟล์ ได้เริ่มทำการศึกษาเมื่อ ค.ศ.-1990 มีหลักการคือนำสารตัวอย่างที่มีปริมาณซีลไฟล์ทีเกิดจากการกับการมาไคคิวิน โดยขึ้นบนระบบของชีวชิ้น ซึ่งจะทำให้เกิดการซีลไฟล์โดยตรงสูงขึ้น ทำให้เกิดการซีลไฟล์โดยตรงสูงขึ้น ซึ่งทำให้การวิเคราะห์ได้ผลเป็นการย้ายแปลงของสาระเคมีและสาระเคมีในชิ้น ซึ่งสามารถทำการวิเคราะห์ความแตกต่างของซีลไฟล์ที่มีอยู่ภูมิคุณทางกายภาพสูงขึ้นที่มีความเข้มข้นของปริมาณซีลไฟล์ แล้วตรวจวัดด้วยขณะฟิล์โอมิเตอร์ ได้ทำการวิเคราะห์ส่วนการวิเคราะห์ซีลไฟล์ที่มีความเข้มข้นมากกว่า 5 มิลลิกรัมต่อปิกิลิตร
5. Ion Exclusion Chromatographic method

วิธีการวิเคราะห์หาปริมาณชิลไฟฟ์ ได้เริ่มท้าการศึกษาเมื่อ ค.ศ. 1990 โดยทีกการเข้านาล้าสารละตัวอย่างที่มีปริมาณชิลไฟฟ์ และทำการคัดแยกภายในโปรแกรมทรัฟฟิ่มของ hectro ถือการคัดลูกซันโครงทรัฟฟิ่มของ octo และ new ที่มีการแยกชิลไฟฟ์ ได้เริ่มท้าการวิเคราะห์

สำหรับวิธีการวิเคราะห์หาปริมาณชิลไฟฟ์ในงานวิจัยนั้นจะได้เลือกใช้วิธีการวิเคราะห์โดยเทคนิคฟิล์ฟิวส์ชิลไฟฟ์ ซึ่งสามารถวิเคราะห์หาปริมาณของสารตัวอย่างได้ในปริมาณที่น้อยว่า มีความไวและความแม่นยำในการวิเคราะห์สูง นอกจากนี้ยังสามารถวิเคราะห์สารประกอบอนิเวอร์ซิที่ในภาพโดยที่สามารถละลายในตัวก๊าซละลายได้ดังนี้

รักษาประสิทธิภาพสูง

1. เพื่อออกแยกและการคัดลูกซันประสงค์เพื่อประสิทธิภาพสูงสำหรับการตรวจวิเคราะห์สารประกอบบางชนิดที่อุ่นซึ่งชิลไฟฟ์ ด้วยเทคนิคการแยกแบบออนไลน์ (online separation) รวมกับวิธีฟิวส์ชิลไฟฟ์ซึ่งมีความรวดเร็วในการวิเคราะห์สูง

2. เพื่อนำออกเครื่องมือและเทคนิคที่พัฒนาขึ้นมาเป็นเครื่องใช้วิเคราะห์สารปนเปื้อนในอาหารที่สำคัญและสัตว์ ซึ่งมีผลในการวิเคราะห์สารประกอบในกลุ่มชิลไฟฟ์

3. เพื่อศึกษาและการวิเคราะห์ชิลไฟฟ์ ซึ่งมีผลในส่วนคุณลักษณะสิ่งมีชีวิตที่ใช้เครื่องมือวิเคราะห์ชิลไฟฟ์และสารเคมีนั้นจะเป็นมิตรต่อสัตว์

ประโยชน์ที่คาดว่าจะได้รับ

1. สามารถวิเคราะห์สารปนเปื้อนทางอาหารและสัตว์แผลลึก ที่อาจปนเปื้อนขึ้นในกระบวนการผลิต เส้นดินและการปรุงร่ำปลิงผลทางการเกษตร

2. สามารถปรับเปลี่ยนประสิทธิภาพการแยกแบบออนไลน์ที่ 2 ชีด คือ เฟอเรโอว foundational และ กิ่งกัดพิพิธภัณฑ์

3. สามารถนำไปประยุกต์ใช้ในห้องปฏิบัติการเคมี
4. สามารถพัฒนาประชีพข้าวไร่และข้าวคั้น ออกวัสดุ ลุ่มเกี่ยวที่มีอยู่ เป็นการทดแทนการนำเข้า เครื่องมือราชการสูงจากต่างประเทศ และพัฒนาศักยภาพของกลุ่มไทย โดยใช้เครื่องมือวิทยาศาสตร์และองค์ความรู้ที่มีอยู่ในการพัฒนาประเทศยังยืน

ขอบเขตของการศึกษา

ทำการศึกษาหาสาขาวิชาที่เหมาะสมของระบบวิเคราะห์แบบออนไลน์ 2 ชนิด คือ เพื่อว่าผลประโยชน์ และ กิจการพิพิธภัณฑ์ ร่วมกับการตรวจวัดคุณภัณฑ์ภูมิศาสตร์ สำหรับวิเคราะห์ข้อมูลในอากาศฉุกเฉิน โดยศึกษาคุณภาพอากาศภายใน อุตสาหรับผลผลิตภัณฑ์อาหาร ต้องเน้นของกระแสตัวพา ขนาดและความยาว และ อุณหภูมิ และตัวปรุงทางกายภาพใน ช่วงความเข้มข้นของกระแสเย็นตัวพา และ องค์ประกอบของกระแสตัวพา เป็นต้น และทำการศึกษาเกี่ยวกับการวิเคราะห์ กำหนดที่ทำการปรับปรุงเกี่ยวกับลักษณะการแยกแบบออนไลน์ 2 ชนิด และทำการเปรียบเทียบกับวิทยาศาสตร์โดยทักษะผู้พิลึกพร้อมข้อมูล เพื่อให้การศึกษาได้ผล
บทที่ 2
การตรวจสอบสาร

สรุปสาระสำคัญจากเอกสารที่เกี่ยวข้อง

เนื่องจากการคิดตามตรวจของระบบบริหารของข้อให้ทั้งในผลิตภัณฑ์อาหารหรือแม้แต่ตัวอย่างที่ส่งผลต่อต่าง ๆ จะพบว่าได้มีรายงานเกี่ยวกับการพัฒนาเทคนิคการวิเคราะห์ต่าง ๆ ให้เหมาะสมสำหรับบริหารเทคโนโลยีเชิงคุณภาพและเชิงบริหารของสารประกอบประเภทข้อให้ในสารตัวอย่างทางอาหารและจากสิ่งแวดล้อม ซึ่งมีมหาวิทยาลัยต่าง ๆ กัน ซึ่งกระบวนการวิเคราะห์นั้นพัฒนาให้หลากหลายเทคนิคในการศึกษาสารประกอบประเภทข้อให้ เช่น เทคนิคไตรโตรัมเครื่องルーโกรน คาปิโอโตริโอโตรัมเครื่อง (Zhao et al., 2006: 195) แอมป์เรียร์โตรัมเครื่อง (Casella et al., 1995: 199 and Redinha et al., 1997: 115) ไฟวัตระฟิวส์ (Giuriati et al., 2004: 105) ไอโอนโตรัมเครื่อง (Jankovskiene et al., 2001: 67) และการวิเคราะห์เหล็ก (Isaac et al., 2006: 589 and Safavi et al., 2004: 51) ฝนตีนฟิล (Fatilello – Filho et al., 1997: 51) และไอโอนโตรัมเครื่อง (Hassan. et al 2001: 773 and Meng et al., 1999: 571)

โดยเทคนิคทางไอนอนอาจใช้ในการวิเคราะห์ข้อให้สำหรับเลือกใช้ตัวตรวจวัดต่าง ๆ เช่น ทีโอ裴อ (โตริโอโตรัมเครื่อง, คาปิโอโตริโอโตรัมเครื่อง ฯลฯ) ตามความเหมาะสมแต่การใช้เครื่องมือตรวจวัดที่กล่าวมาข้างต้น มีสิ่งที่ไม่ในข้างต้นที่มีปลูกเหยียดใช้เครื่องมือตรวจวัดชนิดเดิมมีน้อยที่จะใช้ในการวิเคราะห์ข้อให้ด้วยเทคนิคทางไอนอนอาจ

จากการศึกษาของงานในการวิเคราะห์ข้อให้ตัวเทคนิคทางไอนอนอาจ ได้มีการแจ้ง ตรวจวัดชนิดเดิมมีผู้มีน้อยที่สามารถย้ายไปได้ในระดับต่ำและมีการเปลี่ยนแปลงที่วิศวกรรมอาหาร โดยสรุปเป็นเกี่ยวกับผู้มีวัสดุอุตสาหกรรมต่าง ๆ ที่มีรายงานมากว่ามีตัวแสดงในตาราง 3
ตาราง 3 ตัวอย่างการศึกษาหาปริมาณของสารขัดไฟด์ โดยเทคนิคทางไฟล์อินเด็กซ์เตมิสีเม็ดเซอร์

<table>
<thead>
<tr>
<th>ตัวอย่างที่ศึกษา</th>
<th>สารที่ใช้ทำปฏิกิริยา</th>
<th>ระดับความเข้มข้นที่</th>
<th>จีดสูงสุดของสาร</th>
<th>ค่าเฉลี่ยประสิทธิภาพการเปลี่ยนแปลง</th>
<th>автор์</th>
</tr>
</thead>
<tbody>
<tr>
<td>น้ำตาล</td>
<td>Ru(bipy)$_3^{2+}$ + (bipy 2,2′-bipyridyl)·SO$_3^{2-}$ · K MnO$_4$</td>
<td>5.0×10$^{-8}$ - 1.25×10$^{-4}$</td>
<td>2.5×10$^{-8}$</td>
<td>4.9% (n = 6)</td>
<td>Meng et al, 1999</td>
</tr>
<tr>
<td>น้ำตาล</td>
<td>Ru(bipy)$_3^{2+}$ + KBro$_3$</td>
<td>2.5 × 10$^{-6}$ - 9.5 × 10$^{-9}$</td>
<td>3.8 × 10$^{-9}$</td>
<td>4.6% (n = 9)</td>
<td>Wu et al, 1998</td>
</tr>
<tr>
<td>น้ำตาล</td>
<td>Ru(bipy)$_3^{2+}$ + K$_2$S$_2$O$_8$</td>
<td>1.5 × 10$^{-7}$ - 1.0 × 10$^{-4}$</td>
<td>4.1×10$^{-4}$</td>
<td>4.3% (n = 9)</td>
<td>He et al, 1998</td>
</tr>
<tr>
<td>เบนซิลและไวน์</td>
<td>Riboflavin phosphate กับ KMnO$_4$</td>
<td>0.1-100 mg l$^{-1}$</td>
<td>0.06 mg l$^{-1}$</td>
<td>3.7% (n=11)</td>
<td>Qin et al, 1998</td>
</tr>
<tr>
<td>ชั้นพืชใส่</td>
<td>Tris(1,10-Phenantroline) Ruthenium-KILO$_4$</td>
<td>1.0×10$^{-7}$ - 1.5×10$^{-4}$</td>
<td>7×10$^{-10}$</td>
<td>2.3% (n = 9)</td>
<td>He et al, 1999</td>
</tr>
<tr>
<td>ออกไซด์ในอากาศ</td>
<td>Auto-oxidation sensitized by rhodamine 6G</td>
<td>0.05 – 10 mg l$^{-1}$</td>
<td>0.03 mg l$^{-1}$</td>
<td>5.0% (n = 11)</td>
<td>Huang et al, 1999</td>
</tr>
</tbody>
</table>
นอกจากนี้ยังมีการพัฒนาแบบมินิเทคโนโลยีแยกแบบออนไลน์ (online-separation) เกิดขึ้นเนื่องจากการต้องการที่มีสารปนเปื้อนมากในตัวอย่างมากที่ให้กระบวนการวิเคราะห์ซึ่งมีความพยายามในการพัฒนาการแยกแบบออนไลน์ขึ้น เพื่อทำให้คุณค่าในเรื่องที่มีอิทธิพลต่อการทดลอง และกระบวนการวิเคราะห์สำหรับที่สนใจเพื่อให้ถูกต้องกับการแยกออกได้ หรือทำให้เกิดการแยกสารลายทำให้สารตัวอย่างเปลี่ยนโครงสร้าง โดยเทคนิคงานแบบพัฒนาขึ้นคือ เทคนิคกักชัดพิจิตรุ่นโพลิโอเมไนซิส (GDFI) และเพอร์ฟวะพอร์ชันโพลิโอเมไนซิส (PFI) ซึ่งเป็นวิธีวิเคราะห์ที่มีนำมาใช้เพื่อแยกสารที่สนใจจากสารละลายตัวอย่างที่เกิดการเปลี่ยน โดยในเทคนิคทางเพอร์ฟวะพอร์ชันจะอาศัยการทำปฏิกิริยาของขั้นโพลิโอเมไนซิสเพื่อทำให้สารละลายขึ้น กลายเป็นสารละลายที่ระเหยช้าของสารในสารละลายก่อนที่จะเพิ่มผ่านอีกขั้นตอนการแยกสาร ที่สุดจะสามารถแยกสารได้เนื่องจากผลิตภัณฑ์ที่เกิดขึ้นมีจุดพิจิตรุ่นที่เกิดขึ้น สามารถแยกสารนี้ได้โดยการแยกแบบออนไลน์นั้น จะมีวิธีการที่ซับซ้อนกว่าการแยกแบบออนไลน์นั้น จะมีวิธีการและขั้นตอนการวิเคราะห์ที่พัฒนาเพิ่มเติมขึ้นจากวิธีโพลิโอเมไนซิสซึ่งสามารถแยกสารได้เนื่องจากความจำเป็นและความมุ่งมั่นในการที่จะใช้เทคนิคพิจิตรุ่นโพลิโอเมไนซิส เพื่อให้เกิดการกักชัดสารที่ไม่ได้ต้องการ ซึ่งจะมีประสิทธิภาพสูง โดยไม่ต้องการมีการเตรียมตัวอย่างและใช้สารเคมีที่มีราคาแพง และความเป็นพิษต่อสิ่งแวดล้อม สำหรับการเป็นวิธีการวิเคราะห์ที่มีการแยกอย่างละเอียด
ตาราง 4 ตัวอย่างการวิเคราะห์ชีวไฟฟ้าด้วยเทคนิคการแยกแบบออนไลน์ (on-line)

<table>
<thead>
<tr>
<th>ตัวอย่างที่ซื้อก่า</th>
<th>สารที่ใช้ทำปฏิกิริยา</th>
<th>ระดับความเข้มข้นที่รับได้</th>
<th>ระดับความเข้มข้นที่ใช้</th>
<th>ภาพลักษณ์การเปลี่ยนแปลง</th>
<th>จำนวน</th>
<th>ระบบการแยกแบบออนไลน์</th>
<th>ตัวอย่าง</th>
</tr>
</thead>
<tbody>
<tr>
<td>ไวน์</td>
<td>Iodine reagent</td>
<td>0.5-2.0 mg l⁻¹</td>
<td>0.05 mg l⁻¹</td>
<td>1.6% (n = 11)</td>
<td>60</td>
<td>GDFI-spectrometry</td>
<td>Thanh et al, 1994</td>
</tr>
<tr>
<td>ไวน์และ น้ำมัน</td>
<td>N,Ndimeethylphenylene diamine (DMPD) และ Fe⁺⁺</td>
<td>1-25 mg l⁻¹</td>
<td>0.25 mg l⁻¹</td>
<td>3.3% (n = 10)</td>
<td>40</td>
<td>GDFI-spectrometry</td>
<td>Carinhanha et al, 2006</td>
</tr>
<tr>
<td>ไวน์</td>
<td>Bromocresol green เป็น ฮีดีคิลเลอร์</td>
<td>1-20 mg l⁻¹</td>
<td>0.1 mg l⁻¹</td>
<td>1.5% (n = 8)</td>
<td>120</td>
<td>GDFI-spectrometry</td>
<td>Décnop-Weever et al, 1997</td>
</tr>
<tr>
<td>ไวน์และ น้ำมัน</td>
<td>Acid medium</td>
<td>1.0-50 mg l⁻¹</td>
<td>0.03 mg l⁻¹</td>
<td>0.2% (n = 10)</td>
<td>120</td>
<td>GDFI-spectrometry</td>
<td>Tavares Araujo et al, 2005</td>
</tr>
<tr>
<td>น้ำตาล, ไวน์, น้ำมัน</td>
<td>Ni(II)triglycine complex of luminol</td>
<td>5.0×10⁻⁴ - 5×10⁻⁴ M</td>
<td>2.8×10⁻⁴ M</td>
<td>4.6% (n=10)</td>
<td>60</td>
<td>GDFI-spectrometry</td>
<td>Bonifacio jo et al, 2004</td>
</tr>
<tr>
<td>น้ำตาล, ไวน์, น้ำมัน</td>
<td>NaCO₃, NaHCO₃-Cu⁺⁺</td>
<td>1.0×10⁻⁶ - 5×10⁻⁶ M</td>
<td>5×10⁻⁷ M</td>
<td>4.6% (n = 9)</td>
<td>120</td>
<td>GDFI-amperometry</td>
<td>Lin jo et al, 1996</td>
</tr>
<tr>
<td>ไวน์และ น้ำมัน</td>
<td>H₂O₂, H₂SO₄</td>
<td>0.01-1×10⁻¹ M</td>
<td>5×10⁻⁴ M</td>
<td>1.23% (n=6)</td>
<td>78</td>
<td>GDFI-spectrometry</td>
<td>Su et al, 1998</td>
</tr>
</tbody>
</table>
บทที่ 3
วิธีการดำเนินการวิจัย

สถานที่ดำเนินการวิจัย

ภาควิชาวิศนี คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้

ขั้นตอนการทำงาน

<table>
<thead>
<tr>
<th>เครื่องมือ-อุปกรณ์</th>
<th>บริษัทผู้ผลิตและรุ่น</th>
<th>ประเทศ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rated tygon pump tube</td>
<td>TACS</td>
<td>Australia</td>
</tr>
<tr>
<td>High Voltage Power supply</td>
<td>Electron Tubes Ltd.</td>
<td>UK</td>
</tr>
<tr>
<td>Digital multimeter</td>
<td>UNI-T รุ่น UT60D</td>
<td>Hongkong</td>
</tr>
<tr>
<td>Two channel peristaltic pump</td>
<td>Gilson Minipuls 3</td>
<td>France</td>
</tr>
<tr>
<td>pH meter</td>
<td>Metrohm รุ่น 827 pH lab</td>
<td>UK</td>
</tr>
<tr>
<td>Photomultiplier tube</td>
<td>Electron Tubes Ltd. รุ่น Thorn-EMI 9878SB</td>
<td>UK</td>
</tr>
<tr>
<td>PTFE membrane</td>
<td>Pro-tech group</td>
<td>Australia</td>
</tr>
<tr>
<td>Personal computer</td>
<td>Pentium IV</td>
<td>UK</td>
</tr>
<tr>
<td>Ultra pure water purification system</td>
<td>Millipore</td>
<td>France</td>
</tr>
<tr>
<td>Ultrasonic bath</td>
<td>NDI</td>
<td>Germany</td>
</tr>
<tr>
<td>Voltammograph</td>
<td>Metrohm รุ่น 746 VA</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Glassy carbon electrode</td>
<td>Metrohm รุ่น 791 VA</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Ag/AgCl reference electrode</td>
<td>Metrohm รุ่น 6.0728.020</td>
<td>Switzerland</td>
</tr>
<tr>
<td>3M KCl Electrolyte solution</td>
<td>Metrohm รุ่น 6.2308.020</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Hg (DME) electrode</td>
<td>Metrohm รุ่น 6.1226.030</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Pt rod counter electrode</td>
<td>Metrohm รุ่น 6.1204.120</td>
<td>Switzerland</td>
</tr>
<tr>
<td>สารเคมี</td>
<td>บริษัทผู้ผลิต</td>
<td>เกณฑ์</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>1. Acetic acid (C₂H₄O₂)</td>
<td>Merck</td>
<td>A.C.S. Reagent</td>
</tr>
<tr>
<td>2. Ammonium acetate (CH₃COONH₄)</td>
<td>Merck</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>3. Ascorbic acid (C₆H₈O₆)</td>
<td>Carlo Erba</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>4. Cobalt sulfate (CoSO₄·7H₂O)</td>
<td>Carlo Erba</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>5. Calcium chloride (CaCl₂·2H₂O)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>6. Calcium sulphate (CaSO₄·2H₂O)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>7. Ethanol (C₂H₅OH)</td>
<td>Merck</td>
<td>A.C.S. Reagent</td>
</tr>
<tr>
<td>8. Fluorescin (C₂₆H₁₄O₈)</td>
<td>Merck</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>9. Glucose (C₆H₁₂O₆)</td>
<td>May & Baker</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>10. Hydrochloric acid (HCl)</td>
<td>Merck</td>
<td>A.C.S. Reagent</td>
</tr>
<tr>
<td>11. Iron (II) sulphate (FeSO₄·7H₂O)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>12. Iron (III) nitrate (Fe(NO₃)₃·9H₂O)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>13. Magnesium sulphate (MgSO₄·7H₂O)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>14. Manganese (II) sulphate (MnSO₄·H₂O)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>15. Nickel sulphate (NiSO₄·6H₂O)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>16. Nitric acid (HNO₃)</td>
<td>Merck</td>
<td>A.C.S. Reagent</td>
</tr>
<tr>
<td>17. Phosphoric acid (H₃PO₄)</td>
<td>Merck</td>
<td>A.C.S. Reagent</td>
</tr>
<tr>
<td>18. Potassium dihydrogen phosphate (KH₂PO₄)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>ชื่อสารเคมี</td>
<td>บริษัทผู้ผลิต</td>
<td>เกณฑ์</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>19. Potassium iodide (KI)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>20. Potassium permanganate (KMnO₄)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>21. Potassium sulphate (K₂SO₄)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>22. Rhodamine B (C₁₈H₁₃ClN₂O₃)</td>
<td>Fluka</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>23. Sodium acetate (CH₃COONa .3H₂O)</td>
<td>Carlo erba</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>24. Sodium chloride (NaCl)</td>
<td>LAB-SCAN</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>25. Sodium hexameta phosphate (NaPO₄)₆</td>
<td>Sigma</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>26. Sodium sulfite (NaSO₃)</td>
<td>J.T. Baker</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>27. Sodium sulphate (Na₂O₄S)</td>
<td>Fisher scientific</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>28. Sucrose (C₁₂H₂₂O₁₁)</td>
<td>May & Baker</td>
<td>Analytical Reagent</td>
</tr>
<tr>
<td>29. Sulfuric acid (H₂SO₄)</td>
<td>Merck</td>
<td>A.C.S. Reagent</td>
</tr>
<tr>
<td>30. Zinc sulphate (ZnSO₄.7H₂O)</td>
<td>Ajax</td>
<td>Analytical Reagent</td>
</tr>
</tbody>
</table>
วิธีการทดลอง

1. การเตรียมสารละลาย

1.1 การเตรียมสารละลายสำหรับการวิเคราะห์การปริมาณเจลไฟตelliteซิลิซีประกอบด้วยโพลี
เจลซิลิซี และก้าชิซีติฟิวซิล ได้ยินอนิสคลอร์

1.1.1 การเตรียมสารละยาซิลิซีประกอบขั้น 2 โมลาร์

ดวงสิลิซีฟิวซิล 97% ได้ 109.9 มิลลิลิตร ลงในน้ำปรุงจากออร์เล็กน้อยใน
ขาววัตติเปรียบประมาณที่ 1000 มิลลิลิตร แล้วปรับปริมาตรด้วยน้ำปรุงจากออร์เล็กน้อยซิลิซีติฟิว

1.1.2 การเตรียมสารละยาซิลิซีนิสต์ (donor stream solution)

การเตรียมสารละยาซิลิซีนิสต์ที่ใช้เป็นสารละยาในกระดับให้ใช้ในวิธีปริมาณซิลิซี
ซิลิซีไฟตellite เมื่อนำเข้า 0.2 โมลาร์ ทำให้โดยเปลี่ยนเปรียบประมาณขั้น 2 โมลาร์ ได้
100.0 มิลลิลิตร ลงในน้ำปรุงจากออร์เล็กน้อยในขาววัตติเปรียบประมาณที่ 1000 มิลลิลิตร ปรับ
ปริมาตรด้วยน้ำปรุงจากออร์เล็กน้อยซิลิซีติฟิวซิล

การเตรียมสารละยาซิลิซีนิสต์ที่ใช้เป็นสารละยาในกระดับให้ใช้เปรียบจำ
ติฟิวซิล ไฟตellite ได้ 0.1 โมลาร์ โดยเปลี่ยนเปรียบประมาณขั้น 2 โมลาร์ ได้
50.0 มิลลิลิตร ลงในน้ำปรุงจากออร์เล็กน้อยในขาววัตติเปรียบประมาณที่ 1000 มิลลิลิตร ปรับ
ปริมาตรด้วยน้ำปรุงจากออร์เล็กน้อยซิลิซีติฟิวซิล

1.1.3 การเตรียมสารละยาซิลิซีนิสต์ (aqueous buffer) ประกอบด้วย 1.0×10⁻³ โมลาร์

ซิลิซีนิสต์เปรียบประมาณที่ 0.1587 กรัม น้ำมันละลายด้วยน้ำปรุงจากออร์เล็กน้อย

ล้างในขาววัตติเปรียบประมาณที่ 100 มิลลิลิตร ปรับปริมาตรด้วยน้ำปรุงจากออร์เล็กน้อยซิลิซีติ

ปริมาตร ที่ปัตติย์กระรอกซิลิซีต์ (เกณฑ์วิธีการใช้เปรียบประมาณ 2 สิบค่า)

1.1.4 การเตรียมสารละยาซิลิซีนิสต์ (buffer stream)

ดวงซิลิซีนิสต์ขั้น 85 % ได้ 197.0 มิลลิลิตร ลงในน้ำปรุงจากออร์เล็กน้อยใน
ขาววัตติเปรียบประมาณที่ 1000 มิลลิลิตร แล้วปรับปริมาตรด้วยน้ำปรุงจากออร์เล็กน้อยซิลิซีติ

ปริมาตร

1.1.5 การเตรียมสารละยาซิลิซีนิสต์ (buffer stream)

เปรียบประมาณซิลิซีนิสต์ 2 โมลาร์ ได้ 10.0 มิลลิลิตร ลงในน้ำปรุงจากออร์เล็กน้อย

ในขาววัตติเปรียบประมาณที่ 1000 มิลลิลิตร ปรับปริมาตรด้วยน้ำปรุงจากออร์เล็กน้อยซิลิซีติ
1.1.6 การเตรียมสารละลายไอโอดีน ปี เซ็มชั้น 100 มิลลิกรัมต่อลิตร

ชั้นไอโอดีน ปี 0.01 กรัม นำมาละลายด้วยน้ำประปาจากไบโอด์ จากนั้นเรียงในขวด
วัดปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยน้ำประปาจากไบโอด์จนถึงขั้นต่ำ
น้ำประปาเพียงก้าววิ่งในที่มืด

1.1.7 การเตรียมสารละลาย 0.75% โดยน้ำหนัก ไชยเดียมเนสซิม🇯🇵โซเพฟล็อปในสารละลาย
กรดฟลูอเรียที่มีไอโอดีน ปี 1 มิลลิกรัมต่อลิตร (carrier stream solution)

ชั้นไชยเดียมเนสซิม黠ิมเพฟล็อปฯ 7.50 กรัม นำมาละลายด้วยน้ำประปาจากไบโอด์ จากนั้นนำ
ลงในขวดวัดปริมาตรขนาด 1000 มิลลิลิตร เริ่มสารละลายกรดฟลูอเรียที่มีไอโอดีน 2 มิลลิลิตร
และสารละลายไบโอด์ ปี เซ็มชั้น 100 มิลลิกรัมต่อลิตร ลงไป 10
มิลลิลิตร แล้วปรับปริมาตรด้วยน้ำประปาจากไบโอด์จนถึงขั้นต่ำ

1.1.8 การเตรียมสารละลายอินเดอร์เนซิม🇯🇵เปปเปอร์แบ่งงานในเซ็มชั้น 8.0 × 10⁻² มิลลิ
ลิตร ที่อยู่ในสารละลายกรดฟลูอเรีย (reagent stream solution)

เปปเปอร์แบ่งงานในเซ็มชั้น 1.0 × 10⁻² มิลลิลิตร มี 0.8 มิลลิลิตรลง
ในขวดวัดปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยสารละลาย 0.75 % โดยน้ำหนัก ของ
ไชยเดียมเนสซิม黠ิมเพฟล็อปฯ ที่อยู่ในสารละลายกรดฟลูอเรียที่มีไอโอดีน 0.02 มิลลิ
ลิตร จนถึงขั้นต่ำ

1.1.9 การเตรียมสารละลายมาตรฐานซัลฟ์ฟิลด์ซั่น 1000 มิลลิกรัมต่อลิตร

ชั้นโซลูชั่นซัลฟ์ฟิลด์ซั่น 0.1589 กรัม นำมาละลายด้วยน้ำประปาจากไบโอด์ จากนั้นนำลงใน
ขวดวัดปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยน้ำประปาจากไบโอด์จนถึงขั้นต่ำ

1.1.10 การเตรียมสารละลายซัลฟ์ฟิลด์ซั่น 10 มิลลิกรัมต่อลิตร

เปปเปอร์แบ่งงานในเซ็มชั้น 1000 มิลลิกรัมต่อลิตร มี 1 มิลลิลิตรลงในขวด
วัดปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยน้ำประปาจากไบโอด์จนถึงขั้นต่ำ

1.1.11 การเตรียมสารละลายมาตรฐานซัลฟ์ฟิลด์ซั่น 1, 1.5, 2, 2.5, 3, 3.5 และ 4 มิลลิกรัม
t่อลิตร

เปปเปอร์แบ่งงานในเซ็มชั้น 10 มิลลิกรัมต่อลิตร มี 2.5, 3.75, 5, 6.25, 7.5, 8.75 และ
10 มิลลิลิตร ตามลำดับลงในขวดวัดปริมาตรขนาด 25 มิลลิลิตร ปรับปริมาตรด้วยน้ำประปาจากไบโอด์จนถึงขั้นต่ำ
1.2 การเตรียมสารละลายสำหรับการศึกษาที่มีผลต่อการรักษา
ปริมาณซุ้มใหญ่โดยวิธี เพาะวัตถุเพื่อให้ละลาย

1.2.1 การเตรียมสารละลายมาตรฐาน K⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 22.5099 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร

1.2.2 การเตรียมสารละลายมาตรฐาน Na⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 15.5949 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร

1.2.3 การเตรียมสารละลายมาตรฐาน Ca²⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 18.7525 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร

1.2.4 การเตรียมสารละลายมาตรฐาน Co²⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 24.0627 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร

1.2.5 การเตรียมสารละลายมาตรฐาน Fe²⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 25.1417 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร

1.2.6 การเตรียมสารละลายมาตรฐาน Mg²⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 51.7176 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร

1.2.7 การเตรียมสารละลายมาตรฐาน Mn²⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 15.6895 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร

1.2.8 การเตรียมสารละลายมาตรฐาน Ni²⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 23.3255 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร

1.2.9 การเตรียมสารละลายมาตรฐาน Fe³⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่วโมงเพื่อติ่งข้าวที่เพาะ 36.9130 กรัม ละลายด้วยน้ำน้ำรักษา 100 มิลลิกรัม ปรับปริมาณด้วยน้ำน้ำรักษา ให้จนถึงจุดวัดปริมาตร
1.2.10 การเตรียมสารละลายมาตรฐาน Cl⁻ 50,000 มิลลิกรัมต่อลิตร
ชั่งน้ำเทียบเกินคร่าวๆ 8.3141 กรัม ชะคานวนน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร

1.2.11 การเตรียมสารละลายมาตรฐาน Na⁺ 50,000 มิลลิกรัมต่อลิตร
ชั่งน้ำเทียบไซซิเออร์โซโล่ได้ 6.6010 กรัม ชะคานวนน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาณขนาด 100 มิลลิลิตร ปรับปริมาณด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร

1.2.12 การเตรียมสารละลายมาตรฐาน CH₃COO⁻ 50,000 มิลลิกรัมต่อลิตร
ชั่งน้ำเทียบไซซิเออร์โซโล่ได้ 11.5901 กรัม ชะคานวนน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาณขนาด 100 มิลลิลิตร ปรับปริมาณด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร

1.2.13 การเตรียมสารละลายมาตรฐาน SO₄²⁻ 50,000 มิลลิกรัมต่อลิตร
ชั่งน้ำเทียบไซซิเออร์โซโล่ได้ 7.4726 กรัม ชะคานวนน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาณขนาด 100 มิลลิลิตร ปรับปริมาณด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร

1.2.14 การเตรียมสารละลายมาตรฐาน S²⁻ 50,000 มิลลิกรัมต่อลิตร
ชั่งน้ำเทียบไซซิเออร์โซโล่ได้ 22.4179 กรัม ชะคานวนน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาณขนาด 100 มิลลิลิตร ปรับปริมาณด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร

1.2.15 การเตรียมสารละลายมาตรฐาน PO₄³⁻ 50,000 มิลลิกรัมต่อลิตร
ชั่งน้ำเทียบไซซิเออร์โซโล่ได้ 7.2323 กรัม ชะคานวนน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาณขนาด 100 มิลลิลิตร ปรับปริมาณด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร

1.2.16 การเตรียมสารละลายมาตรฐานคลอโรส 50,000 มิลลิกรัมต่อลิตร
ชั่งน้ำเทียบไซซิเออร์โซโล่ได้ 5.0000 กรัม ชะคานวนน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาณขนาด 100 มิลลิลิตร ปรับปริมาณด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร

1.2.17 การเตรียมสารละลายมาตรฐานซัฟฟอร์ส 50,000 มิลลิกรัมต่อลิตร
ชั่งน้ำเทียบไซซิเออร์โซโล่ได้ 5.0000 กรัม ชะคานวนน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาณขนาด 100 มิลลิลิตร ปรับปริมาณด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร

1.2.18 การเตรียมสารละลายมาตรฐานเอทานอล 50,000 มิลลิกรัมต่อลิตร
เปียเลทอทอลขนาด 6.33 มิลลิลิตร ละลายในวัสดุปริมาณขนาด 100 มิลลิลิตร ปรับปริมาณด้วยน้ำยาประสานกับออกซิเจนที่เกี่ยวข้องในวัสดุปริมาตร
1.2.19 การเตรียมสารละลายมาตรฐานกรดตัวอินทรีย์ 50,000 มิลลิกรัมต่อกิโลกรัม
ชั่วคราวปริมาตร 5.0050 กรัม และลิตรน้ำปราศจากไอออนจากนั้นถ่ายลงในขวดวัดปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยน้ำปราศจากไอออนจนถึงจุดเริ่มต้นการวัดปริมาตร

1.3 การเตรียมสารละลายสำหรับการวัดควัตรให้สารคีโคลฟอร์มาซีเลนซ์สิ้นสุด

1.3.1 การเตรียมสารละลายออกซานอลีนเชื้อ 5% โดยปริมาตร

ตัวให้สารละลายออกซานอลีน 50 มิลลิลิตร ลงในขวดวัดปริมาตรขนาด 1000 มิลลิลิตร ปรับปริมาตรด้วยน้ำปราศจากไอออนจนถึงจุดเริ่มต้นการวัดปริมาตร

1.3.2 การเตรียมสารละลายกรดตัวอินทรีย์เชื้อ 9.19 มิลลิลิตร

ตัวให้สารละลายกรดตัวอินทรีย์เชื้อ 18.39 มิลลิลิตร ลงในขวดวัดปริมาตรขนาด 250 มิลลิลิตร ปรับปริมาตรด้วยน้ำปราศจากไอออนจนถึงจุดเริ่มต้นการวัดปริมาตร

1.3.3 การเตรียมสารละลายแอมโมเนียมออกซิคลอเรฟอร์มาซีเลนเชื้อ 2 มิลลิลิตร

เชื้อออกซานอลีนเชื้อ 79.50 กรัม นำมาละลายด้วยน้ำปราศจากไอออน จากนั้นถ่ายลงในขวดวัดปริมาตรขนาด 500 มิลลิลิตร ปรับปริมาตรกรดตัวอินทรีย์เชื้อ 57 มิลลิลิตร ปรับปริมาตรด้วยน้ำปราศจากไอออนจนถึงจุดเริ่มต้นการวัดปริมาตร

1.3.4 การเตรียมสารละลายออกซานอลีนเชื้อ แยกปิปีด (electrolyte trapping)

เชื้อออกซานอลีนเชื้อ 2 มิลลิลิตร จากข้อ 1.3.3 โดยคงสารละลาย 125 มิลลิลิตร ลงในขวดวัดปริมาตรขนาด 250 มิลลิลิตร ปรับปริมาตรด้วยน้ำปราศจากไอออนจนถึงจุดเริ่มต้นการวัดปริมาตร

1.3.5 การเตรียมสารละลายมาตรฐานกรดตัวอินทรีย์เชื้อ 1000 มิลลิกรัมต่อกิโลกรัม

เชื้อออกซานอลีนเชื้อ 0.3972 กรัม และลิตรน้ำปราศจากออกซานอลีน เชื้อ 5% โดยปริมาตร

ในขวดวัดปริมาตรขนาด 250 มิลลิลิตร ปรับปริมาตรด้วยสารละลายออกซานอลีนเชื้อ 5% โดยปริมาตรจนถึงจุดเริ่มต้นการวัดปริมาตร

1.3.6 การเตรียมสารละลายมาตรฐานกรดตัวอินทรีย์เชื้อ 200 มิลลิกรัมต่อกิโลกรัม

ปิลน์สารละลายมาตรฐานกรดตัวอินทรีย์เชื้อ 1000 มิลลิกรัมต่อกิโลกรัม ปริมาตร 20 มิลลิลิตร ลงในขวดวัดปริมาตรขนาด 100 มิลลิลิตร ปรับปริมาตรด้วยสารละลายออกซานอลีนเชื้อ 5% โดยปริมาตรจนถึงจุดเริ่มต้นการวัดปริมาตร
13.7 ภาวะเตรียมสารละลายมาตราฐานซัลฟิดีนซิลฟอที่มีซัน 5.0, 15.0 และ 25.0 มิลลิกรัมต่อลิตร
น้ำสารละลายมาตราฐานซัลฟิดีนซิลฟอที่มีซัน 200 มิลลิกรัมต่อลิตร ปริมาตร 0.25, 0.75 และ 1.25 มิลลิกรัม ลงในกระบอกตรวจขนาด 10 มิลลิกรัม ปรับปริมาตรด้วยสารละลายไฮโดรเจน ออกซิเจน 5% โดยปริมาตร จนถึงขั้นต่ำปริมาตร

2. การศึกษาความเป็นไปได้ของระบบการตรวจวัดคุณลักษณะเชิงฟิลอนเจนขั้น

ในการศึกษาความเป็นไปได้ของวิธีวิเคราะห์ด้วยระบบที่ระบบการตรวจวัดคุณลักษณะเชิงฟิลอนเจนขั้น ได้อาลัยพื้นฐานจากบทความของ J. L. Adcock. (Adcock et al., 2007: 36) พบว่า

สารจะละลายในกลุ่มซัลฟิดีนซิลฟอที่มีซันชื้นฟูออกไซด์ซิลฟอที่มีสามารถที่จะปรับลดการเปลี่ยนแปลงเชิงฟิลอนเจนขั้นได้ดีกับสารประกอบโพแทสเซียมเบอร์แมงกะตะในสาระที่เป็นกรดโดยมีสารละลายฟิลอนเจนขั้น ประกอบสารประกอบโพแทสเซียม (เช่น โพแทสเซียมฟิลอนเจน โพแทสเซียมซัลฟอที่ โพแทสเซียมฟิลอนเจนฟลูออรีด และสารประกอบซัลฟอที่ฟลูออรีด รวมถึงการใช้สารประกอบซัลฟอที่ฟลูออรีด เช่น โพแทสเซียมฟิลอนเจน โพแทสเซียมซัลฟอที่ฟลูออรีด และสารประกอบซัลฟอที่ฟลูออรีด) มาช่วยในการเพิ่ม

ความสามารถในการคายสิ่งมีชีวิตสารประกอบในกลุ่มซัลฟอที่ฟลูออรีดทำปฏิกิริยาของสารประกอบ

โพแทสเซียมเบอร์แมงกะตะในสาระที่เป็นกรด เพื่อพัฒนาให้วิธีวิเคราะห์ซัลฟอที่ฟลูออรีดมี

ประสิทธิภาพเพิ่มขึ้น จึงได้ทดลองใช้ระบบที่มีสารละลายฟิลอนเจนขั้นรวมทั้งสารประกอบซัลฟอที่ฟลูออรีด และสารประกอบซัลฟอที่ฟลูออรีด ที่ชัดเจนในภาพ 14 และภาพ 15 โดยปฏิกิริยาการคายสิ่งมีชีวิตใน ณ บริเวณขั้นต่ำอีกครั้งที่วัด T จะ

ไฟจากอายุสไปริทส์แคลิฟ์ฟอยล์ ที่วัดไว้ในขั้นต่ำของポータブルモニター (PMT) ในกล่องอุมเมด

ในมิเตอร์ (luminometer) ที่สร้างขึ้นอย่างรวดเร็ว เทียบกับการเปลี่ยนของ Mn(II) ที่เกิดจากการเกิด

รัศมีซัลฟอที่ฟลูออรีดได้อยู่ในสาระที่เป็นกรด

![Diagram](image-url)

ภาพ 14 ผังการจัดตั้งเครื่องมือสำรองการวิเคราะห์ซัลฟอที่ฟลูออรีดซัลฟอที่ฟลูออรีด:
P, peristaltic pump; Reagent stream (8×10^{-5} M KMnO_4 ใน sodium hexametaphosphate

ใน 0.02 M phosphoric acid); Carrier stream (0.75% (m/v) sodium hexametaphosphate
ใน 0.02 M phosphoric acid; V, valve (300 μl sample loop); T, T-shaped connector; F, flat spiral coil flow cell; PMT, photomultiplier tube; W, waste

โดยกล่องสุญญากาศมีแม่เหล็กที่ใต้พื้นฐานสำหรับการตรวจวัดแสงด้ววยแม่เหล็กแสบมี ถูกสร้างขึ้นโดยใช้กล่องไม่มีการบิดฉีดกล่องอย่างมีมิติ โดยภายในทางด้านทั้งหมด และด้าน spiral coil flow cell ที่ใช้ในการวัดการจะแสงแม่เหล็กแสบมีขนาดตัวอย่าง 2.5 เซนติเมตร โดยจะตัดกับตัวลูคให้แม่เหล็กพายอย่างที่ได้จะต้องเท่ากัน ที่มีพื้นที่ขนาดหน้าตั้งของท่อ 2.5 เซนติเมตร โดยการจัดการดูผ่านภายในกล่องได้แสดงดังภาพ 16

ภาพ 15 การจัดวางสุญญากาศแม่เหล็กแสบมีภายในกล่องสุญญากาศ

ซึ่งการตรวจวัดแสงสุญญากาศแสบมีขนาดตัวอย่าง符合ผิวอย่างจะมีการส่งสัญญาณไปยังเครื่องคอมพิวเตอร์ โดยผ่านเครื่องแปลงสัญญาณ-world อีกเป็นตัวจิตต์ ผ่านช่องโลกสัญญาณ RS-232 ของเครื่องติดตามแม่เหล็กแสบมีเข้าไปโปรแกรมบนที่กลึงสัญญาณ UT60D เพื่อวัดความสูงของท่อสัญญาณ

ในปัจจุบันของการศึกษาวิจัยครั้งนี้จะทำการทดสอบที่เหมาะสมของตัวแปรสิ่งค่าต่าง ๆ ที่ตรงไปทางการพยากรณ์และหาค่าของระบบ CL-FI เพื่อเป็นแนวทางในการใช้เป็นเครื่องมือตรวจวัดสำหรับระบบโฟล์ดิเน็กซ์ ที่มีระบบการแยกระบบย่อยไลน์ ชนิดเพื่อว่าพร้อมรับโฟล์ดิเน็กซ์ และการเพิ่มสิ่งค่าเป็นต้นไป
2.1 การศึกษาสภาพที่เหมาะสมในการวิเคราะห์หาปริมาณชั่วไฟด้วยประโยชน์ CL-FI

2.1.1 การศึกษาชนิดของคราบที่เหมาะสม

การศึกษาชนิดของคราบที่ใช้เป็นตัวกลางในการเตรียมสารละลายของกระแสดีวิธีที่มีสารละย่อยเช่นเม็ดละลายฟлогฟัด ที่มีความเข้มข้น 1 เบอร์เข้นต่ียวล้านหนัก และกระแสเรือเจนาร์โพแทลซิเมอร์แม่เหล็กอิสระขนาด 5×10⁻⁵ โมล/ลิตร โดยศึกษานิคของคราบต่างๆเพื่อใช้เป็นตัวกลางในการสร้างและการเตรียมเอกสารโดยใช้เทคนิค การใช้เครื่องวัดกระแสฟรีและกระแสฟรีวิธี ที่กำหนดความเข้มข้นที่ 0.08 โมล/ลิตร เลือกทำการศึกษาเฉพาะชั่ว-ไฟด์เข้มข้น 2 มิลลิกรัมต่อลิตรเข้าไปเพื่อวัดความเข้มแสงมิติสัมประสานที่เกิดขึ้นภายในระบบ CL-FI ที่ติดเชื้อโดยทำการที่ 3 ครั้งแล้วนํา khắpความสูงของพื้นที่ที่ใช้ไปในเวลาก่อนการเกิดค่าของชีวิตและชนิดที่ใช้เพื่อหาชนิดของกระแสที่เหมาะสมที่ใช้เป็นตัวกลางในการสร้างและการเตรียมเอกสาร

2.1.2 การศึกษาความเข้มข้นที่เหมาะสมของกระแสฟลอกฟีริก

หลังจากตัดคืนของกระแสที่เหมาะสมสำหรับใช้เป็นตัวกลางในระบบ CL-FI ได้จากข้อ 2.1.1 เลือกใช้การทำงานการเน้นชั่วของกระแสฟลอกฟีริกที่ใช้เป็นตัวกลางในการสร้างและการเตรียมเอกสารและกระแสฟลอกฟีริกในช่วงความเข้มข้น 0.01-0.12 โมล/ลิตร ซึ่งภาวะการเตรียมสารละย่อยเช่นเม็ดละลายฟลอกฟีริก และกระแสฟลอกฟีริกที่ติดเชื้อ 1% โดยน้ำหนัก และสารละย่อยเช่นเลือกสำหรับระบบ CL-FI จากนั้นทำการจัดสรรสารละย่อยเช่นฟลอกฟีริกเข้มข้น 2 มิลลิกรัมต่อลิตร เข้าไปเพื่อวัดความเข้มแสงมิติสัมประสานที่เกิดขึ้นของระบบ CL-FI ที่ได้ เหมาะสำหรับที่ใช้ประโยชน์ในการวิเคราะห์ความสูงของพื้นที่ที่เหมาะสมของกระแสฟลอกฟีริกที่จะนำไปใช้ในการเตรียมสารละย่อยเช่นและสารละย่อยเช่นต่อไป

2.1.3 การศึกษาค่าสัญญาที่เหมาะสมข้อ 2.1.2 โดยศึกษาค่าสัญญาที่เหมาะสมของระบบ CL-FI โดยทำการเจริญการฟลอกฟีริกเข้มข้น 2 มิลลิกรัมต่อลิตร เข้าไปเพื่อวัดความเข้มแสงมิติสัมประสานของระบบ CL-FI โดยทำการเจริญการฟลอกฟีริกเข้มข้น 2 มิลลิกรัมต่อลิตร เข้าไปเพื่อวัดสัญญาที่เหมาะสมของระบบ CL-FI โดยทำการเจริญการฟлอกฟีริกเข้มข้น 2 มิลลิกรัมต่อลิตร เข้าไปเพื่อวัดสัญญาที่เหมาะสมของระบบ CL-FI โดยทำการเจริญการฟลอกฟีริกเข้มข้น 2 มิลลิกรัมต่
2.1.4 การศึกษาความเข้มข้นที่เหมาะสมของโพแทสเซียมเปอร์เมจานบีที่ใช้ในสารละลายต่อเจล

ในการศึกษาความเข้มข้นของสารละลายโพแทสเซียมเปอร์เมจานบีที่อยู่ในกระแสเจลเจลที่ประกอบด้วยสารละลายต่อเจลโพแทสเซียมมาต้าซอลฟลูออเรสเซิน 0.02 ในสาร ในช่วงความเข้มข้น 1×10^{-2} - 1×10^{-3} ในสาร ได้เสริมสารละลายโพแทสเซียมเปอร์เมจานบีที่มีความเข้มข้นต่าง ๆ ใช้สัมพันธ์ความเข้มข้นสมดุลยุทธิุภูมิเบียนพืช เมื่อใช้สารละลายซอลฟลูออเรสเซิน 2 มิลิลิตรต่อตันตราร จะซื้อไปในระบบ CL-FI วิธีปริมาณโพแทสเซียมเปอร์เมจานบีที่มีความเข้มข้นต่าง ๆ โดยจะทำการตกแต่งสมดุลยุทธิุภูมิเบียนพืชต่อกับความเข้มข้นของสารละลายโพแทสเซียมเปอร์เมจานบีที่ใช้ในกระแสเจลเจล เพื่อหาความเข้มข้นที่เหมาะสมของสารละลายโพแทสเซียมเปอร์เมจานบีที่อยู่ในกระแสเจลเจลต่อไป

2.1.5 การศึกษาความเข้มข้นที่เหมาะสมของสารละลายโพแทสเซียมมาต้าซอลฟลูออเรสเซิน

หลังจากปรับสภาพที่เหมาะสมของดินเป็นต่าง ๆ ที่ได้กล่าวมาแล้วทำการศึกษาพฤติกรรมของความเข้มข้นของสารละลายโพแทสเซียมมาต้าซอลฟลูออเรสเซินที่ใช้ดื่มในกระแสเจลเจลและกระแสเจลเจลในช่วงความเข้มข้น 0.25-1.25 % โดยทั่วไปนัก ได้ผลสารละลายกระแสเจลเจลและกระแสเจลเจลที่ใช้เป็นตัวกลางที่มีสารประกอบโพแทสเซียมมาต้าซอลฟลูออเรสเซินที่มีความเข้มข้นต่าง ๆ และอยู่ใน CL-FI นำไปใช้สัมพันธ์การเพิ่มของความเข้มข้นสมดุลยุทธิุภูมิเบียนพืช เมื่อใช้สารละลายซอลฟลูออเรสเซิน 2 มิลิลิตรต่อตันตราร จะซื้อไปในระบบ CL-FI นำเร็วที่ได้ไปใช้เป็นตัวกลางระหว่างความสูงของพืชกับความเข้มข้นของสารละลายโพแทสเซียมมาต้าซอลฟลูออเรสเซินที่ใช้ในกระแสเจลเจลเพื่อให้ค่าสัญญาณการกลายแสงสูงสุด

3. การศึกษาชีวิชีวิภาคที่มีระบบทะแนบแบบออนไลน์ (on-line) ชนิดเฉพาะพวงพราว

ในการวิเคราะห์ฟอร์มซอลฟลูออเรสเซิน (PFI-CL) นำผลการวิเคราะห์ด้วยกระเจาะไปในกระแสของสารละลายกรดซอลฟลูออเรสเซินที่นำผลการศึกษาแก่ซอลฟลูออเรสเซิน (donor stream) ซึ่งจะทำการปฏิกรณ์กรดซอลฟลูออเรสเซินระหว่างที่ถูกส่งผ่านไปยัง pervaporation unit ซึ่งภายในจะประกอบด้วยเก็บ class beads เรียงกันอย่างระเบียบในแนวระบาย จากไฟฟ้าเพื่อทำปฏิกรณ์เป็นการถูกซอลฟลูออเรสเซินจะเพิ่มขึ้นอย่างเร็วโดยที่จะส่งไปเป็นอีกหนึ่ง ๆ ที่เป็นชั้นสูงขึ้นไปในกระแสเจลเจลเพื่อทำปฏิกรณ์เมื่อไฟฟ้าเพิ่มขึ้นอย่างเร็วโดยที่จะส่งไปเป็นอีกหนึ่ง ๆ ที่เป็นชั้นสูงขึ้นไปในกระแสเจลเจลเพื่อทำปฏิกรณ์เมื่อไฟฟ้าเพิ่มขึ้นอย่างเร็วโดยที่จะส่งไปเป็นอีกหนึ่
ภาพ 16 ระบบที่ใช้ในการวัดความชื้นในรังสีเลเซอร์ฟิล์ม โดยใช้ระบบเฟอร์วาวน์แพรซิสชิค มีอุปกรณ์พักฟื้นที่ทำหน้าที่ยั่งยืนจากวัสดุและอุปกรณ์ที่มีอยู่ในอ่างปฏิกิริยาแสดงให้เห็นในทางภาพ 3.4 ในขณะที่หน่วยแยกแบบเฟอร์วาวน์แพรซิสชิคให้เลือกแบบจากงานวิจัยของ Hermin (Sulistyarti et al., 1999: 133) ที่ให้ทำการศึกษาหาปริมาณใหม่ในค์มีลักษณะต่างจากภาพ 17 และลักษณะการจัดวางเม็ด glass beads ที่บรรจุอยู่ในหน่วยเฟอร์วาวน์แพรซิสชิคเป็นแนวระนาบ แสดงดังในภาพ 18
ภาพ 17 ระบบการวิเคราะห์ชัดใจไฟไซต์วิทยาปรีเวร์วาฟอร์เวซีนเคมีดูมิเนนเซซช์ : (1,2) peristaltic pump, (3) reagent stream solution, (4) acceptor stream solution, (5) donor stream solution, (6) injection valve, (7) pervaporation unit, (8) chemiluminescence spectrometer, (9) high voltage power supply, (10) digital multimeter, (11) personal computer, (12) waste

ภาพ 18 หน่วยแยกสารปรีเวร์วาฟอร์เวซีน
3.1 การศึกษาทางกายภาพที่เหมาะสมในการวิเคราะห์การบริเวณเชื้อตับโดยวิธี PFI-CL

การศึกษาทดลองเพื่อวิเคราะห์การแบบพร้อมปริมาณของกลไกออกซิเจน สามารถทำได้โดยวิธี univariance เพื่อศึกษาด้านการเปลี่ยนแปลงและค่าเฉลี่ย โดยจะปรับเปลี่ยนตัวแปรโดยใช้ดีไซน์ หนึ่งในโปรแกรมทดลองเพื่อวิเคราะห์ที่เหมาะสมที่สุดในขณะที่ตัวแปรอื่น ๆ จะถูกควบคุมให้คงที่ตลอดเวลา ทำให้การศึกษาทดลองของตัวแปรนั้น ๆ โดยทำการศึกษาที่เหมาะสมได้รับการควบคุมการควบคุมการทดลองในส่วนของการทดลองรายเดือนมีเริ่มต้นที่การทดลองในวัสดุจาก CL-FI ที่ได้ทดลองไว้ตามข้อ 2.1 และได้ผลการศึกษาทางกายภาพ ดังนี้

3.1.1 การศึกษาตัวถ่วงการไหลของกระแสตับรับและกระแสออกเจน

ในการศึกษาตัวถ่วงการไหลของกระแสตับรับและกระแสออกเจนจะควบคุมให้อัตราการไหลของกระแสตับรับและกระแสออกเจดนั้นมีค่าที่เท่ากัน ซึ่งจะศึกษาตัวถ่วงการไหลในช่วง 0.5-3.5 มิลลิลิตร/นาที เพื่อนำไปใช้ศึกษาผลที่มีค่าความเข้มแสงของเม็ดมันสมุนพิษ เมื่อตัวอย่างละลายชั่วโมงเพื่อวัดมันสมุนพิษที่ได้จากรายการไหล (total Flow rate) เพื่อหาอัตราการไหลของกระแสตับรับและกระแสออกเจดนั้นเหมาะสม

3.1.2 การศึกษาปริมาตรสารตัวอย่างที่เหมาะสมที่ที่สูงสุด

หลังจากปรับอัตราการไหลที่เหมาะสมตามข้อ 3.1.1 ทำการศึกษาปริมาตรสารตัวอย่างสูงสุดในโปรแกรมที่ใช้ในช่วงปริมาตร 50-500 มิลลิลิตร เพื่อนำไปใช้สำหรับศึกษาความเข้มแสงของเม็ดมันสมุนพิษ เมื่อตัวอย่างละลายชั่วโมง 2 มิลลิกรัมต่อลิตรจะเข้าไปใน
ระบบ PFI-CL โดยจะนำคำว่า 'ได้ไปยุทธการฟรุ่งวาร่วงความสูงของพื้นที่ภูมิศาสตร์ด้วยอัตราที่ดี
อย่างแท้จริงเพื่อทำภูมิศาสตร์ด้วยอัตราที่เหมาะสมที่ทำให้ได้พื้นที่สูงสุด

3.1.3 การศึกษาความเข้มข้นที่เหมาะสมของกรดซัลฟิวริกที่ใช้ในกระเทาตัวให้

เมื่อปรับระยะหว่างระบบ PFI-CL ที่เหมาะสมตามข้อ 3.1.2 จะศึกษาความเข้มข้นของกรดซัลฟิวริกที่เหมาะสมที่สุดในกระเทาตัวให้ (donor stream) ที่ช่วงความเข้มข้น 0.05-0.3 ในลิตร โดยนำสารละลายกรดที่ความเข้มข้นต่างๆ ไปใช้ศึกษาความเข้มข้นแสดงมีผลสำหรับ 1.เม็ดสารละลายซัลฟิวริกในปริมาณ 2 มิลลิลิตรต่อถังการใช้ไปในระบบ PFI-CL เพื่อนำคำว่า 'ได้ไปยุทธการฟรุ่งวาร่วง
ความสูงของพื้นที่ภูมิศาสตร์ด้วยกรดซัลฟิวริกที่เหมาะสมที่ทำให้ได้พื้นที่สูงสุด

3.1.4 การศึกษาอัตราการไหลที่เหมาะสมของกระเทาตัวให้

ในการศึกษาอัตราการไหลที่เหมาะสมที่สุด (donor stream) ซึ่งจะศึกษาอัตราการไหล
ที่ช่วง 0.5-3.5 มิลลิลิตรต่อนาที เพื่อศึกษาความเข้มข้นแสดงมีผลสำหรับ 1 เม็ดสาร
ละลายซัลฟิวริกในปริมาณ 2 มิลลิลิตรต่อถังการใช้ไปในระบบ PFI-CL โดยนำคำว่า 'ได้ไปยุทธการฟรุ่งวาร่วง
ความสูงของพื้นที่ภูมิศาสตร์ด้วยกรดซัลฟิวริกที่เหมาะสมที่ทำให้ได้พื้นที่สูงสุด

3.1.5 การศึกษาผลของพื้นที่โบรนซิลต่อการเพิ่มสภาพ骨干ของภูมิศาสตร์

หลังจากปรับระยะหว่างเหมาะสมของด้านประดาน้ำที่ได้กล่าวแล้ว ทำการศึกษาผลของ
พื้นที่โบรนซิล ที่ใช้ในการเพิ่มสภาพ骨干ของภูมิศาสตร์ โดยศึกษาผลของพื้นที่โบรนซิล
(โรงมันปิ ฟ้าและพื้นที่โบรนซิล) โดยทำการคิดพื้นที่โบรนซิลในการกระเทาตัวรับใช้ด้วยมลพิษ
พื้นที่ โดยกักเก็บความเข้มข้น 2 มิลลิลิตรต่อถังการใช้ไปในระบบ PFI-CL แล้วทำการคิดสารละลายซัลฟิวริกในปริมาณ
2 มิลลิลิตรต่อถังการใช้ไปในระบบ PFI-CL ที่เหมาะสมที่ทำให้ได้พื้นที่โบรนซิล

3.1.6 การศึกษาความเข้มข้นที่เหมาะสมของพื้นที่โบรนซิล

หลังจากผลศึกษาของพื้นที่โบรนซิลที่เหมาะสมแล้วเริ่มใช้เป็นตัวเพิ่มสภาพ骨干ของการ
วิเคราะห์ในระบบ PFI-CL ได้ทำการศึกษาความเข้มข้นของโรงมันปิ ฟ้าในช่วงความเข้มข้น 0.5-3.0
มิลลิลิตรต่อถังการใช้ไปด้วยโรงมันปิ ฟ้าที่ความเข้มข้นต่างๆ ในการกระเทาตัวรับสารละลายโดยได้ผล
ผลการทดสอบพื้นที่ผ่านสารละลายที่มีความเข้มข้นต่าง ๆ จากนั้นทำการคิดสารละลายซัล
ฟิวริกในปริมาณ 2 มิลลิลิตรต่อถังการใช้ไปในระบบ PFI-CL แล้วนำคำว่า 'ได้ไปยุทธการฟรุ่งวาร่วง
ความสูงของพื้นที่ภูมิศาสตร์ด้วยกรดซัลฟิวริกที่เหมาะสมที่ทำให้ได้พื้นที่สูงสุด

ที่ใช้เพิ่มสภาพ骨干ในการวิเคราะห์
3.2 การศึกษาหาค่าความเข้มข้นที่เป็นตัวละครของการวิเคราะห์

3.2.1 ทำให้โดยการเตรียมสารละลายมาตรฐานชั้นฟิล์ท์ที่ความเข้มข้น 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 และ 6.0 มิลลิกรัมต่อลิตร มาตริกซ์เพื่อระบบ PFI-CL ที่มีในภาษาที่
เหมะสมจากกรีกที่มาจากข้อ 3.1 แล้ววัดค่าความเข้มข้นเกี่ยวกับมีคุณสมบัติที่พื้นฐานของที่คั้น
d้วยความเข้มข้นเพื่อในการวิเคราะห์มาตรฐานและการวิเคราะห์เป็นตัวละครของการวิเคราะห์

3.2.2 การสร้างตารางฐานของสารละลายมาตรฐานชั้นฟิล์ท์ที่จะใช้ในการวิเคราะห์
ของชั้นฟิล์ท์ที่ทำการขยายเสมือนผู้คัดคู่ในช่วงที่มีความเป็นตัวละครของการวิเคราะห์

3.3 การศึกษาที่ใช้ของโฉมและระบายที่สำมัญ

3.3.1 เครื่องผลิตสารละลายฟิล์ท์ที่ความเข้มข้น 2.0 มิลลิกรัมต่อลิตร มาตริกซ์เพื่อระบบ PFI-
CL เพื่อใช้เป็นพื้นฐานแห่ง

3.3.2 เครื่องผลิตสารละลายฟิล์ท์ที่ความเข้มข้น 2.0 มิลลิกรัมต่อลิตรและเครื่องผลิตสารละลาย
มาตรฐาน K⁺ 2.0 มิลลิกรัมต่อลิตรในช่วงตัวฟิล์ท์ 100 มิลลิกรัมต่อลิตรในช่วงตัวกับ
(อัตราส่วน 1:1) แล้วมีที่เรียกชื่อระบบ PFI-CL เรียกเพื่อเพิ่มพื้นที่ได้กับที่ข้อ 3.3.1 (หากว่าเพิ่มที่ได้มี
ความสูงหรือสั้นกว่าเกิน 50 % จะถือว่าไม่มีค่า)

3.3.3 ทำการทดลองค้นค้นกับข้อ 3.3.2 โดยเปลี่ยนอัตราส่วนเป็น 1:10 1:100 1:1,000
1:10,000 ตามลำดับ

3.3.4 ทำการทดลองข้อ 3.3.1-3.3.3 โดยเปลี่ยนสารละลายมาตรฐานของโฉมและระบายที่สำมัญ
ต่าง ๆ ที่ต้องการทดสอบ โดยจะศึกษาของโฉมและระบายได้แก่ Cl⁻, CH₃COO⁻, SO₄²⁻, S²⁻, PO₄³⁻ และโฉม
บางที่ที่พบปะได้แก่ K⁺, Na⁺, Ca²⁺, CO₃²⁻, Fe⁺, Mg²⁺, Mn²⁺, Ni²⁺, Fe³⁺ รวมถึงโมลุกซ์ของสารประกอบ
บางชนิดที่พบได้อย่าง ๆ ในอาหารที่มี.den กลุ่มครี ซูโครส คาร์บอยด์ และเอนอล
เป็นต้น

3.4 การวิเคราะห์สารด้วย่องอาหารมักคอง

3.4.1 เก็บตัวอย่างน้ำอาหารมักคองมาทำการวิเคราะห์ โดยจะเก็บตัวอย่างน้ำอาหารมักคองที่หาในสาระร่วมกัน
ของตัวที่จะมีสารพันฟิล์ท์ในปัจจุบันเพื่อนามวิเคราะห์สารด้วย่อง PFI-CL ในการทดลองได้เก็บ
ตัวอย่างน้ำอาหารมักคองจากตลาดแต่ละเมือง ณ ที่นอนทาง อ.สันทราย ถึง น้ำหนักไม่เกิน น้ำ
ผักดั้งกและขี้หั้นเมื่อ

3.4.2 ทำการวิเคราะห์หาค่าฟิล์ท์โดยวิธี PFI-CL โดยนำตัวอย่างน้ำอาหารมักคองในช่วงความ
PFI-CL ซึ่งอาจต้องมีการดื่มให้เหมาะสมเพื่อให้มีความเข้มข้นของสารละลายอยู่ในช่วงความ
เป็นเหตุผลของการวิเคราะห์ ในการนี้ถ้าต้องการมีสารละลายโฟล์พีเกิดปัจจัยที่จะเกิดขึ้น ซึ่งความสูงของพีเกิดปัจจัยจะนำมาใช้ปรับตั้งกลับการมาตราฐานที่สางข้น

3.5 การควบคุมการกลับถั่มของการวิเคราะห์

3.5.1 เจาะจงสารตัวอย่างให้มีความเข้มข้นอยู่ในช่วงความเป็นนิยมตรง มาทำการวิเคราะห์

 หากความเข้มข้นแต่ละปัจจัยในมาตรฐาน (standard addition) โดยปกติสารละลายตัวอย่างในปริมาตรที่เท่ากันในขวดปริมาณแต่ละขนาด จากนั้นปัจจัยสารละลาย

 มาตรฐานขั้นต่ำสุดที่ทบทวนความเข้มข้นที่แน่นอนลงในขวดปริมาณแต่ละขนาดในปริมาตรที่

 เฉลี่ยกลับไปปรับปริมาตรตัวอย่างจะน้ำยาไหลลงในขวดน้ำมาปฏิบัติงานคัดวิเคราะห์คัดวิเคราะห์ PFI เพื่อวัดค่าความเข้มข้นแต่ละปัจจัยในมาตรฐาน มาตรฐานการมาตราฐานแบบการมาตราฐานจากปริมาณของชั่วโมงที่

 เฉลี่ยไปเทียบกับการมาตราฐาน

3.5.2 คำนวณข้อมูลการกลับถั่ม

3.6 การทดลองเพิ่มพานะไข่ของสารวัสดุ หรือวิธีการไหลกลับควบคุม (Stop flow mode)

 โดยทำการตรวจสอบสารละลายมาตรฐานจะใช้ให้กลับถั่มเฉพาะการเพื่อให้ได้ผลการปฏิบัติงานควบคุม

 สารละลายในกระชับสำหรับเพื่อเป็นเป็นเกณฑ์ที่เหมาะสมคิดเป็นกิจกรรมของเกิด{"pervaporation unit} นั้น เมื่อเกิดการพีเกิดโดยกิจกรรมที่เกิดกับถั่มกับชั่วโมงที่เกิดในชั่วโมงที่เหมาะสม ทำได้

โดยหมายเหตุสารละลายในacceptor chamber เป็นการซับวิวในระยะเวลาต่าง ๆ แต่ละ 2-15 นาที โดยมีการพีเป็นการควบคุม 20 โคราชในระดับต่าง ๆ อยู่ใน

คำว่า “Load” กระชับตัวควบคุมส่วนจะถูกถูกถูกในacceptor chamber โดยที่กระชับควบคุมที่ถูกถูกจากpump1 จะผ่านเฉพาะ 2 โดยไม่ผ่านเข้าไปในacceptor chamber แต่เมื่อควบคุมที่

ต้องการให้พีเกิดขั้นต่ำสุดจะส่งสั่นผ่านคู่ของ “Inject” เพื่อให้สารควบคุมที่ถูกถูกอยู่ใน acceptor chamber ให้ไหลผ่านไปผ่านเกณฑ์และถูกถูกผ่านไปเพื่อเพิ่มปริมาณการใช้ ซึ่งเป็น

ตัวทำปฏิบัติการกับขั้นตอนที่บริเวณ Flat coil cell เพื่อควบคุมและถูกถูกติดต่อกันไป
ภาพ 20 ผังการจัดวางเครื่องมือ PFI-CL ในการศึกษาการหยุดการไหลของน้ำ

ขั้นตอนการทําระบบ flow stop

3.6.1 เครื่องมือและหลักฐานชั้นไฟฟ้าที่มีความซับซ้อน 2 มิลลิกรัมต่อคิว ขนาดเส้นขับคิว PFI-CL โดยเครื่องระบายหลักฐานสูงสุดภาพ 20 เพื่อใช้ในการศึกษาการหยุดการไหลของสารละลายตัวรับ

3.6.2 จับเวลาในการถูกนุ่มสารละลายตัวรับ เพื่อทราบระยะเวลาที่เหมาะสมในการทำปฏิกิริยาในช่วง 2-15 นาที

3.6.3 ตรวจวัดสัญญาณเคมีภูมิเยื่อต่ำตามระยะเวลาที่กําหนด

4. การศึกษาวิธีการวิเคราะห์ด้วยระบบการแยกออกไลน์ (on-line) ด้วยวิธีการไฟฟ้า

ในการวิเคราะห์หาปริมาณชั้นไฟฟ้าโดยเทคนิคการไฟฟ้าที่มีนิยมใช้ในแบตเตอรี่ (GDFI-CL) นั้นมีการจัดการด้านย่อยชั้นไฟฟ้าโดยจะกระจายสารละลายตัวรับ โดยจะใช้ชั้นเลื่อนได้โดยใช้ชั้นตัวรับสารละลายตัวรับในชั้นไฟฟ้าที่มีนิยมใช้ในการวิเคราะห์ด้วยวิธีการไฟฟ้า (Flat spiral coil cell) แล้วเกิดการเรียงสัดสมดุลของชั้นสารละลายที่อยู่ในสภาพต่างๆ ที่มีการกระจายสารละลายตัวรับ มี вариантการแบ่งเหลื่อเขตชั้นที่มีนิยมใช้ในการวิเคราะห์ด้วยวิธีการไฟฟ้า GDFI-CL
ภาพ 21 ผังการจัดวางเครื่องมือสำหรับการวิเคราะห์ชั้นไฟฟ้าด้วยวิธี GDFI-CL : Pump1, Pump2; Peristaltic pump; Reagent stream (8.0×10⁻⁴ M KMnO₄ ใน sodium hexametaphosphate ใน 0.02 M H₂PO₄); Acceptor stream (1 mg/ml Rhodamine B ใน 0.75 % sodium hexametaphosphate ใน 0.02 M H₂PO₄); Donor stream (0.1 M H₂SO₄); Valve (500 μl sample loop); PMT, photomultiplier tube; W, waste

ภาพ 21 ระบบโฟลิอินเจคชั่นที่พัฒนาเพื่อใช้ในการวิเคราะห์ชั้นไฟฟ้าด้วยวิธีก้าชาติพิว-ชั่นโฟลิอินเจคชั่นเคมีภูมิศาสตร์ ที่ทำาการสร้างชั้นเงาจากวัสดุและอุปกรณ์ที่มีอยู่ในห้องปฏิบัติการ แสดงให้เห็นในภาพ 22

ภาพ 22 ระบบการวิเคราะห์ชั้นไฟฟ้าด้วยวิธีก้าชาติพิว-ชั่นโฟลิอินเจคชั่นเคมีภูมิศาสตร์ : (1,2) peristaltic pump, (3) potassiumpermaganate ใน sodium hexametaphosphate, (4) Rhodamine B ใน sodium hexametaphosphate ใน phosphoric acid, (5) sulfuric acid, (6)
injection valve, (7) gas diffusion unit, (8) detector, (9) high voltage power supply, (10) multimeter, (11) recorder, (12) waste

4.1 การศึกษาการระบายความร้อนในกระบวนการประจุ elektricด้วยโคจร GDFI-CL

การศึกษาทดลองปรับอากาศซอของระบบทำการ์ดิฟฟ์วินไดร์ม์ยืดหยุ่นในชุดอุปกรณ์มิลลิเมตรโดยผลิตภัณฑ์ความร้อนในชุดอุปกรณ์มิลลิเมตรโดยผลิตภัณฑ์ สามารถของ PFI-CL ในส่วนของการควบคุมวัดค่าคุณสมบัติในมิลลิเมตรโดยผลิตภัณฑ์ สามารถของ GDFI-CL ซึ่งการศึกษาการระบายความเย็นชิ้นของสารละลายกระแทบคลาสพิวิข์ (donor stream) และอัตราการไหลของ donor stream เป็นต้น

5. การปรับปรุงเป็นผู้ประสานงานระหว่างระบบออนไลน์

โดยการศึกษาการปรับปรุงระบบที่ออนไลน์ตัวอย่างระบบ PFI-CL และ GDFI-CL ซึ่งมีสภาพที่ดีที่สุด ช่วยสามารถนำเขาไปใช้โดยการตรวจสอบระบบการตรวจวัด อาทิเช่น ขั้นตอนชิ้นของสารละลายสารละลายกระแทบคลาสพิวิข์ (donor stream) และอัตราการไหลของ donor stream เป็นต้น

5.1 การศึกษาขั้นตอนการระบายความเย็นชิ้นที่เป็นตัวอย่างของสารละลาย

ทำให้โดยการเตรียมสารละลายชิ้นที่ขั้นตอนความเย็นชิ้น 0.5-6.0 มิลลิเมตรต่อชั่วโมง และ 0.5-10.0 มิลลิเมตรต่อชั่วโมงตามตัวอย่างระบบ PFI-CL และ GDFI-CL ที่มีการทดลองที่เหมาะสม ทำให้ขั้นตอนการกระแทบคลาสพิวิข์ (donor stream) และการตรวจสอบความสม่ำเสมอของพื้นที่ และความเย็นชิ้นเพื่อนำมาสรุปการกระแทบผ่านความสม่ำเสมอของสารละลายกระแทบคลาสพิวิข์ เพื่อเปรียบเทียบกับบวกอย่างที่ความร้อนขั้นตอนการกระแทบผ่านความสม่ำเสมอของสารละลายกระแทบคลาสพิวิข์ ทำให้ขั้นตอนการกระแทบคลาสพิวิข์ (donor stream) และการตรวจสอบความสม่ำเสมอของพื้นที่ และการทดสอบความสม่ำเสมอของพื้นที่ ทำให้ขั้นตอนการกระแทบคลาสพิวิข์ (donor stream) และการตรวจสอบความสม่ำเสมอของพื้นที่ และการทดสอบความสม่ำเสมอของพื้นที่

5.2 การศึกษาความเปลี่ยนแปลงของเครื่องมือและของสารละลาย

จากกราฟความเป็นตัวอย่างที่มีการกระแทบผ่านความเย็นชิ้นตัวอย่างของช่วงที่เป็นสินเปลี่ยนหนึ่งความเย็นชิ้น เพื่อนำเข้าไปในระบบ PFI-CL และ GDFI-CL ตามลักษณะที่เหมาะสม 12 ครั้ง เพื่อทดสอบความเปลี่ยนแปลงของเครื่องมือ

ส่วนการทดลองตัวอย่างการกระแทบคลาสพิวิข์ทำได้โดยการทดลองโดยใช้ตัวอย่างชิ้นที่ใช้ในการทดสอบคุณสมบัติของเครื่องมือกระแทบผ่านความสม่ำเสมอหมายอย่างใดอย่างหนึ่ง 12 ครั้ง ทำให้ขั้นตอนละลาย 3 ครั้ง เพื่อทดสอบการเปลี่ยนแปลงของเครื่องมือ
5.3 การศึกษาขั้นตอนสุดท้ายของการวิเคราะห์

5.3.1 เครื่องมือและรายละเอียดไฟฟ้าที่ความเข้มข้นตั้งแต่ 0.1-0.5 มิลเลอร์บีนตือสี มาตริกซ์ เข้าเครื่อง PFI-CL และ GDFI-CL ตามลักษณะ เพื่อหาความเข้มข้นที่ต้องใช้สำหรับวิเคราะห์ได้โดยพิจารณาจากค่าสัญญาณในสัดส่วน (signal-to-noise ratio) ที่มีค่ามากกว่า 2 หรือ 3 เท่าเปรียบเทียบกับสัญญาณพื้นหลัง

6. การวิเคราะห์สารตัวอย่าง

6.1 เก็บด้านล่างน้ำยาทำหน้าที่ โดยเก็บด้านล่างน้ำยาทำหน้าที่ที่มีสารตัวอย่างปัจจุบันเพื่อนำมาวิเคราะห์ด้วยวิธี GDFI-CL. ในการทดลองได้เก็บด้านล่างน้ำยาทำหน้าที่ มุ่งมั่นจากกลางคลำดเมื่อยล. หน่วยฝรั่ง. ขอ น้ำหนักไม่ต่ำกว่า น้ำหนักของ นักพัฒนา คง และจึง หนักย่อย

6.2 ทำการวิเคราะห์หาชั่วไฟฟ้าโดยวิธี GDFI-CL โดยทำการจับกันดืนขั้นตอนขั้นสุดท้ายระบบ GDFI-CL ซึ่งอาจนิยามการเชื้อจากได้เหมาะสมก่อนเพื่อให้คุณค่าของสารละลายอยู่ในช่วงความเป็นสัดส่วน ฉันด้านล่างมีสารตัวอย่างปัจจุบันที่สัญญาณจะเกิดขึ้น ซึ่งความสูงของสัญญาณจะนำมาเปรียบเทียบกับการทำงานมาตรฐานที่สร้างขึ้น

7. การหาข้อมูลตัวบ่งชี้

7.1 ทำการจับกันชั่วตัวอย่างทำให้มีความเข้มข้นอยู่ในช่วงความเป็นสัดส่วน ทำการวิเคราะห์หาค่าความเข้มข้นของสารละลายซึ่งมีช่วงการวิเคราะห์ตามมาตรฐาน โดยเปรียบเทียบตามตัวอย่างในปริมาตรที่เท่ากันลงในช่วงวัดปริมาตรแต่ละครั้ง จากนั้นเปรียบเทียบตามมาตรฐานโดยฉีดเข้าไปในช่วงวัดปริมาตรแต่ละครั้งในปริมาตรที่แตกต่างกัน ปรับปริมาตรด้วยน้ำปาราล์จากไอโอดินแล้วนำไปวิเคราะห์ด้วยวิธี GDFI-CL เพื่อวัดค่าความเข้มข้นของสารละลายที่ได้มาสร้างการทำงานมาตรฐานแบบเดิมมาตรฐาน แล้วนำไปเทียบกับการทำงานมาตรฐาน

7.2 kakoตรวจสอบการทำงาน

8. การวิเคราะห์ปริมาณเชื้อเพลิงด้วยวิธีการไฟฟ้าเชื้อเพลิง พลัส วิธีการฟิว

ในการวิเคราะห์หาปริมาณเชื้อเพลิงแบบต่างกับเงื่อนไข พลัส วิธีการฟิว เป็นวิธีการวิเคราะห์มาตรฐานของ AOAC ที่วัดปริมาณก้านชั่วไฟฟ้าโดยวิธีนี้ โดยทำการกรอกตัวอย่างเชื้อเพลิง (acid distillation) ในการแยกเชื้อเพลิงออกจากอาหาร โดยเตรียมเครื่องฟิวเวอร์คิว 35% โดย
ปริมาตร ลงไปในตัวอย่าง แล้วทำการผ่านกั้นในโครงจานลงในตัวอย่าง เพื่อให้กรดฟีอร์ได และออกไซคลีนที่เป็นผลิตภัณฑ์ฉีดลงในสารละลายเอติลแอลกอฮอล์ (ammonium acetate ใน ethanol) จากนั้นนำไปวัดปริมาณกระแสจากการแพร่ของสารละลายโดยวิธีฟิล์ฟอร์เรนซิล พัสส์สีฟ้าของกระแส โดยใช้เซนเซอร์ทำการวิเคราะห์โดยวัดกระแสและความต่างค์ที่แตกต่างกันเปรียบเทียบกับสารละลายมาตรฐาน

ภาพ 23 การจัดชุดอุปกรณ์สำหรับการวัดด้วยวิธีฟิล์ฟอร์เรนซิล พัสส์สีฟ้าของกระแส

1 = Nitrogen gas
2 = Teflon tubing
3 = Glass tubing
4 = Rubber stopper
5 = Sample test tube
6 = Electrolyte-trapping solution

ขั้นตอนการวัดวิธีฟิล์ฟอร์เรนซิล พัสส์สีฟ้าของกระแส

8.1 นำสารละลายขาดที่มีกั้นขั้น 5.0 มิลลิกรัมต่อกิโลกรัม 10 มิลลิลิตร เทลงในขวดทดลอง (ขนาด 25 x 200 mm) เดิมสารละลายแบ่งไม่ย้อมสีของกรดฟีอร์เซ็นทร์ของน้ำ 2 มิลลิกรัม ปริมาตร 0.5 มิลลิลิตร และสารละลายขาดที่มีกั้นขั้น 9.19 มิลลิกรัม ปริมาตร 0.2 มิลลิลิตร

8.2 ปิดปากขวดด้วยอุปกรณ์ฟิล์ฟอร์ของน้ำ (electrolyte-trapping solution) มาปริมาตร 10 มิลลิลิตร ลงในขวดทดลอง (ขนาด 25 x 200 mm) อีกทอดหนึ่ง

8.3 จัดชุดอุปกรณ์ดังภาพ 23 จากนั้นผ่านกั้นในโครงจานลงใน 10 มิลลิกรัม เสร็จจาก 10 มิลลิกรัม หยุดปล่อยกั้นในโครงผลด้วยคอมพิวเตอร์เพื่อกระชั่นขั้น 9.19 มิลลิกรัม ปริมาตร 2 มิลลิลิตร
ลงในหลอดที่มีสารละลายมาตรฐานซอลฟิวส์ แล้วนำไปให้ความเร็วในอย่างให้ความเร็ว (คุณหน่วยประมาณ 100 องศาเซลเซียส) ผ่านกี่ชั่วโมงในโดยประมาณไปถึง 10 นาที หยุดปล่อยกักขังในโครง

8.4 นำสารละลายอีเลกโทรไลแปรเป็น (electrolyte-trapping solution) จากหลอดทดลองของตัวอย่างในไฟล์โรกรีพิเศษจากนั้นเพิ่มกักขังในโดยประมาณในไฟล์โรกรีพิเศษ พร้อมกับน้ำสารละลายเป็นเวลา 240 วินาทีเพื่อทำให้ได้ออกซิเจนที่ละลายอยู่ในสารละลายพิเศษหลังออกชั่ว (oxygen wave)

8.5 วัดกระแสที่เกิดขึ้นและบันทึกล่ากการเจาะสารพืชที่วัสดุได้ (-nA) โดยใช้ mode ตีฟเฟอร์เรนซิล พลัส ไฟล์โรกรีพิเศษ ใช้วิธีคำนวณไฟฟ้า -400 ถึง -800 โวลต์

8.6 ทำการทดลองขึ้นโดยเปลี่ยนสารละลายมาตรฐานซอลฟิวส์ ความเข้มข้น 15.0 และ 25.0 มิลลิกรัมต่อลิตร (ทำการฉัดลงชั่วโมงไฟฟ้าที่น้ำอัดแล้ว และซับด้วยกระดาษทิชชู่ทุกครั้งเมื่อเปลื่อนสารละลายใหม่)

8.7 วัดกระแสปริมาณซอลฟิวส์ในตัวอย่างโดยวิธีตีฟเฟอร์ บันทึกล่ากการเจาะสารพืชในระดับสารละลายบาทละลาย standard
บทที่ 4
ผลการวิจัยและวิเคราะห์

ในการวิจัยพบว่าได้ทำการสร้างและทดสอบเทคนิค เคมีภูมิมันส์เชนร์ไฟล์อินเจกชั่นอะลีริส (CL-FI) ร่วมกับวิธีการแยกสารด้วยระบบอนิโคลซิ่ง ซึ่งประกอบด้วยเทคนิค เทอร์วาอพอร์ชันไฟล์อินเจกชั่น (PFI) และเทคนิค คาร์ติฟิวชั่น โฟล์อินเจกชั่น (GDFI) เพื่อใช้ในการวิเคราะห์หาปริมาณชิ้นไฟล์ในอาหารประเภทหมักดอก ได้เรียงลำดับที่มีในตัวปฏิกิริยากรรมграниคที่ใช้เนื่องจากเทคนิคนี้มีข้อดีคือวิเคราะห์ได้รวดเร็ว ใช้วิธีการแยกสารต่อเนื่องและสารที่ปฏิกิริยาน้อยมากทำให้เกิดผลเสียที่เป็นพื้นฐานของมวลเนื้อ นอกจากนี้ระบบที่ใช้วิเคราะห์เป็นระบบที่ปลอดภัยได้ผู้ปฏิกิริยาทดสอบไม่ถึงสังเกตภัยสารเคมีโดยตรง และการแยกสารแบบอนิโคลซิ่ง ยังช่วยลดขั้นตอนการเตรียมสารต่อเนื่องได้น้อยลงทำให้การวิเคราะห์ทำได้อย่างรวดเร็วมากขึ้น.

1. การออกแบบ Flow diagram สำหรับวิเคราะห์หาปริมาณชิ้นไฟล์โดยเทคนิคเคมีภูมิมันส์เชนร์ไฟล์อินเจกชั่น (CL-FI)

![Flow diagram](image_url)

ภาพ 24 ระบบเคมีภูมิมันส์เชนร์ไฟล์อินเจกชั่น (CL-FI): Reagent stream (8×10⁻⁵ M KMnO₄), ในsodium hexametaphosphate ใน 0.02 M H₃PO₄; Carrier stream (0.75% (m/v) sodium hexametaphosphate ใน 0.02 M H₂PO₄); V, valve (300 μl sample loop); T, T-shaped connector; F, flat spiral coil flow cell; PMT, photomultiplier tube; W, waste

โดยในการทดลองขั้นตอนได้ทำการศึกษาและออกแบบการจัดวางแบบเทคนิคเคมีภูมิมันส์เชนร์ไฟล์อินเจกชั่น โดยใช้แฟลตชิมเพลสแกรมเมกาน่าเป็นเรียกเกอร์

วิธีการวิเคราะห์หาปริมาณชิ้นไฟล์โดยเทคนิค CL-FI ที่ได้ทำการศึกษามีการใช้สารตัวพื้นคือสารละลาย 1% โดยน้ำหนัก โซเดียมออกซิเจนกลาฟทาส์ที่อยู่ในสารประกอบและมีเรียกเกอร์
โพแทสเซียมเปอร์เม็กกานที่อยู่ในสภาพกรดในสารละลายฮิโดรเจนคลอไรตามสภาพผลิตดีเช่น 1% โดยน้ำหนักซึ่งเป็นตัวออกซิได้ในการทำปฏิกิริยาที่ชัดไพล์

ทฤษฎีของการวิเคราะห์คือเมื่อถ้าสารตัวอย่างชัดไพล์เข้าไปในกระแสน้ำสารละลาย สภาพกรดที่
เฉพาะถูกนำมาทำสารละลายผสมของตัวพยาและสารตัวอย่างเข้าสู่ระบบ CL-FI โดยชัดไพล์ใน
สารละลายจะทำปฏิกิริยาที่เกิดเป็นโพแทสเซียมเปอร์เม็กกานที่เป็นกรณีที่ตัวต่อภาพพยาที่
โดยปฏิกิริยาที่เกิดขึ้นของชัดไพล์กับโพแทสเซียมเปอร์เม็กกานที่อยู่ในสภาพกรดในตัวกลาง
สารละลายฮิโดรเจนคลอไรตามสภาพผลิต 1% โดยน้ำหนักที่ทำหน้าที่เป็นตัวกลางจะทำให้
กระบวนการกาคแสดงมีสูญเสียชัดไพล์ของไอออน Mn$^{2+}$ ที่สาระกรดขึ้นสามารถตรวจจับได้ใน
เวลายืนทนต่อสารเคมี

$$\begin{align*}
\text{MnO}_4^- + 5e^- + 8H^+ & \rightarrow \text{Mn}^{2+} + 4H_2O \quad (1) \\
\text{SO}_3^{2-} + 5H_2O & \rightarrow \text{SO}_4^{2-} + 2H^+ + 2e^- \quad (2)
\end{align*}$$

ปฏิกิริยารวม

$$\begin{align*}
2\text{MnO}_4^- + 5\text{SO}_3^{2-} + 6H^+ & \rightarrow 2\text{Mn}^{2+} + 5\text{SO}_4^{2-} + 3H_2O \quad (3) \\
2\text{Mn}^{2+} & \rightarrow 2\text{Mn}^{2+} \quad h\nu \ (595 \text{ nm}) \quad (4)
\end{align*}$$

เมื่อ * คือ สะพานกรดขึ้น

แสดงมีสูญเสียชัดไพล์ของไอออน Mn$^{2+}$ ที่ medically มีความยาวคลื่นประมาณ 595 นาโน
เมตร (Barrett et al., 2002: 181) ซึ่งมีความชัดเจนในช่วงความยาวคลื่น 230 Å ถึง 400 Å ของแสงตัวแสงโดยแสดงพิษมีสูญเสียชัดไพล์ที่ถูกตัดขึ้นจะถูกตรวจจับโดยหลอดวัดแสงโพแทสเซียม
คลอโรฟิล (PMT) และส่งสัญญาณไปยังเครื่องบันทึกที่เก็บไว้ที่เก็บ

1.1 การทดสอบวิธีที่เหมาะสมในการวิเคราะห์โดยระบบมีสูญเสียชัดไพล์อินเจ็คชัน

ในการวิเคราะห์การวิเคราะห์ชัดไพล์ด้วยระบบ CL-FI จากแผนภาพในภาพ 24 มีถึง
เรียกเก็บที่ทำให้สาระกรดวิเคราะห์ที่เหมาะสมแสดงตัวตัดสิ้น 5 ซึ่งใช้สาระวิเคราะห์ที่ใช้
เปรียบเทียบตามจากงานวิจัยการสกัดแห้ง (Satiniperakul et al., 2005: 25) ในระบบโพแทสเซียม
เปอร์เม็กกานที่มีการรายงานไว้
ตาราง 5 структурภาพในการวิเคราะห์ปริมาณชั้นไฟฟ้าด้วยระบบ CL-FI

<table>
<thead>
<tr>
<th>ความมืด</th>
<th>สถานะระดับ</th>
<th>ค่าเกิดไฟฟ้าที่เข้าแต่ละหลอด PMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>กระแสตัว testing</td>
<td>950 โวลต์</td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของกรดฟอยโฟร์ไนย์</td>
<td>0.02 โมลาร์</td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของโซเดียมแคลเซียมฟอยโฟร์ไนย์</td>
<td>1% (m/v)</td>
<td></td>
</tr>
<tr>
<td>กระแสขัด</td>
<td>5.0×10⁻⁵ โมลาร์</td>
<td></td>
</tr>
<tr>
<td>อัตราการไหลของกระแสขัดและกระแสตัว testing</td>
<td>2.0 มิลลิลิตรต่อนาที</td>
<td></td>
</tr>
<tr>
<td>ปริมาณสารบางอย่าง</td>
<td>300 ไมโครกรัม</td>
<td></td>
</tr>
</tbody>
</table>

1.1.1 การศึกษานิสัยของกรดที่เหมาะสม

การศึกษานิสัยของกรดที่เหมาะสมสำหรับใช้เป็นตัวกลางในการแสดงตัวพยากรและกระแสไฟฟ้าได้ใช้กรด 4 ชนิด คือกรดไฮโดรคลอริก กรดไนเตรต กรดฟอยโฟร์ไนย์ และกรดกรดฟอยโฟร์ไนย์ ที่มีความเข้มข้น 0.02 โมลาร์ หมายถึงกรดที่แสดงของสารละลายกรดฟอยโฟร์ไนย์ที่มีความเข้มข้น 2 มิลลิกรัมต่อกิโลกรัมระบบ CL-FI ที่สร้างขึ้น พบว่าได้ผลดีตาราง 6 โดยพบว่ากรดที่เหมาะสมที่ใช้เป็นตัวกลางในการแสดงตัวพยากรและกระแสขัดเป็นกรดฟอยโฟร์ไนย์ซึ่งทำให้ค่าสัญญาณ CL intensity สูงกว่ากรดชนิดอื่น ซึ่งกรดไฮโดรคลอริก และกรดฟอยโฟร์ไนย์ทำให้สัญญาณปริมาณชั้นไฟฟ้าที่ต่ำเมื่อกรดไฮโดรคลอริกและกรดฟอยโฟร์ไนย์เป็นตัวกลางโดยซึ่งจะทำปฏิกิริยาถึงโพแทสเซียมเบอร์แรม่าแบบสารตัวอย่างซึ่งจะทำให้สัญญาณการกายเสมอมีปริมาณชั้นต่ำลง (Anastos et al., 2004: 130 and Barnett et al., 1998: 131)

ตาราง 6 การเบริมเทียบชั้นของกรดที่ใช้เป็นตัวกลางในการแสดงตัวพยากรและกระแสไฟฟ้า

<table>
<thead>
<tr>
<th>ชนิดของกรด</th>
<th>ความเข้มข้นของติก (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>0.116±0.02</td>
</tr>
<tr>
<td>HNO₃</td>
<td>0.183±0.02</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>2.017±0.02</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>1.717±0.02</td>
</tr>
</tbody>
</table>
1.1.2 การศึกษาความเข้มข้นที่เหมาะสมของกรดฟอสฟอริก

การหาความเข้มข้นที่เหมาะสมของกรดฟอสฟอริก จะใช้สารละลายที่มีความเข้มข้นที่ได้จากราย 6 โคลนที่มีความเข้มข้นของกรดฟอสฟอริกที่มีผลต่อการขยายแสงนมีอุณหภูมิสrectionsในช่วงความเข้มข้นระหว่าง 0.01-0.10 มิลิเมตร พบว่าได้ผลตั้งแต่ในภาพ 25 โดยความเข้มข้นที่เหมาะสมของกรดฟอสฟอริกที่ใช้มีค่าเท่ากับ 0.02 มิลิเมตร (pH=2.72) ซึ่งทำการฟอกความรับพืชระหว่างความเข้มข้นของกรดฟอสฟอริกและการขยายแสงนมีอุณหภูมิสrectionsจะพบว่าเมื่อความเข้มข้นของกรดฟอสฟอริกเพิ่มมากกว่า 0.02 มิลิเมตร กลับจะทำให้กำลังขยายแสงของสารละลายมาตรฐานชัดเจนขึ้น 2 มิลิกรัมต่อลิตร ซึ่งมีกำลังดีที่สุด

![Image]

ภาพ 25 ผลการศึกษาความเข้มข้นที่เหมาะสมของกรดฟอสฟอริก

1.1.3 การศึกษาหาค่าสัญญาณไฟฟ้าที่เหมาะสมที่จะแยกแสดงไฟฟ้าโดยมัลติมิเตอร์ (PMT)

เมื่อทำการทดลองหาค่าสัญญาณไฟฟ้าที่ผ่านเกณฑ์ P 800-1100 โวลต์ โดยใช้สารละลายที่ใช้ในการทดลองต้องการ 5 วันว่าได้ผลตั้งแต่ในภาพ 26 โดยค่าสัญญาณไฟฟ้าที่เหมาะสมในการแยกไฟฟ้ามักจะต่างกัน 1000 โวลต์ ซึ่งที่กำลังเข้มข้นที่นี้มีค่าสัญญาณการขยายแสงของสารละลายมาตรฐานชัดเจน 2 มิลลิกรัมต่อลิตร ที่มีต่อสัญญาณที่สูง (signal-to-noise ratio) มีค่าสูงขึ้น โดยที่กำลังสัญญาณที่สูงกว่านั้นพบว่า จะทำให้ค่าสัญญาณที่สูงมีกำลังฟูและชัดเจนมาก การวัดสัญญาณที่ได้ไม่ดีนัก และนอกจำกนั้นแรกค่าสัญญาณไฟฟ้าที่
ตาราง 26 ผลการศึกษาค่าสัญญาณที่เหมาะสมกับห้องแก๊ส PMT

1.1.4 การศึกษาความเข้มข้นที่เหมาะสมของสารละลายไฮโดรเจนผลิตภัณฑ์

การหาความเข้มข้นที่เหมาะสมของสารละลายไฮโดรเจนผลิตภัณฑ์ที่ใช้เป็นสารตัวกลางที่ติดต่อกับผิวของสารมีความหมายที่สำคัญสำหรับการศึกษาค่าสัญญาณที่เหมาะสมตามที่ได้จากข้อ 1.1.1-1.1.3 โดยได้ศึกษาความเข้มข้นของสารละลายไฮโดรเจนผลิตภัณฑ์ในช่วงความเข้มข้น 0.25-1.25% โดยน้ำหนัก ซึ่งพบว่าได้ผลต่อการใช้งานในภาพ 27 โดยที่ความเข้มข้นที่เหมาะสมของสารละลายไฮโดรเจนผลิตภัณฑ์ที่เหมาะสมที่สุดได้จากกราฟที่มีความเข้มข้นกว่า 0.75% โดยน้ำหนัก ซึ่งจะเห็นได้ว่าแม้จะทำการเพิ่มความเข้มข้นของสารละลายไฮโดรเจนผลิตภัณฑ์ไปมากขึ้นมากกว่า 0.75% ก็ไม่ทำให้สูญหายการกลายแสงที่ผ่านเข้ามาประกายใด โดยในการตัดสินสารละลายไฮโดรเจนผลิตภัณฑ์ที่เหมาะสมจะต้องการให้การเกิดปฏิกิริยาทางแสงเกิดขึ้นในชั้นสูงของสารด้วยอย่างเพียงพอที่ปฏิกิริยาจะเกิดสารละลายเมจิกจะมีประโยชน์ในการกลายแสงที่ผ่านเข้ามา ซึ่งจะทำให้โครงสร้างของโมเลกุลภาพรวมแบบลงยาของสารละลายผลิตภัณฑ์จะผันผวนไปตาม Mn^{2+} ที่อยู่ในสภาพระยะชู มีช่วงชีวิตที่ยาวนานยิ่งขึ้น (Barnett et al., 2001: 1636)
ภาพ 27 ผลการศึกษาความเข้มข้นที่เหมาะสมของสารละลายโพแทสเซียมเบอร์แมกเนเซียมในเครื่องหมาย

1.1.5 การศึกษาความเข้มข้นที่เหมาะสมของสารละลายโพแทสเซียมเบอร์แมกเนเซียมในเครื่องหมาย

โดยใช้สารละลายที่เหมาะสมที่ได้จากการ 1.1.1-1.1.4 มาใช้ในการหาความเข้มข้นที่เหมาะสมของสารละลายโพแทสเซียมเบอร์แมกเนเซียมในเครื่องหมายที่มีที่สามารถในการละลายโพแทสเซียมเบอร์แมกเนเซียมในเครื่องหมาย 10×10⁻⁵ - 10×10⁻³ มิลลิลิตร พบว่าได้ผลดีที่สุด เมื่อวัดความเข้มข้นที่เหมาะสมของสารละลายโพแทสเซียมเบอร์แมกเนเซียมที่ทำให้เกิดปฏิกิริยาต่อสารเคมีมีลิมิตที่ต่ำได้สูงสุดที่บีที่กว่า 7.0×10⁻⁵ มิลลิลิตร ซึ่งค่ามีค่าความเข้มข้นมากกว่า 7.0×10⁻⁵ มิลลิลิตร ไม่ทำให้เกิดปฏิกิริยาต่อสารเคมีที่ต่ำได้สูงสุดที่บีที่กว่า 7.0×10⁻⁵ มิลลิลิตร ซึ่งอาจเกิดจากการที่สารละลายโพแทสเซียมเบอร์แมกเนเซียมที่มีความเข้มข้นมากเกินไปทำให้เกิดการดูดกลืนสารเคมีที่ละลายในอัตราไม่เหมาะสม (self absorption) ทำให้โฟตอนที่ถูกคลิปซับมีจำนวนลดลงเนื่องจากการของ inner filter effect
ภาพ 28 ผลการศึกษาความชื้นจำที่เหมาะสมของสารละลายฟิลเลชช์มิเนอร์ว์มาเกนเดท

ในกระดาษด้านที่

1.1.6 สรุปสำคัญที่เหมาะสมในการวิเคราะห์ชั้นไฟด์ด้วยระบบคอมพิวเตอร์ไฟล์อินเจคชั่น

จากระดับประสิทธิภาพที่เหมาะสมของต้นในการวิเคราะห์ด้วยระบบคอมพิวเตอร์ไฟล์อินเจคชั่น สามารถสรุปได้ว่าสาระที่เหมาะสมของต้นนำมาทำให้ระบบ CL-FI มีประสิทธิภาพสูงสุดจากปัจจัยต่าง ๆ ทั้งทางกายภาพและทางเคมีได้คัดเลือกในตาราง 7

ตาราง 7 สาระที่เหมาะสมในการวิเคราะห์สาร์ปิมาซัลไฟด์ด้วยระบบ CL-FI

<table>
<thead>
<tr>
<th>สาระมิการ์</th>
<th>สาระที่เหมาะสม</th>
</tr>
</thead>
<tbody>
<tr>
<td>ติ๊กไฟฟ้าที่จ่ายหลอด PMT</td>
<td>1000 วิลต์</td>
</tr>
<tr>
<td>ซิลิคอนกรด</td>
<td>H₃PO₄</td>
</tr>
<tr>
<td>ความเข้มข้นของกรดฟอสโฟริก</td>
<td>0.02 มิลิแกรม</td>
</tr>
<tr>
<td>ความเข้มข้นของโซเดียมอะซิเตตฟอสเฟต</td>
<td>0.75% โดยน้ำหนัก</td>
</tr>
<tr>
<td>ความเข้มข้นของโพแทสเซียมเปอร์เมกาเนต</td>
<td>7.0 ×10⁻³ มิลิแกรม</td>
</tr>
</tbody>
</table>
2. การออกแบบ Flow diagram ต่ำกว่าเครื่องทำปริมาณแข็งของไอซิลชิตฟิล์ cockpit เทคโนโลยีอากาศพลักที่

วิธีการวิเคราะห์ปริมาณชิตไฟฟ้าในอาหาร ที่แนะนำโดย AOAC ที่อาศัยการก้นตัวย่อย (acid distillation) ของสารประกอบชิตไฟฟ้าที่มีอยู่ในอาหารในภาคก้ามฟันเพื่อคอยซื้อเป็นการแยกสารประกอบชิตไฟฟ้าออกมาจากอาหารและสูบเป็นอีกขั้น ดังสมการ (5)

\[
\text{SO}_3^{2-} (aq) + 2H^+ (aq) \rightarrow \text{SO}_2 (g) + H_2O (l)
\] (5)

จากความรู้พื้นฐานดังกล่าว จึงนำไปสู่การพัฒนาวิธีการวิเคราะห์ด้วยวิธีการฟิล์ออกอคชิล แบบใหม่ ที่มีการแยกสารประกอบชิตไฟฟ้า ได้โดยใช้เทคนิคฟิล์คอกร่างขั้นมากว่าแยกชิตไฟฟ้า from ออกจากการแยกเมทานอลขั้นที่ 4 โดยการแยกสารประกอบชิตไฟฟ้าไปตามกลไกสารละลายชิตฟิล์ที่ไวในการแสลายทาง ซึ่งจะทำปฏิกิริยาขั้นชิตไฟฟ้าที่ต้องการให้เป็นก้ามฟันเพื่อโดยไอซิล ซึ่งเมื่อมีสารมาใช้กับระบบการแยกสารประกอบชิตไฟฟ้าที่มีการใช้เชิงเปลี่ยนต่ำ (semipermeable membrane) เพื่อแยกก้ามฟันในสารประกอบชิตไฟฟ้าออกจากสารผสม ก็จะสามารถประยุกต์ใช้ประโยชน์ในการแยกสารต่างกันออกจากสารต่างกันที่ตกกระทบและมีการเป็นอิสระได้เป็นอย่างดี

โดยขั้นแรกของกระบวนการนี้ได้เลือกใช้หน้าก้ามฟันฟิล์ (pervaporation unit) มาช่วยในการแยกไอซิลของสารประกอบซิลลิโอนที่ต้องการ ได้โดยใช้เมธีโพลีเบดด์แบบของกราสเติดฟิล์นถ่าน glass beads ของหน้าก้ามฟันฟิล์พร้อมกันที่ก้ามฟันฟิล์โดยไอซิลจะแทรกผ่านอยู่ในเมทีโพลีเบดด์ ผ่านการผ่านผ่านเมทีโพลีเบดด์แฉบเมทีโพลีบที่อยู่ในกราสเติดฟิล์นถ่าน โดยมีสารละลายไอซิลของสารประกอบซิลลิโอนที่เป็นสารประกอบต่างกันซึ่งทำให้การแยกไม่เกิดขึ้น ได้สารประกอบสารละลายที่เหมาะสมสามารถตรวจวัดและแยกมีการปฏิกิริยาที่ไอซิลของ Mn²⁺ กลับมาอยู่ที่ส่วนหนึ่ง จะถูกตรวจวัดโดยหลอดวัดแสง PMT และส่งสัญญาณไปยังเครื่องบันทึกผลเพื่อบันทึกผลที่ได้ออกมาในสภาพของฟิล์ออกอคชิล
ภาพ 29 ระบบพอร์ฟอร์เรซันโฟลเปนตาที่มีเคมีคลอโรเจนใช้ (PFI-CL): Reagent stream (8.0×10⁻⁵ M KMnO₄ in 0.75% sodium hexametaphosphate in 0.02 phosphoric acid); Acceptor stream (0.75 % sodium hexametaphosphate in 0.02 M H₂PO₄, pH = 2.70); Donor stream (0.20 M H₂SO₄); Injection valve (500 μl sample loop); PMT, photomultiplier tube; W, waste

2.1 การหาสารประกอบตามสารปริมาณ

ในการวิเคราะห์หาปริมาณของโฟลในระบบ PFI-CL จากแผนภาพเครื่องยนต์ในภาพ 29 ได้ มีการกำหนดให้ปริมาณแบบตั้งค์ที่จะทำการหาสารประกอบตามสมดุลตวง 8 โดยในการพัฒนา
ระบบ PFI-CL ภายในหน่วยพอร์ฟอร์เรซันจะมี glass beads ทำหน้าที่เป็นสารตัวอย่างหรือสาร
มาตรฐานซึ่งใช้คับถึงการตัวเลือกว่าออกไซช์การณ์ภายในช่องระดับตัวที่ของ
หน่วยพอร์ฟอร์เรซันจากนั้น ที่ชัดเจนพอร์เรซันโดยออกไซช์จะกระทำซึ่งสูงของอากาศที่อุณหภูมิว่า
ของสารละลายกระแทกที่ก่อนจะพบสูงขึ้นอยู่กับอัตราการเปลี่ยนแปลงของสารตัวที่
โดยในการนำสารตัวที่ไปยังหน่วยพอร์เรซัน และการนำสารด้วยอากาศออกจาก
หน่วยพอร์ฟอร์เรซันจะอาศัยถบมิ้น ในการควบคุมให้สารละลายอยู่ในระดับพื้นในของ glass beads พอดี โดยต้องควบคุมอัตราการไหลของสารละลายก่อนเข้าสู่และหลังออกจากหน่วยพอร์เรซัน
พอร์เรซันให้มีอัตราการไหลที่เหมาะสม เพื่อต้องการให้สารละลายอยู่ในระดับพื้นในของ glass beads
พอดีและเหลืองพื้นที่ระหว่างช่องอากาศ (air gap) ระหว่าง glass beads และเยื่อถลอกผนังให้มี
ปริมาตรทางที่ ซึ่งจะมีส่วนสำคัญอย่างยิ่งในการวิเคราะห์ที่จะทำให้ผลการทดลองมีความถูกต้อง
และแน่นอนอย่างสมดุลของผลกระทบ (Nacapricha et al., 2007: 626)
ตาราง 4 สาระเริ่มต้นในการวิเคราะห์หาปริมาณชิ้นไฟด้วงระบบเพรรวาดพืนที่กรณีที่มีอินชัน

<table>
<thead>
<tr>
<th>ไมด์อะดอเรสำเร็จ</th>
<th>สาระที่เหมาะสม</th>
</tr>
</thead>
<tbody>
<tr>
<td>ศักย์ไฟฟ้าที่จ่ายแก่คลอป PMT</td>
<td>1000 โวลต์</td>
</tr>
</tbody>
</table>

Acceptor stream
- ความเข้มข้นของกรดฟูซิฟอสฟอริก: 0.02 โมล/ลิตร
- ความเข้มข้นของโซเดียมสองกระบวนการฟูซิฟอสโฟซิフ
- อัตราการไหลของสารละลายที่เจริญ
- ปริมาณสารตัวอย่าง: 300 ไมโครลิตร

Reagent stream
- ความเข้มข้นของไฮโดรเจนเปอร์ออกไซด์: 7.0×10^{-5} โมล/ลิตร
- การเตรียมเจริญ

Donor stream
- ความเข้มข้นของกรดชิ้นฟิวิริค: 0.1 โมล/ลิตร
- อัตราการไหล: 2.0 โมลลิตรต่อวันที่

2.1.1 การศึกษาของความเข้มข้นที่เหมาะสมของกรดฟูซิฟอสฟอริก

การหาความเข้มข้นที่เหมาะสมของกรดฟูซิฟอสฟอริกที่ใช้เป็นตัวกลางในกระบวนการและสารละลายเจริญ ได้จากการวิเคราะห์ความเข้มข้นของกรดฟูซิฟอสฟอริกในช่วงความเข้มข้นระหว่าง 0.01-0.1 โมล/ลิตร โดยให้กับผู้ใช้บัญญัติแม่คุณ 2 มิลลิกรัมต่อวิเคราะห์ที่มีค่าสูงสุด ซึ่งจากการทดลองได้ผลลัพธ์แสดงในภาพ 30 โดยความเข้มข้นที่เหมาะสมของกรดฟูซิฟอสฟอริกที่ให้มีค่าเท่ากับ 0.02 โมล/ลิตร (pH=2.72) โดยได้ผลลัพธ์ถึงกับระบบ CL-FI จากข้อ 1.1.6 โดยความเข้มข้นของกรดฟูซิฟอสฟอริกที่ความเข้มข้นต่ำๆ (0.01-0.02 โมล/ลิตร) เมื่อเพิ่มความเข้มข้นไปสู่ชั้น จะให้สัญญาณของถังแม่คุณในช่วงที่สูงขึ้น แต่ความเข้มข้นของกรดฟูซิฟอสฟอริกที่สูงกว่า 0.02 โมล/ลิตร กลับจะพบว่าให้ค่าสัญญาณการแข็งของสารละลายที่เจริญไฟฟ้าเข้มข้น 2 มิลลิกรัมต่อวิเคราะห์ มีค่าลดลง ดังนั้นจะใช้ความเข้มข้นของกรดฟูซิฟอสฟอริกที่ 0.2 โมล/ลิตรในการทดลองที่เหลือต่อไป
ตาราง 30 ผลการศึกษาความเข้มข้นที่เหมาะสมของกรดฟอสฟอริก

2.1.2 การศึกษาความเข้มข้นที่เหมาะสมของสารละลายไฮโดรเจนเอทิลฟอสเฟต

ปริมาณความเข้มข้นของสารละลายไฮโดรเจนเอทิลฟอสเฟตที่เหมาะสมในการเตรียมและกระแวงเยื่อสำหรับการเทียบความเข้มข้นระหว่าง 0.25-1.25 % โดยน้ำหนัก ซึ่งพบว่าได้ผลติดตั้งในภาพ 31 โดยความเข้มข้นที่เหมาะสมของสารละลายไฮโดรเจนเอทิลฟอสเฟตที่จะทำให้สัญญาณแสดงเป็นอุปกรณ์ชัดเจนของสารมาตรฐานซอลไฟท์ เข้มข้น 2 มิลลิกรัมต่อลิตรมีค่าสูงสุด ค่าเท่ากับ 0.75 % โดยน้ำหนัก โดยจะส่งผลได้ว่าในช่วงความเข้มข้นต่ำ ๆ จะพบว่าสัญญาณการขยายแสงที่ระยะวัดได้จะมีค่าเท่ากับ 0.75 % และสูงถึง 0.25 % เมื่อความเข้มข้นของสารละลายไฮโดรเจนเอทิลฟอสเฟตมีค่าเท่ากับ 0.75 % และหลังจากนั้นแม้ว่าจะเพิ่มความเข้มข้นไปอีก แต่สัญญาณจะยังคงชัดเจน ค่าไม่เพิ่มขึ้นแต่กลับมีแนวโน้มที่จะค่อย ๆ ลดลง ดังนั้นความเข้มข้นที่เหมาะสมของสารละลายไฮโดรเจนเอทิลฟอสเฟตที่ใช้ได้ในกระแวงการเตรียมและกระแวงเยื่อสำหรับการศึกษาความเข้มข้นต่ำใช้ได้นำหนักไว้ที่ 0.75 % โดยน้ำหนัก.
ภาพ 31 ผลการศึกษาความเข้มข้นที่เหมาะสมของสารละลายโพแทลีียมเบอร์รีเม็งกานด์ในกระแสเรือเจนท์

2.1.3 การศึกษาความเข้มข้นที่เหมาะสมของสารละลายโพแทลีียมเบอร์รีเม็งกานด์ที่อยู่ในกระแสเรือเจนท์

การศึกษาความเข้มข้นที่เหมาะสมของสารละลายโพแทลีียมเบอร์รีเม็งกานด์ที่มีมูลค่าร้อยละ 1.0×10^{-5} - 3.0×10^{-4} มิลลิแอลิวต์ในภาพ 32 โดยมีพื้นที่ความเข้มข้นของโพแทลีียมเบอร์รีเม็งกานด์ในช่วงความเข้มข้นต้นๆ จะพบว่าสัญญาณการลายแดงที่ทรงจวัลได้จะมีกว่าพื้นที่และมีอัตราสูงสุดที่ความเข้มข้น 8.0×10^{-3} มิลลิแอลิวต์ และหลังจากนั้นเมื่อมีความเข้มข้นเพิ่มขึ้นไปยัง 8.0×10^{-3} มิลลิแอลิวต์มีการเปลี่ยนแปลงที่สูงขึ้นอย่างมากตามกฎ self absorption ดังนั้นความเข้มข้นที่เหมาะสมของสารละลายโพแทลีียมเบอร์รีเม็งกานด์ที่ใช้ในการศึกษาต่อไปจะกำหนดไว้ที่ 8.0×10^{-3} มิลลิแอลิวต์.
2.1.5 การศึกษาอัตราการไหลของกระแสตัวรับและกระแสเรือนเจนท์ที่มีต่อการตรวจ
อัตราการไหลที่เหมาะสมของกระแสตัวรับและกระแสเรือนเจนท์ที่ไหลเข้าสู่เครื่อง
ตรวจวัดแสงถูกนิยามโดยใช้สมการที่เหมาะสมที่ทำได้จากข้อ 2.1.1-2.1.4 โดยจะควบคุมให้อัตราการไหลของกระแสตัวรับและกระแสเรือนเจนท์ที่เหมาะสมกันโดยการศึกษาอัตราการไหลในช่วง
0.5-3.0 มิลิลิตรต่อนาที ซึ่งจะพบว่าได้ผลดีสุดในภาพ 33 ซึ่งจะเห็นว่าที่อัตราการไหลของกระแสตัวรับ
และกระแสเรือนเจนท์ที่สูงกว่า 1.0 มิลิลิตรต่อนาทีจะส่งผลต่อกระแสตัวรับและกระแสเรือนเจนท์ (อัตราการไหลรวม 2.0 มิลิลิตรต่อนาที) ไม่พบว่ามีสัญญาณแสงถูกเปลี่ยนจากที่ตรวจวัดได้เพิ่มสูงขึ้นแต่
ในการใด ดังนั้นในการทดลองนั้นต่ำ ๆ ไป ซึ่งจะเลือกอัตราการไหลรวมที่มีค่าเท่ากับ 2.0
มิลิลิตรต่อนาที ซึ่งนอกจากนี้เป็นการประหยัดสารเคมีที่ใช้ในการเตรียมสารตัวรับและที่เรือนเจนท์
แล้วยังจะช่วยป้องกันให้เกิดเผลอคลื่นที่เกิดขึ้นระหว่างกระแสตัวรับและช่องอากาศในหน่วยพลัง-
ร่างกายเช่นไม่ใช้เวลานานจากอัตราการไหลที่มากเกินไป ซึ่งอาจจะทำให้เกิดการปิดของช่อง
เฉลี่ยคลื่น และทำให้ปริมาณของสารตัวรับที่อยู่ในช่องรับสารในหน่วยพลังร่างกายเช่น มีค่าที่
ผิดที่นับไปจากเดิม

ภาพ 32 ผลการศึกษาความเข้มข้นที่เหมาะสมของสารละลายโพแทสเซียมปรอรมง่ายใน
กระแสเรือนเจนท์
การศึกษาปริมาณสารด้วยอย่างที่มีค่าสูงที่ยื่นไปในระบบเพื่อวิเคราะห์ค่าสูง

ภาพ 33 ผลการศึกษาปริมาณสารไปในระบบเพื่อวิเคราะห์ค่าสูง

2.1.1 การศึกษาปริมาณสารด้วยอย่างที่มีค่าสูงในระบบเพื่อวิเคราะห์ค่าสูง

การศึกษาปริมาณสารด้วยอย่างที่มีค่าสูงไปในระบบเพื่อวิเคราะห์ค่าสูง

ภาพ 34 ผลการศึกษาปริมาณสารด้วยอย่างที่มีค่าสูงไปในระบบ
2.1.7 การศึกษาผลจากความเข้มข้นของกรดซัลฟิวริกที่ใช้ในการเสด็จได้

การหาความเข้มข้นที่เหมาะสมของกรดซัลฟิวริกที่ใช้เป็นกรดเสด็จได้จะใช้สาขาวิที่เหมาะสมที่ได้จากข้อ 2.1.1-2.1.6 โดยศึกษาความเข้มข้นของกรดซัลฟิวริกที่ใช้ในช่วง 0.05-0.3 มิลิเมตร พบว่าได้ผลดีที่สุดในความเข้มข้นที่ 0.2 มิลิเมตร ที่ผ่านจากกรดซัลฟิวริกนี้ยังพบว่ากรดซัลฟิวริกที่ใช้เป็นกรดเสด็จได้มีค่าอยู่ในช่วง 0.2 มิลิเมตร โดยผลการทดลองในกรดซัลฟิวริกที่ใช้เป็นกรดเสด็จได้ผลดีที่สุดในช่วง 0.2 มิลิเมตร โดยการเลือกกรดซัลฟิวริกที่ใช้เป็นกรดเสด็จได้ที่สุดในช่วง 0.2 มิลิเมตร และกรดซัลฟิวริกนี้มีค่าที่เหมาะสมซึ่งที่สุดในการเตรียมสารละลายกรดซัลฟิวริกที่ใช้เป็นกรดเสด็จได้ที่สุดในช่วง 0.2 มิลิเมตร โดยการเลือกกรดซัลฟิวริกที่ใช้เป็นกรดเสด็จได้ที่สุดในช่วง 0.2 มิลิเมตร

ภาพ 35 ผลการศึกษาความเข้มข้นที่เหมาะสมของกรดซัลฟิวริกที่ใช้เป็นกรดเสด็จได้

2.1.8 ผลของฟอโตอิโวลุเออร์ต่อการเพิ่มประสิทธิภาพของการวิเคราะห์

ในกระบวนการวิเคราะห์ พบว่าการเพิ่มประสิทธิภาพของการวิเคราะห์แบบคีมีโรมิเนชันที่ใช้ โฟโตเอ็มเปอร์แกรมการแบ่งเป็นริเวอร์ฟิเล็กซ์ ช่วยในการศึกษาความปริมาณของกรดซัลฟิวริก ในยารัดยมซิทีคัม และยิ้มแย่ง มีการใช้โฟโตอิโวลุเออร์ ปิ (rhodamine B) ทำปฏิกิริยากับซีเรียม (cerium (IV)) ในกรดซัลฟิวริกที่ใช้เป็นตัวกลาง (Ma et al., 2002: 289 and Chen et al., 2003: 3) พบว่าสารประกอบฟอโตอิโวลุเออร์บางชนิด เช่น โฟโตอิโวลุเออร์ ปิ คริสติน และฟอโตอิโวลุเออร์ สามารถช่วยเพิ่มประสิทธิภาพของการวิเคราะห์ได้ 2 ถึง 10 เท่า ดังนั้น ในการวิเคราะห์ฟอโตอิโวลุเออร์ 2 ชนิด (โฟโตอิโวลุเออร์ ปิ และโฟโตอิโวลุเออร์ ปิ) เบื้องต้น 1 มิลลิลิตรต่อลิตรของในบรรจุภัณฑ์ โฟโตเอ็มเปอร์ สามารถเพิ่มประสิทธิภาพในการวิเคราะห์ในระบบ PFI-CL ที่
สำหรับการแพร่กระจายของโพแทสเซียม ปี เท่านั้นที่จุดเพิ่มสัญญาณ การตรวจสอบค่ามุมเจาะเซนเซอร์ชั้น
ประเภท 3 เท่า (ภาพ 36) ซึ่งส่วนใหญ่ ได้วิเคราะห์จากช่วงเวลาสัญญาณการเริ่มแรกที่เกิดขึ้นจาก
Mn⁺⁺ ดังนั้นในการศึกษาความเข้มข้นที่เหมาะสมของสารละลายโพแทสเซียม ปี ที่ดีที่สุดไปเพื่อเพิ่ม
สัญญาณการถ่ายแสงคิมีเนมิเซนเซอร์ให้สูงขึ้น และเพิ่มประสิทธิภาพในการวิเคราะห์ให้สูงขึ้น
จึงได้ทดลองโดยใช้สภาวะที่เหมาะสมที่ได้จากข้อ 2.1.1-2.1.7 โดยศึกษาความเข้มข้นของ
โพแทสเซียม ปี ในช่วง 0.5-3.0 มิลลิกรัมต่อดีกรี พบว่าความเข้มข้นของโพแทสเซียม ปี ในกระแสตัววรา ที่มี
ค่าเท่ากับ 1 มิลลิกรัมต่อดีกรี จะทำให้สัญญาณคิมีเนมิเซนเซอร์เพิ่มขึ้น ได้สูงที่สุด ดังแสดงในภาพ

ภาพ 36 ตัวอย่าง PFI-CL gram ของสารละลายมําตรฐานชั้นไฟฟ้า 2 มิลลิกรัมต่อดีกรี ที่ตีม
เพิ่มโดยไฟฟักรังเกียรต

ภาพ 37 ผลการศึกษาความเข้มข้นที่เหมาะสมของ Rhodamine B
2.1.9 สรุปประมาณที่เหมาะสมในการวิเคราะห์ด้วยระบบพีเอฟไอ-ซีเอฟ สามารถนิยาม
จากตารางที่เหมาะสมสำหรับการวิเคราะห์ด้วยระบบ PFI-CL สามารถ
สรุปประมาณการทดลองที่เหมาะสมสำหรับระบบ PFI มีประสิทธิภาพสูงจากปีสิ้นที่ต่าง ๆ ถึงสุด
ในตาราง 9

ตาราง 9 สรุปประมาณที่เหมาะสมในการวิเคราะห์ที่ปริมาณจัลใหญ่โดยระบบ PFI-CL

<table>
<thead>
<tr>
<th>Parameters</th>
<th>สูงสุด</th>
<th>ขั้นต่ำ</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>แมตติไฟฟ้าที่จำเป็นต้อง PMT</td>
<td>800-1,100 วิลลล์</td>
<td>1,000 วิลลล์</td>
<td></td>
</tr>
<tr>
<td>Acceptor stream</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของกรดฟผิวติวิธี</td>
<td>0.01-0.1 โมลาร์</td>
<td>0.02 โมลาร์</td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของโซเดียมแอมโมเนีย</td>
<td>0.25-1.25% ออกซิเจนหนัก</td>
<td>0.75% ออกซิเจนหนัก</td>
<td></td>
</tr>
<tr>
<td>ฟอร์โมซ์</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>อัตราการไหลของกระแสตัวรับและ</td>
<td>0.5-3.0 มิลลิลิตรต่อนาที</td>
<td>1.0 มิลลิลิตรต่อนาที</td>
<td></td>
</tr>
<tr>
<td>กระแสเอนไซแมติก</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ปริมาตรสารตัวอย่าง</td>
<td>50-500 มิลลิลิตร</td>
<td>500 มิลลิลิตร</td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของ Rhodamine B</td>
<td>0.5-3 มิลลิกรัมต่อลิตร</td>
<td>1 มิลลิกรัมต่อลิตร</td>
<td></td>
</tr>
<tr>
<td>Reagent stream</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของไพล์ซิเดียมปอร์ช์</td>
<td>1.0×10⁻³-3.0×10⁻³ มิลลิกรัม</td>
<td>8.0×10⁻³ มิลลิกรัม</td>
<td></td>
</tr>
<tr>
<td>การตัดในสารเอนไซมาติก</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor stream</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของกระแสติวิธี</td>
<td>0.05-0.3 โมลาร์</td>
<td>0.2 โมลาร์</td>
<td></td>
</tr>
<tr>
<td>อัตราการไหล</td>
<td>-</td>
<td>2.0 มิลลิลิตรต่อนาที</td>
<td></td>
</tr>
</tbody>
</table>

2.2 คุณลักษณะเฉพาะของระบบพีเอฟไอ-ซีเอฟ สามารถนิยาม

2.2.1 ขั้นต่ำความเป็นเกณฑ์

ในการหาค่าความเป็นเกณฑ์ที่เหมาะสมในการวิเคราะห์ด้วยระบบ PFI-CL ได้
ทำการศึกษาโดยการกระทำลายเอกสารข้อมูลที่มีความเข้มข้นต่าง ๆ ระหว่าง 0.5 - 6.0
มิลลิกรัมต่อนาที เมื่อเข้าไปในระบบ PFI-CL ทำให้สารวัสดุที่เหมาะสมตามตาราง 9 พบว่าได้ผล
dีตางาน 10 และเมื่อพื้นฐานของความสัมพันธ์ระหว่างความสูงของพีเอฟไอ-ซีเอฟกับความเข้มข้น
ของขั้นไฟฟ้า พบว่าได้กราฟความสัมพันธ์ดังภาพ 38
ตาราง 10 ผลการศึกษาช่วงความเป็นสีน้ำคราบของการวิเคราะห์ปริมาณซิลิกอนด้วยระบบ PFI-CL

<table>
<thead>
<tr>
<th>ความเข้มข้นซิลิกอน (mg l⁻¹)</th>
<th>ความสูงของทศ (mV)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.60±0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.26±0.2</td>
</tr>
<tr>
<td>1.5</td>
<td>4.03±0.2</td>
</tr>
<tr>
<td>2.0</td>
<td>5.30±0.1</td>
</tr>
<tr>
<td>2.5</td>
<td>6.46±0.4</td>
</tr>
<tr>
<td>3.0</td>
<td>8.23±0.0</td>
</tr>
<tr>
<td>3.5</td>
<td>9.66±0.5</td>
</tr>
<tr>
<td>4.0</td>
<td>12.00±0.1</td>
</tr>
<tr>
<td>4.5</td>
<td>15.36±0.4</td>
</tr>
<tr>
<td>5.0</td>
<td>16.40±0.0</td>
</tr>
<tr>
<td>5.5</td>
<td>17.76±0.2</td>
</tr>
<tr>
<td>6.0</td>
<td>18.96±0.1</td>
</tr>
</tbody>
</table>

*n = 3

ภาพ 38 การศึกษาช่วงความเป็นสีน้ำคราบของการวิเคราะห์ปริมาณซิลิกอนด้วยเทคนิค PFI-CL

\[y = -0.0603x^2 + 3.623x - 1.1909 \]

\[R^2 = 0.997 \]
จะสังเกตได้ว่ากราฟความสัมพันธ์ของความสูงของฟิลล์ดูนิกที่เกิดจากการปฏิรูปความมืดมีแนวเส้นตรงไม่เป็นเส้นตรง แต่มีแนวโน้มเป็นเส้นใต้ที่มีความสัมพันธ์ตามสมการ ฟังก์ชันมิยอมมีข้อ

ยั้นตั้บ 2 (polynomial second order) โดยมีสภาวะความสัมพันธ์ดังนี้ $y = -0.0603x^2 + 3.623x - 1.1909$

ชิงชัดเจนของกราฟและกราฟสร้างวิจัย (Mervartova et al., 2007: 114) ที่กล่าวถึงกราฟมาตรฐานของการวิเคราะห์มักจะเป็นเส้นใต้ต่ออย่างไรต่อเนื่องจากภาพ 38 อาจพบผลการได้ว่าช่วงความเป็นเส้นตรงของการวิเคราะห์ปริมาณจัดได้ดีที่สุดเทคนิค PFI-CL อยู่ในช่วงความเข้มข้น 1.0-4.0 มิลลิกรัมต่อเดซิลิตร ซึ่งเนื่องจากฟิลล์ดูนิกของการวิเคราะห์รวดเร็วช่วงความสูงของคอมพิวเตอร์ (mV) กับความเข้มข้นของจัดได้ดีที่สุดมีค่าคอร์สชี้วัด $y = 3.10x - 0.897$ โดยมีค่าค่าสี่เหลี่ยมที่มีค่ากันที่ 0.9913 ดังแสดงในภาพ 39 โดยลักษณะตัวอย่าง PFI-CL ที่ใช้แสดงค่าตัวภาพ 40

ภาพ 39 กราฟมาตรฐานของการวิเคราะห์ปริมาณจัดได้ดีที่สุดเทคนิค PFI-CL

$$y = 3.10x - 0.8976$$

$R^2 = 0.9913$
ภาพ 40 ตัวอย่าง PFI-CL แกรมของช็อโตที่ความเข้มข้นต่าง ๆ

2.2.2 การพิสูจน์อิทธิพลของไอออนปรากฏ

การพิสูจน์อิทธิพลของไอออนปรากฏที่สำคัญและพบได้ในตัวอย่างอาหารมักจะต้องมีช็อโตอิทธิพล ไอออนช็อโตต่างๆ โดยเฉพาะในสารประกอบ.pretty ที่ใช้ในกระบวนการมักจะต้องสามารถทำให้ ไอออนช็อโตต่างๆ ได้ใช้เป็นพิเศษเป็นการเพิ่มขึ้น ถ้าในสารประกอบ pretty ที่มีความเข้มข้น 2 มิลลิกรัมต่อลิตรสารละลายในสารประกอบไอออนของสารละลายที่จะล้าง 2 มิลลิกรัมต่อลิตร (อัตราส่วน 1:1) สามารถเพิ่มขึ้น 20 เปอร์เซ็นต์ในระบบ PFI-CL เพื่อเพิ่มความเข้มข้นของช็อโตอิทธิพลที่ได้ กับสภาพสารประกอบ pretty ในที่ปรึกษาเพื่อเพิ่มผลลัพธ์การต่างๆ ถ้ามีความสูงหรือต่ำกว่า 50% จะถือว่าเกิดการควบคุม โดยจะเพิ่มความเข้มข้นของไอออนกำหนดเป็น 1:10, 1:100, 1:1,000, 1:10,000 ตามลำดับ ซึ่งผลของ ไอออนกำหนดที่มีถึงอิทธิพลที่ทำให้เกิดการควบคุมช็อโตผลลัพธ์ของการวิเคราะห์นั้นต่ำได้ในตาราง 11
ตาราง 11 ผลการศึกษาไอออนระดับ

<table>
<thead>
<tr>
<th>Tolerance (mg l⁻¹)</th>
<th>Coexistent substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,000</td>
<td>Cl⁻, Glucose, Sucrose, Ethanol, Ascorbic acid</td>
</tr>
<tr>
<td>2,000</td>
<td>CH₃COO⁻, HPO₄²⁻, Na⁺, Mg²⁺, K⁺</td>
</tr>
<tr>
<td>200</td>
<td>Ni²⁺</td>
</tr>
<tr>
<td>20</td>
<td>SO₄²⁻, Fe²⁺, Co²⁺, PO₄³⁻, Ca²⁺</td>
</tr>
<tr>
<td>2</td>
<td>I⁻, S²⁻, Mn²⁺, Fe³⁺</td>
</tr>
</tbody>
</table>

จากผลการทดลองหัวข้อการรวมไอออนระดับที่สามัญซึ่งมีผลต่อความเข้มแข็งของเม็ดเยื่อเม็ดเยื่อในที่วิเคราะห์เชื้อปิล ด้วยเทคนิค PFI-CL เช่น I⁻, S²⁻, Mn²⁺, Fe³⁺ จะมีผลทำให้ความเข้มแข็งของเม็ดเยื่อเม็ดเยื่อเนื่องจากไอออนเหล่านี้เป็นตัวออกซิได้ต่อตัววิตามินที่เกี่ยวข้อง จึงมีสมบัติในการเข้าไปที่ภูมิผิวในสารตัวอย่าง โดยขั้นตอนการปฏิบัติงานที่ต้องการสารตัวอย่างที่มีปริมาณการตกไอออนทำให้สูญหายในเม็ดเยื่อเม็ดเยื่อชั้นกลาง ส่วนไอออน Cl⁻ กลูโคส ซูโครส เทนนอล และกรดอะซิตริโบส แม้ว่าจะมีน้อยในปริมาณระดับหัวข้อชั้นสูง ๆ ก็ไม่มีผลต่อการวัดความเข้มแข็งของเม็ดเยื่อเม็ดเยื่อชั้นกลางของเชื้อปิลด้วยเทคนิค PFI-CL ที่ได้พัฒนาขึ้น

2.3 การวิเคราะห์ปริมาณเชื้อปิลในตัวอย่างอาหารมักทอง

2.3.1 วิธีการหาปริมาณเชื้อปิลในตัวอย่าง

ในการหาปริมาณเชื้อปิลในตัวอย่าง ได้ทำการศึกษาโดยวิธีการเติมสารมาตรฐาน (standard addition) และวิธีการมาตรฐาน (calibration curve)

โดยขั้นตอนการเก็บตัวอย่างอาหารประเภทมักทอง เช่น หน้ามักทอง หัวมักทอง และจิ้งจกพืช ซึ่งต่างจะพบปริมาณเชื้อปิลที่เป็นสารปนเปื้อนในอาหาร จะถูกนำมาวิเคราะห์ด้วยระบบวิเคราะห์เชื้อปิลอินเจคชัน (PFI-CL) โดยในการทดลองครั้งนี้ได้ทำการเก็บตัวอย่างอาหารมักทองจากตลาดมามคำรี ต.หนองหาร อ.สันทราย จ.เชียงใหม่

วิธีการเตรียมตัวอย่าง ได้จากอาหารประเภทมักทองกับปริมาณของชุดเยื่อเม็ดเยื่อประมาณ 4 องศาใดตัวอย่างโดยทำการวิเคราะห์ที่หันหน้าปกติแล้วให้เข้ากับการสูญเสียเชื้อปิลด้วยเทคนิคทดสอบอัลตราไวซ์ที่สุด โดยทำการวิเคราะห์ภาพรวมที่เป็นน้ำเท่านั้น
2.3.2 การหาปริมาณชลให้ค้นตัวอย่าง

การทดลองโดยหาปริมาณชลให้ค้นตัวอย่างผลิตภัณฑ์อาหารประเภทหมักอง ในส่วนที่เป็นน้ำหนักน้อยกว่า ผักกาดหอมที่มีน้ำ 0.025 0.125 และ 2.5 มิลลิลิตรตามลำดับ เดิมอยู่ในน้ำบริวาร 25 มิลลิลิตร และปรับด้วยน้ำประละกล ใส่แล้วนำไปวิเคราะห์ด้วยระบบพอรวาชเครื่องไฟล็อตแคลซิค (PFI-CL) ที่พัฒนาขึ้น ซึ่งได้ผลการศึกษาได้ผลดังตาราง 12

ตาราง 12 ผลการหาปริมาณชลให้ค้นจากวิธีกราฟมาตรฐานและกราฟดิสเตริสมมาตรฐาน

<table>
<thead>
<tr>
<th>ตัวอย่าง</th>
<th>Dilution factor</th>
<th>ความเข้มข้นของชลให้ค้น (mg 1⁻¹)</th>
<th>วิธีกราฟมาตรฐาน</th>
<th>วิธีดิสเตริสมมาตรฐาน</th>
</tr>
</thead>
<tbody>
<tr>
<td>น้ำหนักน้อยกว่า</td>
<td>1000</td>
<td>1317.6±5.8</td>
<td>1300.0±0.1</td>
<td></td>
</tr>
<tr>
<td>ผักกาดหอม</td>
<td>200</td>
<td>466.5±1.8</td>
<td>406.0±0.4</td>
<td></td>
</tr>
<tr>
<td>ผักกาดหอม</td>
<td>10</td>
<td>22.7±0.3</td>
<td>20.7±0.2</td>
<td></td>
</tr>
</tbody>
</table>

2.3.3 การหารอยละการกลับกีก

การหารอยละการกลับกิจของการวิเคราะห์สำหรับหาปริมาณชลให้ค้นจากการเปลี่ยนที่ใช้ผลที่จัดไว้วิธีการดิสเตริสมมาตรฐานกับวิธีกราฟมาตรฐาน(ภาพแม่ข่าย) พบว่าในตัวอย่างนั้นเนื่องไม่ดี น้ำผักกาดหอม และ ผักกาดหอม ที่มีการร้อยละการกลับกีก ดังตาราง 13
ตาราง 13 ร้อยละการกลับคืนของชอลไฟด์ในตัวอย่างอาหารหมักต้อง

<table>
<thead>
<tr>
<th>ความเข้มข้นของสารละลายมาตรฐาน (mg ₁)</th>
<th>ความเข้มข้นที่วิเคราะห์ได้</th>
<th>ความเข้มข้นที่กลับคืน</th>
<th>ร้อยละการกลับคืน</th>
</tr>
</thead>
<tbody>
<tr>
<td>น้ำหนักไม่ต้อง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.54</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2.45</td>
<td>0.91</td>
<td>91.4</td>
</tr>
<tr>
<td>1.5</td>
<td>2.98</td>
<td>1.45</td>
<td>96.7</td>
</tr>
<tr>
<td>2</td>
<td>3.36</td>
<td>1.82</td>
<td>91.3</td>
</tr>
<tr>
<td>2.5</td>
<td>3.82</td>
<td>2.29</td>
<td>91.6</td>
</tr>
<tr>
<td>3</td>
<td>4.44</td>
<td>2.9</td>
<td>96.7</td>
</tr>
<tr>
<td>3.5</td>
<td>4.92</td>
<td>3.38</td>
<td>96.7</td>
</tr>
<tr>
<td>4</td>
<td>5.62</td>
<td>4.08</td>
<td>102.1</td>
</tr>
<tr>
<td>น้ำหนักตกคดของ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2.03</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2.95</td>
<td>0.92</td>
<td>92.4</td>
</tr>
<tr>
<td>1.5</td>
<td>3.49</td>
<td>1.46</td>
<td>97.5</td>
</tr>
<tr>
<td>2</td>
<td>3.97</td>
<td>1.94</td>
<td>97.3</td>
</tr>
<tr>
<td>2.5</td>
<td>4.47</td>
<td>2.44</td>
<td>97.6</td>
</tr>
<tr>
<td>3</td>
<td>4.77</td>
<td>2.74</td>
<td>91.3</td>
</tr>
<tr>
<td>3.5</td>
<td>5.46</td>
<td>3.43</td>
<td>98.0</td>
</tr>
<tr>
<td>4</td>
<td>5.91</td>
<td>3.88</td>
<td>97.0</td>
</tr>
<tr>
<td>ชิ้นหนักฝอย</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2.07</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2.98</td>
<td>0.91</td>
<td>91.3</td>
</tr>
<tr>
<td>1.5</td>
<td>3.64</td>
<td>1.56</td>
<td>104.6</td>
</tr>
<tr>
<td>2</td>
<td>4.17</td>
<td>2.09</td>
<td>104.8</td>
</tr>
<tr>
<td>2.5</td>
<td>4.52</td>
<td>2.45</td>
<td>98.1</td>
</tr>
<tr>
<td>3</td>
<td>4.93</td>
<td>2.86</td>
<td>95.3</td>
</tr>
<tr>
<td>3.5</td>
<td>5.21</td>
<td>3.13</td>
<td>89.7</td>
</tr>
<tr>
<td>4</td>
<td>5.71</td>
<td>3.64</td>
<td>91.1</td>
</tr>
</tbody>
</table>

โดยร้อยละการกลับคืนเฉลี่ยของ น้ำหนักไม่ต้อง น้ำหนักตกคดของ ชิ้นหนักฝอย มีค่าเท่ากับ 95.2, 95.8 และ 96.4 ตามลำดับ
2.4 การทดลองเพิ่มสภาพไฟของคารวิเคราะห์โดยวิธีหยุดการไหลชั่วคราว (Stop flow mode)

การศึกษาวิธี stop flow เป็นการศึกษาวงจรแสปรรดี้ต่อการศึกษาอัตราการถูกบั่นทอน (Rupasinghe et al., 2004: 225)

พลูอิกีจ (Papaefstathiou et al., 1995: 246) พีรอนิส (Sheilthedin et al., 2000: 9 และ Satipipatpakul et al., 2003: 37) โดยทำเพื่อจะนำไปใช้ในการเพิ่มประสิทธิภาพของคารวิเคราะห์ โดยฉันเห็นว่าจะต้องใช้กับการศึกษาประเภทระบบ넣่างพอร์ชช์ จะต้องมีการบริบัติกับสารที่จะเก็บให้ทำปฏิกิริยาเก็บสารลงด้วยการทำปฏิกิริยาเก็บปฏิกิริยาให้กระตุ้น acceprtor chamber ตั้งนั้นจึงมีความสนใจที่จะศึกษาถึงการทดลองเก็บกิ่งชาร์จไฟฟ้าโดยอากาศิต ได้เพื่อเพิ่มสภาพไฟของคารวิเคราะห์

แต่หากการทำ stop flow มันพบว่าไม่สามารถทำให้เก็บกิ่งชาร์จไฟฟ้าโดยอากาศิตได้โดยทั่วไปให้ระยะเวลาค่อนไป พบว่าถูกลบสมบัติโดยไม่ทราบว่ามีการเชื่อมต่อตัวในช่วงเวลาเฉพาะๆ โดยถือจากการที่ชั่วิตมีชั่วิตเป็นตัว ออกไปโดยทำให้เก็บปฏิกิริยาเก็บodafoneที่จะให้เป็นสินค้าและเป็นชั่วิตส่วน ดังนั้นจะทำให้การเชื่อมต่ออาจได้การเชื่อมต่อเก็บปฏิกิริยาเก็บฟิวชั่วนั้น ดังนั้นในทางการทดลองการเก็บกิ่งชาร์จไฟฟ้าจะไม่สามารถทำให้เก็บกิ่งชาร์จไฟฟ้าโดยอากาศิตได้ตามที่คาดหวังไว้ได้

3. การออกแบบ Flow diagram สำหรับการรับผิดชอบปริมาณชั่วิตไฟฟ้าโดยเทคนิคก้าวพิชิตไฟฟ้าในเอกนิติภิมณฑ์

ในการศึกษาการแยกสารแบบเป็นลอยแบบเป็นลอยพอร์ชช์ มีการศึกษาที่มีประสิทธิภาพในส่วนของการแยกสารละลายต่อการแยกสารละลายต่อสมบัติที่จะเก็บกิ่งชาร์จไฟฟ้าโดยอากาศิต ให้กระตุ้น acceprtor chamber ตั้งนั้นจึงมีความสนใจที่จะศึกษาถึงการทดลองเก็บกิ่งชาร์จไฟฟ้าโดยอากาศิต

เนื่องจากก้าวพิชิตไฟฟ้าในส่วนของการแยกสารละลายของสาร ที่มีเกลือต่อกันพันเป็นตัวที่ทำการละลายไฟฟ้า 2 ระยะที่สูงขึ้นจากออกออกสินค้า และลมสินค้าของการแยกสารละลายชั่วิตไฟฟ้าจะเก็บกิ่งชาร์จไฟฟ้าในส่วนของการแยกสารละลายชั่วิตไฟฟ้า ให้กระตุ้น acceprtor chamber ตั้งนั้นจึงมีความสนใจที่จะเก็บกิ่งชาร์จไฟฟ้าในส่วนของการแยกสารละลายชั่วิตไฟฟ้า ให้กระตุ้น acceprtor chamber ตั้งนั้นจึงมีความสนใจที่จะเก็บกิ่งชาร์จไฟฟ้าในการ
เอกสารที่สูงกว่า และเหล็กซัลเฟอร์ไดออกไซด์แปรแห่งเชื้อสุ่มผู้ดำเนินการของกรดดีกรีฟิวชั่น พื้นฐานๆ ที่รู้จักกันในระบบการผลิตกล้าคิวชิฟิวชั่น ที่มีอุปกรณ์การผลิตที่มีอยู่ดีกรีฟิวชั่น (PMT) ทำให้ส่งสัญญาณไปยังเครื่องบันทึกผล โดยได้ผลในภาพของฟิล์มสัญญาณต่อไป

โดยลักษณะของฟิล์มสัญญาณจะขึ้นอยู่กับความหนาบางของเชื้อเสียดกัน ปริมาณของตัวอย่างที่มี และอัตราการไหลของกระแสดังกล่าว และกระแสตัวรับ

![Diagram](image.png)

ภาพ 41 ระบบกัลเซียมฟิวชั่น โฟลิโอเน็นชันเกมัลูมิเนนซ์ (GDFI-CL), Peristaltic pump,
Reagent stream (8.0×10⁻⁵ M KMnO₄ in 0.75% sodium hexametaphosphate), Acceptor stream (1 mg L⁻¹ Rhodamine B in 0.75% sodium hexametaphosphate in 0.02 M H₃PO₄, pH = 2.70), Donor stream (0.10 M H₂SO₄), Injection valve, (GD) Gas diffusion unit and (PMT) Photomultiplier tube.

3.1 การหาสารที่เหมาะสมในการวิเคราะห์โดยระบบกัลเซียมฟิวชั่น โฟลิโอเน็นชัน เกลือูรินิเนนซ์ (GDFI-CL)

ในการวิเคราะห์ระบบวิเคราะห์โฟลิโอเน็นชันเกมัลูมิเนนซ์ (GDFI-CL) ได้ทำการวิเคราะห์ลักษณะต่างๆ การวิเคราะห์ด้วยระบบ PFI-CL แต่จะค้นหาเพิ่มเติมเฉพาะความเข้มข้นของกรดซัลเฟอวิริกในกระแสตัวรับ และอัตราการไหลที่มี

3.1.1 การค้นหาผลของการมีความเข้มข้นของกรดซัลเฟอวิริกที่ใช้ในกระแสตัวรับ

การศึกษาความเข้มข้นของกรดซัลเฟอวิริกที่ใช้ในกระแสตัวรับในช่วงความเข้มข้น 0.05-0.3 มิลลิกรัม พบว่าขั้นตอนแสดงในภาพ 42 ซึ่งจะเห็นว่าที่ความเข้มข้นต่ำ ๆ จะพบว่าสัญญาณการค้นหาที่ตรวจจับได้จะมีค่าต่ำ ๆ เพิ่มขึ้นและมีค่าสูงขึ้นที่ความเข้มข้น 0.1 มิลลิกรัม และหลังจากนั้น ผลสัญญาณเม็ดกลินินเอนชีมีอยู่สูงสุดแล้วกลับมาสัญญาณเกลือูรินิเนนซ์ที่ตรวจวัดได้เพิ่มสูงขึ้นแต่กระนั้น ดังนั้นความเข้มข้นที่เหมาะสมของสารละลายซัลเฟอวิริก ที่ใช้เป็นกระแสตัวรับให้ในการศึกษานี้ต้องไปขึ้นอยู่กับผู้ใช้ที่ 0.1 มิลลิกรัม นอกจากนี้เป็นการประกอบอัตราเกลือูรินิเนนซ์ที่ใช้ในการ
เครื่องมือวัดให้เห็นว่าจะช่วยยืดหยุ่นของยืดหยุ่นผ่านที่กลับอยู่ระหว่างกระแสน้ำและกระแสน้ำตัวรับได้

![Graph: Concentration-H2SO4 vs Peak Height](image)

ภาพ 42 ผลการศึกษาความแข็งชันที่เหมาะสมของกระชับพื้นผิวที่ใช้เป็นกระแสน้ำตัวรับ

3.1.2 การศึกษาอัตราการไหลของกระเสตัวให้ที่มีค่าการตรวจจับ
อัตราการไหลที่เหมาะสมของกระเสตัวให้ที่ไหลเข้าที่มีค่าการตรวจจับว่าจะทำให้การศึกษาได้ตามที่ตั้งค่าได้จากข้อ 3.1.1 ได้ทำการศึกษาอัตราการไหลในช่วง 0.5-3.0 มิลลิลิตรต่อนาที พบว่าได้ผลลัพธ์ของภาพ 43 โดยอัตราการไหลของกระเสตัวให้ที่เหมาะสมกับ 1.5 มิลลิลิตรต่อนาที พบว่ามีค่าสัญญาณการคายแรงของสารละลายมีค่าสัญญาณชัดเจน ในปริมาณชั้น 1.5 มิลลิลิตรต่อนาที ที่มีความชัดเจนมากที่สุด และมีค่าสัญญาณการคายแรงที่สูงที่สุดในชั้น 1.5 มิลลิลิตรต่อนาที พบว่ามีค่าสัญญาณการคายแรงที่สูงที่สุดในชั้น 1.5 มิลลิลิตรต่อนาที ได้ผลที่เหมาะสมกับการทดลองที่ได้จากการทดลองที่มีการคายแรงที่ชัดเจนอย่างมาก จนถึงการคายแรงที่สูงที่สุดในชั้น 1.5 มิลลิลิตรต่อนาที ได้ผลที่เหมาะสมกับการทดลองที่มีการคายแรงที่ชัดเจนอย่างมาก จนถึงการคายแรงที่สูงที่สุดในชั้น 1.5 มิลลิลิตรต่อยาได้.
ภาพ 43 ผลการศึกษาอัตราการไหลของกระแสตัวให้

3.1.3 สรุปการทำงานที่เหมาะสมด้วยระบบก้าชีพตัวให้ เช่น อินเจกชัน เคมีจูเนียร์ (GDFI-CL)

การทดลองที่เหมาะสมในการวิเคราะห์ด้วยระบบ GDFI-CL สามารถสรุปได้ว่าการทดลองที่สามารถทำให้ระบบ GDFI-CL มีประสิทธิภาพสูงคือผลจากปัจจัยต่างๆ ดังแสดงในตาราง 14.
ตาราง 14 สรุปผลการที่เหมาะสมในการวิเคราะห์ปริมาณของผิวตั้งต้น GDFI-CL

<table>
<thead>
<tr>
<th>ทรามีด_zero</th>
<th>สารที่เพิ่มมูลค่า</th>
</tr>
</thead>
<tbody>
<tr>
<td>สีทรายฟอกที่จ่ายแหน่งออก PMT</td>
<td>1000 โวลต์</td>
</tr>
<tr>
<td>Acceptor stream</td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของกรดฟอยส์วิปส์</td>
<td>0.02 โมลาร์</td>
</tr>
<tr>
<td>ความเข้มข้นของโซเดียมสัมพาะธาตุ-</td>
<td>0.25% โดยน้ำหนัก</td>
</tr>
<tr>
<td>ท่อฟลัก</td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของ Rhodamine B</td>
<td>1 มิลลิกรัม/ดีกรี</td>
</tr>
<tr>
<td>อัตราการไหลของกระแสดีวิบัติและกระแส</td>
<td>1.0 มิลลิลิตรต่อนาที</td>
</tr>
<tr>
<td>วิธีจับ</td>
<td></td>
</tr>
<tr>
<td>ปริมาตรสารตัวอย่าง</td>
<td>500 ไมโครลิตร</td>
</tr>
<tr>
<td>Reagent stream</td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของโพแทสเซียมบริโภคแม็กไพล</td>
<td>8.0 x 10^{-3} โวลต์</td>
</tr>
<tr>
<td>เม็ดในกระส่งริยอด</td>
<td></td>
</tr>
<tr>
<td>Donor stream</td>
<td></td>
</tr>
<tr>
<td>ความเข้มข้นของกรดชีฟริก</td>
<td>0.1 โมลาร์</td>
</tr>
<tr>
<td>อัตราการไหล</td>
<td>1.5 มิลลิลิตรต่อนาที</td>
</tr>
</tbody>
</table>

3.2 การเบียบเทียบวิธีการแยกสารแบบยนิโลนเชลล์ฟิล์ท์ว่าพอใจหรือไม่กับการเพิ่มขั้นตอน 2 วิธี

3.2.1 การศึกษาเพื่อความเข้มข้นที่เป็นส่วนควบของสารพิษ max

วิธีการแยกสารแบบยนิโลน ทั้ง 2 วิธี ทั้ง วิธี GDFI-CL และวิธี PFI-CL นั้นจะเห็นได้ว่า
แนวโน้มของผลความสูงของพิก วิธีของ GDFI-CL จะให้ค่าที่สูงกว่าวิธี PFI-CL เนื่องจากจะมากกว่า
กระแสผ่านโดยตรงเกินขึ้นเล็กน้อยผ่านท่าน้ำที่ได้ความสูงของพิกที่สูงกว่า ด้านวิธี PFI-CL จะ
อาศัยการเฝ้าผ่านของแก๊สชีฟริกโดยออกไปบนผิวหน้าของ glass bead ผ่านไปยังเสี้ยนเล็กผ่าน
ช่องส่งผ่านที่มีก้านชิฟริกโดยออกไปบนผิวหน้าของ glass bead ผ่านไปยังเสี้ยนเล็กผ่าน
ทำให้ได้ค่าความสูงของ
พิกต่ำกว่าวิธี GDFI-CL ซึ่งได้ผลการวิเคราะห์ดังตาราง 15 และคิวพัฒนา 44.
ตาราง 15 ข่าวความเข้มข้นที่เก็บในแลตรองของสารมาตรฐานที่ได้จากวิธี GDFI-CL และวิธี PFI-CL

<table>
<thead>
<tr>
<th>ความเข้มข้นของสารมาตรฐาน (mg l⁻¹)</th>
<th>ผลการวัดของทิศทาง (mV) วิธี GDFI-CL*</th>
<th>ผลการวัดของทิศทาง (mV) วิธี PFI-CL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.90±0.1</td>
<td>2.26±0.2</td>
</tr>
<tr>
<td>1.5</td>
<td>15.53±0.3</td>
<td>4.03±0.2</td>
</tr>
<tr>
<td>2</td>
<td>22.30±0.1</td>
<td>5.30±0.1</td>
</tr>
<tr>
<td>2.5</td>
<td>27.90±0.2</td>
<td>6.46±0.4</td>
</tr>
<tr>
<td>3</td>
<td>33.33±0.1</td>
<td>8.23±0.0</td>
</tr>
<tr>
<td>3.5</td>
<td>38.30±0.3</td>
<td>9.66±0.5</td>
</tr>
<tr>
<td>4</td>
<td>43.16±0.5</td>
<td>12.00±0.1</td>
</tr>
</tbody>
</table>

*n = 3

ภาพ 44 กราฟมาตรฐานของคาร์บอนิคาร์บอเนตฟื้นตัวระหว่าง GDFI-CL และ PFI-CL.
(GDFI-CL, ← PFI-CL —)

3.2.2 การศึกษาความแม่นยำของเครื่องมือ
ในการวิเคราะห์หาความแม่นยำของเครื่องมือในการวิเคราะห์แบบวิธี GDFI-CL และวิธี PFI-CL ได้ทำการทดสอบโดยทำการนำสารมาตรฐานเข้าไปในตัวอย่างที่มีความเข้มข้น 2 มิลลิกรัมต่อเดลต้า มีผลเข้าไปในระบบ GDFI-CL และ PFI-CL ที่มีสารคลัสเตอร์ 9 และ 14 จำนวน 12 ครั้ง พบว่า
ได้ผลคลัสเตอร์ 16 และดังภาพ 45
ตาราง 16 ผลการศึกษาความแม่นยำของเครื่องมือ GDFI-CL และ PFI-CL

<table>
<thead>
<tr>
<th>ลำดับที่</th>
<th>ค่าความสูงของพิก (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>วิธี GDFI-CL</td>
</tr>
<tr>
<td>1</td>
<td>24.8</td>
</tr>
<tr>
<td>2</td>
<td>24.6</td>
</tr>
<tr>
<td>3</td>
<td>24.4</td>
</tr>
<tr>
<td>4</td>
<td>24.2</td>
</tr>
<tr>
<td>5</td>
<td>24.6</td>
</tr>
<tr>
<td>6</td>
<td>24.1</td>
</tr>
<tr>
<td>7</td>
<td>23.7</td>
</tr>
<tr>
<td>8</td>
<td>23.7</td>
</tr>
<tr>
<td>9</td>
<td>23.6</td>
</tr>
<tr>
<td>10</td>
<td>24.3</td>
</tr>
<tr>
<td>11</td>
<td>24.4</td>
</tr>
<tr>
<td>12</td>
<td>23.5</td>
</tr>
</tbody>
</table>

ค่าเฉลี่ย (X̄) | 24.16 | 6.38 |
ค่าเบี่ยงเบนมาตรฐาน (SD) | 0.437 | 0.177 |
เปอร์เซ็นต์ค่าเบี่ยงเบนมาตรฐานเส้นพิก (%RSD) | 1.81 | 2.77 |
ภาพ 45 ตัวอย่าง GDFI-CL gram และ PFI-CL gram ในการศึกษาหาความแน่นของเครื่องมือ

ในการวิเคราะห์หาความแน่นของกระบวนการวิเคราะห์ ได้ทำการทดสอบโดยการเตรียมสารมาตรฐานขั้นไฟที่มีความเข้มข้น 2 มิลลิกรัมต่อคลีติค ขึ้นจำนวน 12 ขวด ฉีดเข้าไปในระบบ GDFI-CL และระบบ PFI-CL ที่มีสาระตัดทางว่า 9 และ 14 ขวดละ 3 ครั้ง (นำเอาค่าเฉลี้ยเป็นค่าดีียา) พยาวิเคราะห์ผลตัดทาง 13 แวดวงภาพ 46
ตาราง 17 ผลการศึกษาความแม่นยำของกระบวนการวิเคราะห์ด้วยเทคนิค GDFI-CL และ วิธี PFI-CL

<table>
<thead>
<tr>
<th>ขั้นตอน</th>
<th>ความสูงของฟีก (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>วิธี GDFI-CL</td>
</tr>
<tr>
<td>1</td>
<td>24.2</td>
</tr>
<tr>
<td>2</td>
<td>23.5</td>
</tr>
<tr>
<td>3</td>
<td>24.1</td>
</tr>
<tr>
<td>4</td>
<td>23.7</td>
</tr>
<tr>
<td>5</td>
<td>23.6</td>
</tr>
<tr>
<td>6</td>
<td>23.8</td>
</tr>
<tr>
<td>7</td>
<td>23.7</td>
</tr>
<tr>
<td>8</td>
<td>23.3</td>
</tr>
<tr>
<td>9</td>
<td>23.7</td>
</tr>
<tr>
<td>10</td>
<td>23.5</td>
</tr>
<tr>
<td>11</td>
<td>23.7</td>
</tr>
<tr>
<td>12</td>
<td>23.5</td>
</tr>
</tbody>
</table>

ค่าเฉลี่ย (X) 23.7 6.49
ค่าเบี่ยงเบนมาตรฐาน (SD) 0.259 0.179
เปอร์เซ็นต์ค่าเบี่ยงเบนมาตรฐานสตด์พาร์ที่ (%RSD) 1.09 2.76
ภาพ 46 ด้วยถึง GDFI-CL gram และ PFI-CL gram ในการศึกษาความแม่นยำกระบวนการวิเคราะห์

ซึ่งจะเห็นได้ว่าผลลัพธ์ขึ้นต่ำกว่าเบื้องบนมาตรฐานสัมพัทธ์ (%RSD) สำหรับการศึกษาความแม่นยำของเครื่องมือและกระบวนการวิเคราะห์ ที่ได้ด้วยวิธีของ GDFI-CL จะทำให้ค่าที่ได้ต่ำกว่า วิธี PFI-CL เป็นจากวิธีของ GDFI-CL จะทำให้ผลการแพร่ผ่านโค้งตรงกันย่อมเลือกผ่าน สำหรับ PFI-CL จะทำให้ผลการแพร่ผ่านโค้งขั้นตอนโดยใช้ชุดค่าหัวน้ำของ glass bead ผ่านไปยังย่อเลือกผ่านชั้นละผลทำให้เฉพาะเกณฑ์เพิ่มขึ้นที่แพร่ผ่านไปทำให้ได้ค่า %RSD สูงกว่าวิธี GDFI-CL อยู่เล็กน้อยแต่ยังอยู่ในช่วงที่ยอมรับได้ทั่งสองวิธี

3.2.3 การศึกษาคัดลอกต่ำสุดของครีเอจเมื่อ GDFI-CL และวิธี PFI-CL

การหาขั้นต่ำสุดของครีเอจเมื่อ เพื่อหาความเข้มข้นต่ำสุดที่สามารถวินิจฉัยได้ ทำได้โดยการนำสารมาตรฐานลงไปที่มีความเข้มข้นต่ำ ๆ ในช่วง 0.1-0.5 มิลลิกรัมต่อลิตร มาตีด้วยไปในระบบ GDFI-CL และ PFI-CL เพื่อสังเกตความเข้มข้นที่ต่ำที่สุดที่สามารถตรวจพบสัญญาณได้โดยเทคนิค GDFI-CL และ PFI-CL ที่พื้นฐาน โดยพิจารณาจากความสูงของสัญญาณที่เก็บขึ้นเวลาต่อเนื่องตั้งแต่ 18 นาทีโดยใช้เทคนิค ECG.
ตาราง 18 ผลการศึกษาจิตร์จักดินสีสุกของเครื่องมือของการวิเคราะห์สุกคลีนิก GDFI-CL และวิธี PFI-CL

<table>
<thead>
<tr>
<th>ความเข้มข้นของชีวไฟล์ (mg l⁻¹)</th>
<th>วิธี GDFI-CL</th>
<th>วิธี PFI-CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.44</td>
<td>1.50</td>
</tr>
<tr>
<td>0.2</td>
<td>3.11</td>
<td>2.00</td>
</tr>
<tr>
<td>0.3</td>
<td>5.44</td>
<td>3.00</td>
</tr>
<tr>
<td>0.4</td>
<td>11.44</td>
<td>6.00</td>
</tr>
<tr>
<td>0.5</td>
<td>21.33</td>
<td>8.20</td>
</tr>
</tbody>
</table>

ตั้นแม่น อธิบายยังและอธิบาย เพศธรรม (แก่น อธิบายยัง และอธิบาย เพศธรรม, 2534) ได้กล่าวว่า จิตร์จักดินสีสุกของการตรวจหา หมายถึง ความเข้มข้นของสารที่ทำให้การวิเคราะห์สุกคลีนิกได้สัญญาณเป็น 2 หรือ 3 เท่าของพื้นหลังหรือสัญญาณมาตรฐาน ซึ่งจากตาราง 18 ผลของการศึกษาจิตร์จักดินสีสุกของ เครื่องมือของการวิเคราะห์สุกคลีนิก GDFI-CL และ PFI-CL ให้ความเข้มข้นของชีวไฟล์ที่ 0.1 และ 0.2 มิติกิรภัณฑ์เดิมที่สูงกว่าพื้นหลัง (back ground) เท่ากับ 2 เท่า ซึ่งอาจนุมนาได้จากการตรวจระหว่าง signal-to-noise ratio กับความเข้มข้นของชีวไฟล์ ในภาพ 47 ดังนั้นความเข้มข้นที่ 0.1 และ 0.2 มิติกิรภัณฑ์เดิมที่เป็นจิตร์จักดินสีสุกของการวิเคราะห์ และทำ ให้สามารถกล่าวได้ว่า ระบบ GDFI-CL และ PFI-CL ที่พัฒนาขึ้นไม่สามารถนำไปใช้ในการ วิเคราะห์ความเข้มข้นของชีวไฟล์ที่ต่ำกว่า 0.1 และ 0.2 มิติกิรภัณฑ์เดิมที่
(เวียน GDFI-CL, PFI-CL)

ซึ่งจะเห็นได้ว่ารัฐของ GDFI-CL จะให้ค่า signal-to-noise ที่ต่ำกว่ารัฐของ PFI-CL เนื่องจากเกิดการสั่นของสารประกอบโดยตรงกับเนื้อเยื่อโคกหินที่มีการสั่นความสูงของพื้นที่สูงกว่า

3.3 การวิเคราะห์มิวมัสหลั่นไฟฟ้าในอาหารมักคองโดยวิธี GDFI-CL

3.3.1 วิธีการวิเคราะห์มิวมัสหลั่นไฟฟ้าในอาหารมักคอง

ในการวิเคราะห์มิวมัสหลั่นไฟฟ้าในอาหารมักคองโดยวิธี GDFI-CL สามารถทำได้ 2 วิธีคือวิธีการคัดค้านมาตรฐาน (standard addition) และวิธีการนำมาตรฐาน (calibration curve) เมื่อนำไปวิเคราะห์ค่ารากฐาน GDFI-CL ที่พื้นฐาน ให้ผลการวิเคราะห์ค่าต่าง ๆ ตรง 19

ตาราง 19 การหาปริมาณหลั่นไฟฟ้าด้วยวิธีการนำมาตรฐาน และวิธีการคัดค้านมาตรฐาน

<table>
<thead>
<tr>
<th>ตัวอย่าง</th>
<th>Dilution factor</th>
<th>ความเข้มข้นของหลั่นไฟฟ้า (mg l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>วิธีการนำมาตรฐาน</td>
<td></td>
<td>วิธีการคัดค้านมาตรฐาน</td>
</tr>
<tr>
<td>น้ำหนักไม่อ่อน</td>
<td>500</td>
<td>860.8±2.7</td>
</tr>
<tr>
<td>ผักกาดตัด</td>
<td>200</td>
<td>296.2±2.1</td>
</tr>
<tr>
<td>ชื่อหน้าผัก</td>
<td>10</td>
<td>16.2±0.6</td>
</tr>
</tbody>
</table>

3.3.3 การหาข้อสรุปการกลับคืน

การหาข้อสรุปการกลับคืนสามารถทำได้จากการปรับปรุงที่ย้ายผลที่จากวิธีการคัดค้านมาตรฐานกับวิธีการนำมาตรฐาน (ภาคผนวก X) พบว่าในด้านข้อมูลน้ำหนักไม่อ่อน น้ำผลักกาดตัด และชื่อหน้าผัก มีการเร่งของการกลับคืน ดังตาราง 20
ตาราง 20 ร้อยละการกลับกันของขั้นไฟฟ้าในส่วนย่อย

<table>
<thead>
<tr>
<th>ความเข้มข้นของสารละลายมาตรฐาน (mg 1⁻¹)</th>
<th>ความเข้มข้นที่อ่านได้</th>
<th>ความเข้มข้นที่กลับกัน</th>
<th>ร้อยละการกลับกัน</th>
</tr>
</thead>
<tbody>
<tr>
<td>น้ำหนักไม้ลอง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2.57</td>
<td>0.98</td>
<td>98.6</td>
</tr>
<tr>
<td>1.5</td>
<td>3.11</td>
<td>1.52</td>
<td>101.7</td>
</tr>
<tr>
<td>2</td>
<td>3.48</td>
<td>1.89</td>
<td>94.7</td>
</tr>
<tr>
<td>2.5</td>
<td>3.99</td>
<td>2.40</td>
<td>96.2</td>
</tr>
<tr>
<td>3</td>
<td>4.43</td>
<td>2.84</td>
<td>94.7</td>
</tr>
<tr>
<td>3.5</td>
<td>4.98</td>
<td>3.39</td>
<td>97.0</td>
</tr>
<tr>
<td>4</td>
<td>5.41</td>
<td>3.82</td>
<td>95.6</td>
</tr>
<tr>
<td>น้ำผักกาดลอง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2.47</td>
<td>0.91</td>
<td>91.3</td>
</tr>
<tr>
<td>1.5</td>
<td>3.09</td>
<td>1.52</td>
<td>101.9</td>
</tr>
<tr>
<td>2</td>
<td>3.51</td>
<td>1.95</td>
<td>97.6</td>
</tr>
<tr>
<td>2.5</td>
<td>3.99</td>
<td>2.43</td>
<td>97.3</td>
</tr>
<tr>
<td>3</td>
<td>4.48</td>
<td>2.91</td>
<td>97.2</td>
</tr>
<tr>
<td>3.5</td>
<td>5.05</td>
<td>3.48</td>
<td>99.6</td>
</tr>
<tr>
<td>4</td>
<td>5.49</td>
<td>3.93</td>
<td>98.3</td>
</tr>
<tr>
<td>ขั้นที่พอดอย</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.76</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2.76</td>
<td>0.99</td>
<td>99.8</td>
</tr>
<tr>
<td>1.5</td>
<td>3.35</td>
<td>1.58</td>
<td>105.6</td>
</tr>
<tr>
<td>2</td>
<td>3.67</td>
<td>1.90</td>
<td>95.1</td>
</tr>
<tr>
<td>2.5</td>
<td>4.18</td>
<td>2.41</td>
<td>96.5</td>
</tr>
<tr>
<td>3</td>
<td>4.62</td>
<td>2.85</td>
<td>95.1</td>
</tr>
<tr>
<td>3.5</td>
<td>5.17</td>
<td>3.40</td>
<td>97.3</td>
</tr>
<tr>
<td>4</td>
<td>5.70</td>
<td>3.93</td>
<td>98.4</td>
</tr>
</tbody>
</table>

โดยร้อยละการกลับกันเฉลี่ยของ น้ำหนักไม้ลอง น้ำผักกาดลอง ขั้นที่พอดอย มีค่าเท่ากับ 96.9, 95.6 และ 98.2 ตามลำดับ
4. การเปรียบเทียบวิธีการหาปริมาณซัลไฟด์ในอาหารทั้งด้วยวิธีดีฟเฟอร์เรนซียอล พัลส์ โพรโทรกราฟี (DPP)

การทดสอบเพื่อศึกษาการเปรียบเทียบวิธีการหาปริมาณซัลไฟด์แบบบอยออนไลน์ พบว่าพบช่วงซัลฟิดในอาหารโดยการใช้เทคนิคเพอร์เรนซียอล พัลส์ โพรโทรกราฟี เพื่อเปรียบเทียบผลการทดลองที่ได้กับผลการทดลองจากการวิเคราะห์ด้วยวิธี PFI-CL โดยในการทดลองได้ใช้สารละลายวัวในบทที่ 3

4.1 การสร้างกราฟมาตรฐานของวิธีดีฟเฟอร์เรนซียอล พัลส์ โพรโทรกราฟี (DPP)

เมื่อนำสารละลายซัลไฟด์ความเข้มข้น 5.0, 15.0 และ 25.0 มิลลิกรัมต่อนิตร นำมาทดสอบการสร้างกราฟมาตรฐานด้วยเทคนิคเพอร์เรนซียอล พัลส์ โพรโทรกราฟี ได้กราฟแสดงตาราง 21 และสามารถนำมาสร้างกราฟมาตรฐานได้ ดังภาพ 48 โดยมีสมการความสัมพันธ์เชิงเส้นตรง คือ y = 31.479x + 28.663 และมีค่าสัมประสิทธิ์สหสัมพันธ์เท่ากับ 0.9965

ตาราง 21 ผลการศึกษาการสร้างกราฟมาตรฐานโดยวิธีดีฟเฟอร์เรนซียอล พัลส์ โพรโทรกราฟี (DPP)

<table>
<thead>
<tr>
<th>ความเข้มข้นของซัลไฟด์ (mg l⁻¹)</th>
<th>กระแส (-nA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>175.31</td>
</tr>
<tr>
<td>15</td>
<td>522.33</td>
</tr>
<tr>
<td>25</td>
<td>807.88</td>
</tr>
</tbody>
</table>

ภาพ 48 กราฟมาตรฐานของการวิเคราะห์ซัลไฟด์ด้วยวิธีเทคนิคเพอร์เรนซียอล พัลส์ โพรโทรกราฟี
4.2 การวิเคราะห์วิธีการเชือลฟ้าในอาหารหมักดอง

นำตัวอย่างน้ำหมักดอง น้ำหลักกาดดอง และจิ้งห์ผงที่ผ่านการเตรียมตัวอย่างด้วยวิธีการฉีกผักดอก (acid distillation) มาเชื่อมต่อกับสารละลายสีโคลดาวไลด์ มวลดับกระดาษการแพทย์ของสารละลายด้วยกันที่ระบาย จนมีน้ำราดกระดาษสารละลายอย่างที่ได้มาปั่นที่บ้าน กราฟมาตรฐาน พบว่าได้ผลดังตาราง 22

ตาราง 22 ผลการวิเคราะห์วิธีการเชือลฟ้าในอาหารคั่ว DPP (DPP)

<table>
<thead>
<tr>
<th>ตัวอย่าง</th>
<th>I peak (nA)</th>
<th>ปริมาณเชือลฟ้า (mg ลิตร⁻¹)</th>
<th>Dilution factor</th>
<th>ความเข้มข้นเชือลฟ้า (mg ลิตร⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>หม้อไม่เคลือบ</td>
<td>442.83</td>
<td>13.156</td>
<td>100</td>
<td>1315.6±2.1</td>
</tr>
<tr>
<td>หม้อเคลือบ</td>
<td>175.70</td>
<td>4.671</td>
<td>100</td>
<td>467.1±2.0</td>
</tr>
<tr>
<td>จิ้งห์ผง</td>
<td>109.41</td>
<td>2.565</td>
<td>10</td>
<td>25.65±2.5</td>
</tr>
</tbody>
</table>

ผลเมื่อนำผลที่ได้มาเปรียบเทียบกับผลที่ได้จากวิธี PFI-CL ที่ได้พัฒนาขึ้น พบว่าได้ผลดังตาราง 23 เสนอผลการทดลองที่ได้จากสองวิธี โดยจากวิธีเพื่อนร่วมเรือนเชื้อ (PFI-CL) และวิธีดีพ็อฟ เรือนเชื้อ พลังงานโฟโตโวลไทร์ (DPP) ผลที่ได้มีความแตกต่างอย่างมีนัยสำคัญ และเหตุนี้เกิดความไม่ยุ่งยากในการวิเคราะห์ที่ระดับความเข้มข้นนั้น 95% เมื่อพิจารณาจากค่า t-value (n = 3, 2,...)

ตาราง 23 ผลการเปรียบเทียบวิธีการเชือลฟ้าในอาหารหมักดองโดยวิธี PFI-CL และ DPP

<table>
<thead>
<tr>
<th>ตัวอย่าง</th>
<th>วิธี PFI-CL (mg ลิตร⁻¹)</th>
<th>วิธี DPP (mg ลิตร⁻¹)</th>
<th>t-value (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>หม้อไม่เคลือบ</td>
<td>1317.6±5.8</td>
<td>1315.6±2.1</td>
<td>0.572</td>
</tr>
<tr>
<td>หม้อเคลือบ</td>
<td>466.5±1.8</td>
<td>467.1±2.0</td>
<td>0.364</td>
</tr>
<tr>
<td>จิ้งห์ผง</td>
<td>22.7±0.3</td>
<td>25.6±2.6</td>
<td>1.921</td>
</tr>
</tbody>
</table>
บทที่ 5
สรุปและข้อเสนอแนะ

วิเคราะห์ผลการวิจัย

ในการวิจัยนี้ได้เสนอผลการศึกษาการพัฒนาประสิทธิภาพแบบออนไลน์ (on-line) 2 ชนิด ซึ่งประกอบไปด้วยเทคนิคพื้นฐานของวิเคราะห์โพลิเทคนิค (PFI) และกีฬาจิตฟิวชั่น โพลิเทคนิค (GDFI) ที่มีการวิเคราะห์ขั้นตอนคู่มัณฑมณ์ซึ่งขึ้นเป็นที่น่าสนใจวิธีที่จะสามารถพัฒนาเทคนิคโพลิเทคนิคและเทคนิคกีฬาจิตฟิวชั่นได้ในระดับความขึ้นชั้นต่าง ๆ ซึ่งจากการศึกษาพบโพลิเทคนิคและกีฬาจิตฟิวชั่นจะต้องมีการควบคุมการพัฒนา ซึ่งเป็นส่วนที่สำคัญในการวิเคราะห์ด้านต่าง ๆ โดยต้องการให้สามารถตรวจสอบคุณค่าในส่วนที่ควบคุมได้และในการแก้ปัญหาขั้นตอนในระหว่างการสมัครโครงการแล้วจะทำให้ความสูงของพื้นฐานขึ้นเรื่อย ๆ เมื่อปฏิบัติได้ดีมากขึ้นก็จะดี ๆ หนึ่ง จะได้ทำการตอบสนองที่สูงที่สุดของปฏิบัติได้ โดยเฉพาะอย่างยิ่งอีกทีมที่มีการอบรมระบบการเสนอแบบออนไลน์มาใช้ร่วมกันเนื่องจากมีผลของการถ่ายทอดที่เกี่ยวข้องกับขั้นตอนหนึ่งของระบบการตรวจวัด

ในการวิเคราะห์ระบบโพลิเทคนิคนั้นได้ที่สำคัญที่มีผลต่อการพัฒนาระดับต่าง ๆ ทางภายใต้เชิงทักษะการให้แก่การปรับปรุงการพัฒนาการด้านต่าง ๆ ที่ใช้ในการผลิตเป็นต้น ด้วยการเข้าไปปรับปรุงการพัฒนาการด้านต่าง ๆ ที่ใช้ในการผลิต ถ้าเพียงการปรับปรุงการด้านต่าง ๆ ในการวิเคราะห์โดยวิธีโพลิเทคนิคและกีฬาจิตฟิวชั่น พบว่าไม่มีการเปลี่ยนต้นทุนเพื่อให้สัญญาณในการวิเคราะห์มีผลต่อกำลังการพัฒนาในแต่ละด้านอย่างมีการเปลี่ยนแปลงไป หากปริมาณการด้านต่าง ๆ ที่ให้ผลการพัฒนาการด้านต่าง ๆ ที่มีผลต่อกำลังการพัฒนาการด้านต่าง ๆ โดยไม่มีการเปลี่ยนต้นทุนเพื่อให้สัญญาณจะเพิ่มขึ้นด้วย แต่ในการศึกษา นั้น ๆ มีการใช้ปริมาณการด้านต่าง ๆ ที่มีผลต่อกำลังการพัฒนาการด้านต่าง ๆ โดยไม่มีการเปลี่ยนต้นทุนเพื่อให้สัญญาณจะเพิ่มขึ้นด้วย ซึ่งการทดสอบจากการที่ทำการทดลองทางการที่เหมาะสมกับการวิเคราะห์ด้านระบบออนไลน์ที่พัฒนาขึ้นสามารถนำมาประยุกต์ใช้ในการศึกษาปริมาณขั้นต้นในด้านอย่างอาหารประเภทมุกดอก เพื่อศึกษาผลการทดลองระบบออนไลน์ได้

การศึกษาทางภาวะที่เหมาะสมสำหรับระบบการเสนอแบบออนไลน์ของการส่งต่อระบบแสดงตัวในตาราง 9 และตาราง 14 แล้วพยากรณ์สภาพดังกล่าว สามารถทำการศึกษาปริมาณขั้นต้นในคัดลายางอาหารประเภทมุกดอก เช่น หน่อไม้ดอก หัวผักตังดอก และจิงจั่นผักตังได้
การศึกษาการวิเคราะห์วัสดุระบบออนไลน์ (on-line) คือวิธี PFI-CL และ GDFI-CL พบว่า
การเปรียบเทียบวิธีการวิเคราะห์การใช้สูตร 2 วิธีพบว่าวิธี GDFI-CL ให้ประสิทธิภาพในการแยกตัวกันกับจุลชีพ
กว่าเมื่อใช้ในกระบวนการ GDFI-CL จะสามารถวิเคราะห์สารละลายอย่างไรได้โดยตรง
ซึ่งสารตัวอย่างจะถูกผลักดันเข้าสู่เส้นเลือกสถานะดีกรีที่แตกต่างกันทำให้ประสิทธิภาพในการแยกตัว
กว่าเมื่อใช้ PFI-CL ซึ่งจะต้องใช้การแยกตัวแทนด้วยสเปกตรัมเลือกสถานะ แต่วิธี GDFI-
CL นี้ข้อเสียที่ขึ้นจากผลักดันเลือกสถานะดีกรีที่แตกต่างทำให้ระยะเวลาการใช้งานของเลือก
สถานะดีกรีใช้ได้เป็นเวลาน้อยกว่าทำให้ต้องเปลี่ยนเลือกสถานะดีกรีบ่อยกว่า ดังจะสามารถปรับเปลี่ยน
คุณลักษณะเฉพาะของวิธีการวิเคราะห์ที่รองรับเทคโนโลยีได้ตั้งแต่บาง 24 ตาราง 24 การเปรียบเทียบวิธีการวิเคราะห์ที่ทำการพัฒนาขึ้นในระบบกีฬาติด.physics โพลิเตรียนเด็ก

ตาราง 24 การเปรียบเทียบวิธีการวิเคราะห์ที่ทำการพัฒนาขึ้นในระบบกีฬาติด.physics โพลิเตรียนเด็ก

<table>
<thead>
<tr>
<th>คุณลักษณะ</th>
<th>ผลที่ได้</th>
</tr>
</thead>
<tbody>
<tr>
<td>วิธี GDFI-CL</td>
<td>วิธี PFI-CL</td>
</tr>
<tr>
<td>ช่วงความเป็นสุณัชกรรม ความ</td>
<td>0.5-10.0 มิลลิกรัมต่อดีกรี</td>
</tr>
<tr>
<td>แบ่งกลุ่มในการวิเคราะห์</td>
<td>%RSD ที่เท่ากับ 1.09</td>
</tr>
<tr>
<td>ซีสต์เจาะที่สูงสุดของการวิเคราะห์</td>
<td>0.1 มิลลิกรัมต่อดีกรี</td>
</tr>
<tr>
<td>ความยาวในการวิเคราะห์</td>
<td>60 ดีกรีองค์ต่อชั่วโมง</td>
</tr>
<tr>
<td>ความสูงของเส้นเลือกสถานะ</td>
<td>ระยะเวลาภายใน 3 วัน</td>
</tr>
</tbody>
</table>

ส่วนในการศึกษาผลจากไอออนกราฟิกที่สำคัญที่มีผลต่อการวิเคราะห์ประมวลขั้นไฟฟ้า
ได้แก่ Cl− glucose sucrose ethanol ascorbic acid ไอออนเหล่านี้จะไม่มีผลต่อการวิเคราะห์ สำม
ไอออน I− S2− Mn2+ Fe3+ ในอัตราส่วน 1:1 จะมีผลต่อการวิเคราะห์แม้ว่ามีการเปลี่ยนในระดับความ
ช้าขึ้นที่เท่ากับ (Negative error) เล็กน้อยจากไอออนเหล่านี้เป็นตัวอย่างที่ต้องการวิเคราะห์ที่แรง ซึ่งมี
สมบัติในการเข้าแข่งขันเพื่อปฏิกิริยาต่อนำสารตัวอย่าง และเปลี่ยนจุดอ่อนได้ทำให้รับความผลการ
วิเคราะห์

การศึกษาการวิเคราะห์ลักษณะที่ต่างจากไฟฟ้าคั่ววิธี PFI-CL ได้แก่ คัดลอก ผิลังการ และจิตริมเพลย์ อยู่ในช่วง 91-104 และคั่ววิธี GDFI-CL อยู่ในช่วง 94-105 ซึ่งสิ่งที่เคมีการลักษณะคั่วมีต่างไม่ไฉไลคือสิ่ง 100 อาจเป็นผลจากการเตรียมข้อมูลตัวอย่างอ่าน
การทดลอง และเวลาที่ไม่แน่นอนในการมีส่วนตัวอย่าง ซึ่งต้องเตรียมขันที่ทั้งใด ในการวิเคราะห์ แต่ละครั้ง ซึ่งทำให้ขันไฟด้วยวิธีการหลายตัวไม่ได้รับความรู้ในระยะเวลาที่ไม่เท่ากันได้.

จากการทดลองปริมาณขันไฟด้วยวิธีการวิเคราะห์มาตรฐาน (standard addition) ได้ปริมาณของขันไฟด้วยตัวอย่างน้ำทะเลน้อยกว่า เท่ากับ 1,300.0±0.1, 406.0±0.4 และ 20.7±0.2 มิลลิกรัมต่อตัน ตามลำดับ และเทคนิคแก่สิ่งที่ใช้ไฟฟ้า ถือว่าขันไฟมี 875.0±0.2, 290.0±0.4 และ 17.0±0.2 มิลลิกรัมต่อตัน ตามลำดับ ซึ่งพบว่าปริมาณสารมาตรฐานและวิธีการวิเคราะห์ฐานให้ผลการทดลองที่ใกล้เคียงกันมาก แต่การวิเคราะห์โดยการวิเคราะห์มาตรฐานจะมีความถูกต้องแบบยามากกว่า เพราะเป็นค่าที่ได้จากสารละลายที่มีมีทริชึ่งกลับกัน ส่วนวิธีการวิเคราะห์ฐานอาจมีความคลาดเคลื่อนบางเล็กน้อยเมื่อจากมีการเปลี่ยนแปลงแต่ผลิตภัณฑ์ตัวอย่างที่มีปริมาณมาก ๆ.

จากการทดลองหาปริมาณขันไฟด้วยวิธีการวิเคราะห์มาตรฐานด้วยวิธีเพาะว่าพบว่าขันไฟ ได้ปริมาณของขันไฟด้วยตัวอย่างน้ำทะเลน้อยกว่า เท่ากับ 1,317.6±5.8 มิลลิกรัมต่อตัน และได้ปริมาณของขันไฟด้วยตัวอย่างน้ำทะเลน้อยกว่า เท่ากับ 466.5±1.8 มิลลิกรัมต่อตัน และขันไฟน้อยกว่า เท่ากับ 22.7±0.3 มิลลิกรัมต่อตัน เมื่อนำมาเปรียบเทียบกับวิธีการหาปริมาณขันไฟด้วยวิธีเพาะว่าพบว่าผลลัพธ์ทางวิธีการวิเคราะห์ฐานและปริมาณของขันไฟด้วยตัวอย่างน้ำทะเลน้อยกว่า เท่ากับ 1,315.6±2.1, 467.1±2.0 มิลลิกรัมต่อตัน และขันไฟน้อยกว่า เท่ากับ 25.6±2.6 มิลลิกรัมต่อตัน เมื่อนำผลการทดลองมาเปรียบเทียบกับวิธีการวิเคราะห์ฐานด้วยระบบคอมพิวเตอร์ คือ PFI-CL พบว่ามีค่าแตกต่างกันเล็กน้อย อาจเกิดความผิดพลาดจากหลายสาเหตุ ได้แก่ เวลาที่ใช้ในการซ้อนตัวเองด้วยเครื่องมือและตัวอย่างเป็นสารละลายที่พร้อมให้สารเข้าสู่ระบบ PFI-CL ไม่มีส่วนเจริญ ในการซ่อนอันตรายสารด้วยสูงที่ต้องเข้าสู่ระบบ PFI-CL คือที่อย่างรวดเร็วเพราะจะทำให้สารต้องอย่างระเหยหายไปบางส่วน.

อย่างไรก็ตามจากการศึกษาทางเทคนิคต่างของขันไฟที่กล่าวได้ว่า 2 วิธี คือวัตถุ (t-test) ในการทดสอบความขัดข้องมี 95% และการทดสอบความเสถียร 4 ซึ่งทำให้ผลแตกต่างโดยค่าน้ำมันค่า 1 จากผลของการทดลองที่เล็ก คือ วิธีเพาะว่าพบว่าขันไฟและวิธีเพาะว่าพบว่าขันไฟ ไฟฟ้าสิ่งที่ใช้ในการซ้อนตัวเอง ได้มีความปริมาณเกินกันค่า ในตารางแจกแจงแบบที่ โดยค่า 1 จากตารางแจกแจงแบบที่เท่ากับ 2.776 จากการค้นหาค่า 1 จากตารางค่าตัวอย่าง พบว่าค่าตัวอย่างน้ำทะเลน้อยกว่า เท่ากับ 0.5726, 0.3640 และ 1.9216 ตามลำดับ ซึ่งค่า 1 ที่ค้นหาได้มีค่าไม่มากกว่าต่ำกว่า 1 จากตาราง ดังนั้นการวิเคราะห์ขันของขันไฟที่ดูเหมือนไม่มีความแตกต่างอย่างมีนัยสำคัญ และเทคนิค PFI-CL ที่ได้พัฒนาขึ้นมีความแม่นยำในการวิเคราะห์ที่ระดับความเชื่อมั่น 95% ออกไป.
ในขั้นตอนการเตรียมสารตัวอย่างก่อนการวัดกระแสด้านการแพร่ระบาดเชื้อดีพโซเรนชิฮิล พัสดุ โพลาไรซ์ฟิลล์ ต้องทำการกำจัดถิ่นของเชื้อเจ็นให้หมดก่อนทำการทดลอง และเรียนจำตัวอย่าง ๆ ที่ใช้ในการทดลองควรเตรียมใหม่ทุกครั้งก่อนการวิเคราะห์อาจทำให้เกิดความแตกต่างกันได้ เลยนิย์ ช่วยในการวิเคราะห์ทางปริมาณเชื้อไฟฟ้าด้วยวิธีการฟิวชันได้แก่ปริมาณของเชื้อไฟฟ้าในตัวอย่างน้ำหนักไม่ค่อยเท่ากัน 860.83±2.75 มิลลิกรัมต่อลิตร และได้ปริมาณของเชื้อไฟฟ้าในตัวอย่างน้ำ เท่ากับ 286.26±2.08 มิลลิกรัมต่อลิตร และจึงทำผลเฉลยเก็บ 16.18±0.67 มิลลิกรัมต่อลิตร ซึ่งได้ปริมาณที่ลดลงเนื่องจากการตัวอย่างที่มีการสถาปติวิชช์เกิดจากทั้งสองอย่างที่คือฟิวชันเป็นเวลา 2 สัปดาห์

ปริมาณที่ย้อมจากใช้ค่าประมาณของกระàngสารสนับสนุน ค่าที่บันทึก 84 ย้อมจากใช้สารศาสตร์ โดยใช้ได้สูงสุดไม่เกิน 500 มิลลิกรัมต่อลิตร และอาจที่ไม่ใช้ใช้สารศาสตร์ คือ หน่วยไม่ได้ และจึงเห็นอย่าง จากระดับการตัวอย่างอาหารทั้งหมด พบว่าค่าที่ได้มีปริมาณสูงเกินกว่าที่กำหนดไว้อันเป็นผลเนื่องจากอาหารสูง ได้ไม่มีการใช้สารศาสตร์ในปริมาณที่มากในการผลิต เพื่อให้ผลิตภัณฑ์มีคุณลักษณะเด่นชัดเจนได้นำวิธีการเก็บรักษาไว้ได้ในเจ้าอย่างไรก็ตาม หากใช้สารหลั่นในปริมาณที่มากกว่าไปอาจส่งผลกระทบโดยตรงต่อผู้บริโภคได้ ดังนั้นในมาตรฐานผู้บริโภคควรพิจารณาเลือกใช้อาหารจากแหล่งที่ปลอดภัยและมีสภาพแวดล้อมที่ไม่มีสินค้าจ้างหรือขายล่ากันไป หรือเมื่อเปรียบผู้บริโภคควรทำการสังเกตและเข้าใจการใช้เป็นแนวทาง ๆ เพื่อลดปริมาณเชื้อไฟฟ้า

สรุปผลการวิจัย

จากการศึกษาและพัฒนาเทคนิคการวิเคราะห์ปริมาณเชื้อไฟฟ้าด้วยวิธีการแยกแบบออนไลน์ เรื่องการวิเคราะห์สารโพลาไรซ์ฟิลล์ และการใช้สารศาสตร์โพลาไรซ์ฟิลล์ด้วยร่วมกับการตรวจวัดด้วยภูมิสัมพันธ์ พบว่าผลิตภัณฑ์ที่ผลิตขึ้นมีความไว้ ความถูกต้องและแม่นยำสูง สามารถวิเคราะห์ได้ง่ายและรวดเร็ว เครื่องมือและอุปกรณ์ที่ใช้มีราคาถูก และที่สำคัญคือ สามารถวิเคราะห์ปริมาณเชื้อไฟฟ้าได้ตามที่ต้องการทุกห้องทำข้าวต่างกัน สอบถามระบบแยกแบบออนไลน์ ยังสามารถประหยัดการใช้เรือนอาหารที่มีราคาแพงได้อีกด้วย โดยระบบการแยกแบบออนไลน์ที่พัฒนาขึ้นยังสามารถตัดแปลงใหม่เพื่อใช้สำหรับการวิเคราะห์สารที่สนใจต่อไป ๆ ได้ตามความเหมาะสมของปฏิกิริยาที่เกิดขึ้น
ข้อเสนอแนะ

ในระบบการแตกแยกออกออนไลน์ 2 ชนิด ประกอบด้วยวิธีเพาะวัชพืชในฟิล์มอินเจคชัน (PFI) และกิจการณ์พืชในฟิล์มอินเจคชัน (GDFI) รวมทั้งการตรวจสอบแบบภูมิภูมิเสริมซ่อม สำหรับวิเคราะห์ภาษาปริมาณชิ้นฟิล์มนี้เป็นระบบที่ให้ผลลัพธ์ที่รวดเร็ว มีสภาพไขสูง และมีคุณลักษณะในการวิเคราะห์พืชฐานอยู่ในเกณฑ์ที่ดี แต่ในการวิเคราะห์ยังมีข้อเสียจากการทดลองมากอยู่ ดังนั้นอาจใช้ระบบไมโครฟิล์มอินเจคชัน (μTAS) หรือ เล็กชิพ (lab-on-chip) เพื่อลดการใช้งานสารเคมีให้น้อยลง ซึ่งย่อมทำให้มีข้อเสียจากการทดลองน้อยลง และขนาดของเครื่องมือหรือชิ้นส่วนที่ใช้ในการเกิดปฏิกิริยาจะยังสามารถลดขนาดเหลือเพียงไม่กี่ตาราง เซนติเมตร

จึงไม่เป็นที่แปลกใจที่พบว่าความรู้และความสามารถในการวิเคราะห์แบบฟิล์มอินเจคชันอินเจคชัน มีเพิ่มขึ้นอย่างรวดเร็ว ซึ่งเป็นที่คาดว่าการวิเคราะห์แบบฟิล์มอินเจคชันอินเจคชันจะมีบทบาทสำคัญต่อการวิเคราะห์สารด้วยวิธีประเภทต่าง ๆ คือ ไปในสภาพปัจจุบันและในอนาคตอันใกล้
บรรณานุกรม

เกตุ กรุดพันธุ์. 2539. เอกสารประกอบการประชุมปฏิบัติการเกี่ยวกับสารเคมีที่สร้างเสริม. เขียนไทย: ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่. 20 น.

แม่น อมรชัยและอมร เพรชยน. 2534. หลักการและเทคนิคการวิเคราะห์เชิงเครื่องมือ. กรุงเทพฯ: ชวนพิมพ์. 365 น.

วิรัช เรืองศรีธรรม. 2548. โฟลิโออักษรที่ใช้ทำการตรวจสอบแบบเคมีภัณฑ์วัสดุ. สำนักการวิเคราะห์เกลือกัน. ขอบแก่น: ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น. 8 น.

determination of sulfur dioxide in air using tris(1,10-Phenanthroline) ruthenium-KIO₄

Informaworld, no date. **On-line separation.** (online). Available

methods for the determination of sulfite in food and beverages. **Anal. Chem.** 25(16):
589.

determination of sulfite using the zone-passing technique of in-capillary derivatization.

Nacapricha, D., P. Sangkarn, C. Karuwan, T. Mantim, W. Waiyawat, P. Wilairat, T.
Cardwell, J.D. McKelvie and N. Ratanawimarnwong. 2007. Pervaporation-flow
injection with chemiluminescence detection for determination of iodide in multivitamin
tablets. **Talanta** 72(2): 626.

chemiluminescence determination of ascorbic acid by use of the cerium (IV)–Rhodamine

Meng, H., F. Wu, Z. He and Y. Zeng. 1999. Chemiluminescence determination of sulfite in
sugar and sulfur dioxide in air using Tris(2,2%-bipyridyl)ruthenium(II)-permanganate
system. **Talanta** 48(3): 571.

Mervartova, K., M. Polasek and J. M. Calatayud. 2007. Sequential injection analysis
(SIA)-chemiluminescence determination of indomethacin using tris (2,2′bipyridyl)
ruthenium(III) as reagent and its application to semisolid pharmaceutical dosage forms.

1. การคำนวณความเข้มข้นที่แน่นอนของสารละลายมาตรฐานซึ่งให้ความเข้มข้น 1000 มิลลิกรัมต่อลิตรโดยวิธี Iodometric titration

1.1 วิธีการทดลอง

1.1.1 การเตรียมสารละลายมาตรฐาน KIO₃

ขั้นตอนที่ 1 คือการผสมสารละลายสาร KIO₃ 10.00 มิลลิลิตร กับน้ำ 250.00 มิลลิลิตร เก็บไว้ในขวดเก็บ ขั้นตอนที่ 2 คือการผสมสารละลายเก็บไว้แล้วกับน้ำ 250.00 มิลลิลิตร เก็บไว้ในขวดเก็บ

1.1.2 การทำมาตรฐานสารละลายซีเดียมไฮโดรซิลเฟด

ใบรหัสสารละลายมาตรฐาน KIO₃ 10.00 มิลลิลิตร ใส่ในขวดเก็บ 250.00 มิลลิลิตร แล้วบังคับน้ำ 10 มิลลิลิตร แล้วเก็บไว้ในขวดเก็บ KI และน้ำ 6 มิลลิลิตร แล้วบังคับน้ำ HCl 2 มิลลิลิตร แล้วบังคับน้ำไข่ขาว 6 มิลลิลิตร แล้วบังคับน้ำ HCl 2 มิลลิลิตร และน้ำ 6 มิลลิลิตร แล้วบังคับน้ำไข่ขาว 6 มิลลิลิตร โดยการทดลองทำให้สารละลายซีเดียมไฮโดรซิลเฟดที่ใช้เพื่อให้สารละลายออกซิไดฟีล

1.1.3 การทำมาตรฐานสารละลายไอโอเดน

ใบรหัสสารละลายมาตรฐานซีเดียมไฮโดรซิลเฟด 10.00 มิลลิลิตร ใส่ในขวดเก็บ 250.00 มิลลิลิตร แล้วบังคับน้ำ 30 มิลลิลิตร แล้วบังคับน้ำ 2 มิลลิลิตร แล้วบังคับน้ำไข่ขาว 6 มิลลิลิตร โดยการทดลองทำให้สารละลายออกซิไดฟีล

1.1.4 การคำนวณความเข้มข้นของสารละลายซักซ์ฟีล

ใบรหัสสารละลายมาตรฐานซักซ์ฟีล 1000 มิลลิกรัมต่อลิตร จำนวน 10.00 มิลลิลิตร ใส่ในขวดเก็บ 250.00 มิลลิลิตร แล้วบังคับน้ำ 30 มิลลิลิตร แล้วบังคับน้ำ 2 มิลลิลิตร แล้วบังคับน้ำไข่ขาว 1000 มิลลิกรัมต่อลิตร ทำให้สารละลายออกซิไดฟีล

1.2 ผลการทดลอง

1.2.1 การเตรียมสารละลายมาตรฐาน KIO₃

ทำสารละลาย KIO₃ 0.4198 กรัม
คำนวณความเข้มข้น KIO₃

\[
\text{KIO}_3 \rightarrow \text{K}^+ + \text{IO}_3^- \quad (1)
\]

จาก

\[
\text{Mol} = \frac{g}{\text{MW}} = \frac{0.4198}{214} = 1.9617 \times 10^{-3} \text{ mol}
\]

สารละลาย KIO₃ 100 ml มี KIO₃ อยู่ 1.9617 \times 10^{-3} \text{ mol}

สารละลาย KIO₃ 1000 ml มี KIO₃ อยู่ \(\frac{1.9617 \times 10^{-3} \times 1000}{100} = 0.01962 \text{ M} \)

1.2.2 การทบทวนฐานสารละลายไอเดียม(ไอ)ออกซิไดท์

ตาราง 25 ผลการทบทวนฐานสารละลายไอเดียม(ไอ)ออกซิไดท์

<table>
<thead>
<tr>
<th>ครั้งที่</th>
<th>ปริมาตร Na₂S₂O₃ (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.40</td>
</tr>
<tr>
<td>2</td>
<td>29.45</td>
</tr>
<tr>
<td>3</td>
<td>29.45</td>
</tr>
<tr>
<td>4</td>
<td>29.40</td>
</tr>
<tr>
<td>5</td>
<td>29.40</td>
</tr>
<tr>
<td>(\bar{X})</td>
<td>29.42</td>
</tr>
</tbody>
</table>

คำนวณความเข้มข้น Na₂S₂O₃

\[
\text{คำว่าปฏิกิริยา}
\]

\[
\text{IO}_3^- + 5\text{I}^- + 6\text{H}^+ \rightarrow 3\text{I}_2 + 3\text{H}_2\text{O} \quad (2)
\]

\[
\text{I}_2 + 2\text{S}_2\text{O}_3^{2-} \rightarrow \text{S}_4\text{O}_6^{2-} + 2\text{I}^- \quad (3)
\]

จากสมการที่ 2 และ 3 พบว่า KIO₃ ทำปฏิกิริยาทับ Na₂S₂O₃ ในอัตราส่วน 1:6
ดังนั้น

\[
6\text{M(KI)}_3\text{V(KI)}_3 = \text{M(Na}_2\text{S}_2\text{O}_3\text{)V(Na}_2\text{S}_2\text{O}_3\text{)}
\]

\[
6 \times (0.01962)(10.00) = \text{M(Na}_2\text{S}_2\text{O}_3\text{)(29.42)}
\]

\[
\text{M(Na}_2\text{S}_2\text{O}_3\text{)} = \frac{6 \times (0.01962)(10.00)}{(29.42)}
\]

\[
= 0.0400 \text{ M}
\]

1.2.3 การท้ามตรวจสอบสารละลายไอโอดีน

ตาราง 26 ผลการศึกษาปริมาณของสารละลายไอโอดีน

<table>
<thead>
<tr>
<th>ครั้งที่</th>
<th>ปริมาตร I₂ (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.70</td>
</tr>
<tr>
<td>2</td>
<td>19.70</td>
</tr>
<tr>
<td>3</td>
<td>19.70</td>
</tr>
<tr>
<td>4</td>
<td>19.70</td>
</tr>
<tr>
<td>5</td>
<td>19.70</td>
</tr>
</tbody>
</table>

\[\bar{X} = 19.70\]

คำนวณความเบี่ยงเบน I₂

กรณีปฏิกิริยา

\[
\text{I}_2 + 2\text{e}^- \rightarrow 2\text{I}^- \quad (4)
\]

\[
2\text{S}_2\text{O}_3^- \rightarrow \text{S}_4\text{O}_6^{2-} + 2\text{e}^- \quad (5)
\]

ปฏิกิริยารวม

\[
\text{I}_2 + 2\text{S}_2\text{O}_3^- \rightarrow \text{S}_4\text{O}_6^{2-} + 2\text{I}^- \quad (6)
\]

จากสมการที่ 6 พบว่า I₂ ทำปฏิกิริยากับ Na₂S₂O₃ ในอัตราส่วน 1 : 2

ดังนั้น

\[
2\text{M(I)}_2\text{V(I)}_2 = \text{M(Na}_2\text{S}_2\text{O}_3\text{)V(Na}_2\text{S}_2\text{O}_3\text{)}
\]

\[
2 \times (19.70) = (0.0400)(10.00)
\]

\[
\text{M(I)}_2 = \frac{(0.0400)(10.00)}{2(19.70)}
\]
1.1.4 การคำนวณความเข้มข้นของสารมาตราฐานซอลไฟด์เชื้อปิ้น 1000 mg l⁻¹

ตาราง 27 ผลการค้นหาปริมาตรของสารละลายไคลороดีน

<table>
<thead>
<tr>
<th>ครั้งที่</th>
<th>ปริมาตร I₂ (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.25</td>
</tr>
<tr>
<td>2</td>
<td>12.20</td>
</tr>
<tr>
<td>3</td>
<td>12.20</td>
</tr>
<tr>
<td>4</td>
<td>12.30</td>
</tr>
<tr>
<td>5</td>
<td>12.25</td>
</tr>
<tr>
<td>(\bar{x})</td>
<td>12.24</td>
</tr>
</tbody>
</table>

ค่านวนความเข้มข้น \(\text{SO}_3^{2-}\):

\[
\text{SO}_3^{2-} + \text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + 2\text{e}^- + 2\text{H}^+ \quad (7)
\]

ปฏิกรณ์รวม

\[
\text{I}_2 + \text{SO}_3^{2-} + \text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + 2\text{I}^- + 2\text{H}^+ \quad (8)
\]

จากสมการที่ 8 พบว่า \(\text{I}_2\) ทำงานปฏิกรณ์กับ \(\text{SO}_3^{2-}\) ในอัตราส่วน 1:1

ดังนั้น

\[
\text{M(I}_2)\times\text{V}(I_2) = \text{M(SO}_3^{2-})\times\text{V(SO}_3^{2-})
\]

\[
(0.01015)(12.30) = \text{M(SO}_3^{2-})(10.00)
\]

\[
\text{M(SO}_3^{2-}) = \frac{(0.01015)(12.24)}{10.00}
\]

\[
= 0.01242 \text{ M}
\]

\[
= (0.01242)(80)
\]

\[
= 0.9941 \text{ g/l}
\]

\[
= 994.1 \text{ mg/l}
\]

ดังนั้นความเข้มข้นของสารมาตราฐานซอลไฟด์มีความเข้มข้น 994.1 มิลลิกรัมต่อลิตร
2. การวิเคราะห์ปริมาณขั้นไฟฟ้าต่ำอย่างโดยวิธีการคัดสารมาตรฐาน (standard addition)

2.1 การหาปริมาณขั้นไฟฟ้าต่ำโดยวิธีการคัดสารมาตรฐาน

ทำการทดลองโดยนำหน่วยไมโครโอนิว์มิลิลิตรปริมาตร 0.025 มิลลิลิตรละลู่ลงในขวดวัสดุปริมาณ 25 มิลลิลิตรทั้งหมด 7 ขวด จากรูปแบบสารมาตรฐานขั้นไฟฟ้าต่ำ 0, 2.5, 3.75, 5, 6.25, 7.5 และ 10 มิลลิลิตร ปรีบปริมาตรด้วยน้ำประโกรธาไบโอน จะได้ความเข้มข้นของขั้นไฟฟ้าต่ำลงในแต่ละขวดเท่ากับ 0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 และ 4.0 มิลลิกรัมต่อลิตร ตามลำดับ เมื่อนำไปวิเคราะห์ด้วยระบบ PFI-CL ที่พัฒนาขึ้นในที่นี้ได้ผลการวิเคราะห์ตั้งตรงตามตาราง 28 และภาพ 49

ตาราง 28 ผลการหาความเข้มข้นของขั้นไฟฟ้าต่ำโดยวิธีการคัดสารมาตรฐาน

<table>
<thead>
<tr>
<th>ความเข้มข้นขั้นไฟฟ้าต่ำ (mg l⁻¹)</th>
<th>ความฐานของไฟฟ้า (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.86</td>
</tr>
<tr>
<td>1</td>
<td>6.70</td>
</tr>
<tr>
<td>1.5</td>
<td>8.36</td>
</tr>
<tr>
<td>2</td>
<td>9.53</td>
</tr>
<tr>
<td>2.5</td>
<td>10.96</td>
</tr>
<tr>
<td>3</td>
<td>12.86</td>
</tr>
<tr>
<td>3.5</td>
<td>14.36</td>
</tr>
<tr>
<td>4</td>
<td>16.53</td>
</tr>
</tbody>
</table>
ภาพ 49 กราฟการหาปริมาณซัลเฟตในน้ำหุ้มไม้คอง โดยวิธีการเติมสารมาตรฐาน

จากภาพ 49 ความเข้มข้นของซัลเฟตในน้ำหุ้มไม้คองที่ถูกแยกมาจากค่าเท่ากับ 1.30 มิลลิกรัมต่อลิตร ซึ่งเมื่อนำไปปรับด้วย dilution factor จากการเจือจางสารละลาย 1000 เท่า

พบว่ามีความเข้มข้น = 1.30×1000 มิลลิกรัมต่อลิตร

= 1300 มิลลิกรัมต่อลิตร

สรุปได้ว่า ความเข้มข้นของซัลเฟตในน้ำหุ้มไม้คองเท่ากับ 1300 มิลลิกรัมต่อลิตร
ภาชนะกข
ประวัติภูมิจักร
ประวัติผู้เขียน

ชื่อ-สกุล: นางสาวพรนภา พงษ์คง

เกิดเมื่อ: 12 ถุนายน พ.ศ. 2527

ประวัติการศึกษา:
- พ.ศ. 2545 มัธยมศึกษาตอนปลาย โรงเรียนดอนสะแกดวิทยาคม จังหวัดเชียงใหม่
- พ.ศ. 2549 ปริญญาตรี มหาวิทยาลัยราชภัฏเชียงใหม่ จังหวัดเชียงใหม่

การนำเสนอผลงานวิจัย:
- การประชุมวิชาการ International Symposium on Flow Based Analysis VII (ISBA-2007) ข้อหัวข้อ Preliminary investigation for the determination of sulphite in pickled foods based on gas diffusion flow injection with chemiluminescence detection ณ มหาวิทยาลัยเชียงใหม่ วันที่ 16-18 ธันวาคม 2550
- การประชุมวิชาการ The 15th International Conference on Flow Injection Analysis Including Related Techniques (ICFIA 2008) ข้อหัวข้อ Pervaporation flow injection chemiluminescence procedure for the determination of sulphite in pickled food using a sensitive potassium permanganate-rhodamine B detection system ณ เมือง Nagoya ประเทศญี่ปุ่น วันที่ 28 กันยายน – 3 ตุลาคม 2551
- การประชุมวิชาการวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วทท.) ครั้งที่ 34 ข้อหัวข้อ Comparison between gas diffusion and pervaporation procedures as on-line separation tools for the determination of sulphite in food by chemiluminescence flow injection analysis ณ ศูนย์ประชุมสิริกิติ์ กรุงเทพฯ วันที่ 31 ตุลาคม – 2 พฤศจิกายน 2551