ชื่อเรื่อง การควบคุมทรงพุ่มลำไขที่ปลูกระยะชิต โดยวิธีการตัดแต่งทรงต้น

ตัดรากและการใช้สารพาโคลบิวทราโซล

ชื่อผู้เขียน นายเฉลิมชัย แสงอรุณ

ชื่อปริญญา วิทยาศาสตรมหาบัณฑิต สาขาวิชาพืชสวน

ประธานกรรมการที่ปรึกษา อาจารย์ ตร.เสกสันต์ อุสสหตานนท์

บทคัดย่อ

การศึกษาการควบคุมทรงพุ่มลำไขพันธุ์อีดออาขุ 5 ปีที่ปลูกระชะชิด โดยวิธีการตัด แต่งทรงต้น ตัดราก และการใช้สารพาโคลบิวทราโซล ทำการทคลอง ณ สวนเกษตรกร ต. แม่แฝก อ. สันทราช จ. เชียงใหม่ ระหว่างเดือน กุมภาพันธ์ 2552 ถึงเคือน เมษาชน 2553 โดยแบ่งการศึกษา เป็น 2 การทดลองคือ

การทคลองที่ 1 ศึกษาการควบคุมทรงพุ่มของต้นลำไข โดยวิธีการตัดแต่งทรงต้น ร่วมกับการใช้สารพาโคลบิวทราโซล วางแผนการทตลองแบบ Factorial in CRD (Factorial in Completely Randomized Design) ประกอบด้วย 2 ปัจจัย คือ การตัดแต่ง 3 รูปทรง คือ ทรงครึ่ง วงกลม ทรงฝาชีหงายและทรงสี่เหลี่ยม ปัจจัยที่ 2 ความเข้มข้นของสารพาโคลบิวทราโซล 3 ระดับ คือ 0, 1,000 และ 2,000 มิลลิกรัมต่อลิตร และชักนำการออกคอกด้วยสาร โพแทสเซียมคลอเรตใน อัตรา 20 กรัมต่อตารางเมตรพื้นที่ใต้ทรงพุ่มในเคือนสิงหาคม ผลการทคลองพบว่าการตัดแต่งทุก รูปทรงมีเปอร์เซ็นต์การผลิใบ และขนาดของขอดใหม่ไม่แตกต่างกันทางสถิติ ขณะที่ต้นทรงฝาชี หงาย มีอัตราการเจริญด้านความกว้างสะสมของทรงพุ่มน้อยกว่ารูปทรงสี่เหลี่ยม แต่ทุกรูปทรงมี อัตราการเจริญด้านความสูงสะสมไม่แตกต่างกัน ต้นรูปทรงสี่เหลี่ยมมีเปอร์เซ็นต์การออกคอกน้อย กว่ารูปทรงอื่นๆ แต่จำนวนผลต่อช่อไม่แตกต่างกัน ทรงฝาชีหงายให้ผลผลิตต่อต้นต่ำกว่าทรงครึ่ง วงกลม และมีปริมาณคลอโรฟิลล์ในระยะใบชุดที่3แก่ และก่อนเก็บเกี่ยว และมีอัตราการสังเคราะห์ แสงต่ำกว่าทรงอื่นๆในระยะใบชุดที่ 3 แก่

การให้สารพาโคลบิวทราโซลไม่มีผลต่อเปอร์เซ็นต์การผลิใบ แต่มีผลทำให้ขนาด ของขอดใหม่ลดลงตามความเข้มข้นที่เพิ่มขึ้น ส่งผลให้อัตราการเจริญเติบโตด้านความกว้าง และ ความสูงสะสมของทรงพุ่มลดลงในระยะการออกดอกและก่อนการเก็บเกี่ยวผลผลิต โดยเฉพาะที่ ความเข้มข้น 2,000 มิลลิกรัมต่อลิตร สารพาโคลบิวทราโซลไม่มีผลต่อเปอร์เซ็นต์การออกดอกของ ลำไย แค่ที่ระดับความเข้มข้น 1,000 มิลลิกรัมต่อลิตร ช่อตอกมีความยาวเพิ่มขึ้น และที่ความเข้มข้น 2,000 มิลลิกรัมต่อลิตร จำนวนผลต่อช่อมากขึ้น และให้ผลผลิตมากกว่าต้นลำไยที่ไม่ได้สาร พาโคลบิวทราโซลความเข้มข้น 2,000 มิลลิกรัมต่อลิตร มีผลให้ปริมาณคลอโรฟิลล์สูงขึ้นในระยะ ใบชุตที่ 3 แก่ถึงระยะติตผล และการสังเคราะห์แสงสูงขึ้นจนถึงระยะก่อนเก็บเกี่ยว การใช้สารพา โคลบิวทราโซลไม่มีผลต่อค่าศักย์น้ำของใบ

การศึกษาครั้งนี้พบปฏิสัมพันธ์ ระหว่างรูปทรงการตัดแต่งต้นและการใช้สารพาโคลบิวทราโซล คือการตัดแต่งต้นรูปทรงสี่เหลี่ยมร่วมกับการใช้สารพาโคลบิวทราโซลความเข้ม เข้ม 2,000 มิลลิกรัมต่อลิตร มีเปอร์เซ็นต์ช่อตอกล้วนมากที่สุดคือ 76 % ขณะที่การตัดแต่งต้น รูปทรงครึ่งวงกลมเพียงอย่างเดียวมีช่อตอกล้วนน้อยสุดคือ 2 % และในระยะใบชุดที่ 3แก่ การตัด แต่งรูปทรงต่างๆร่วมกับการใช้สารพาโคลบิวทราโซลความเข้มข้น 2,000 มิลลิกรัมต่อลิตรมีผลทำ ให้กัดราการคายน้ำลดลง

การทคลองที่ 2 การศึกษาการควบคุมทรงพุ่มของค้นลำไข ด้วยวิธีการตัดแต่งทรงค้น ร่วมกับการตัตราก วางแผนการทคลองแบบ Factorial in CRD (Factorial in Completely Randomized Design) ประกอบด้วย 2 ปัจจัย คือ การตัดแต่งทรงค้น 3 รูปทรง คือ ทรงครึ่งวงกลม ทรงฝาชีหงายและทรง สี่เหลี่ยม ปัจจัยที่ 2 การตัดราก 3 ระดับ คือ ไม่ตัดราก ตัดรากจากปลายทรงพุ่มเข้าไป 15 เซนติเมตร และ 30 เซนติเมตร ต้นลำไขตัดแต่งรูปทรงฝาชีหงาย และรูปทรงสี่เหลี่ยมมีเปอร์เซ็นต์การผลิใบมากกว่า รูปทรงครึ่งวงกลม รูปทรงสี่เหลี่ยมมีอัตราการเจริญเติบโตด้านความกว้างทรงพุ่มสะสมมากกว่ารูปทรง ครึ่งวงกลม ทรงค้นไม่มีผลต่อเปอร์เซ็นต์การออกดอก ปริมาณผลผลิตต่อด้น และปริมาณของแข็งที่ ละลายน้ำได้ ส่วนการเปลี่ยนแปลงทางสรีรวิทยา พบว่าต้นรูปทรงครึ่งวงกลมมีปริมาณคลอโรฟิลล์ในใบ ใบสูงกว่าทรงสี่เหลี่ยมในระยะการออกดอก ส่วนในระยะอื่นๆ ทุกรูปทรงค้นมีปริมาณคลอโรฟิลล์ในใบ ไม่แตกต่างกัน ต้นลำไขที่ตัดแต่งรูปทรงสี่เหลี่ยมและทรงครึ่งวงกลมมีอัตราการสังเคราะห์แสงมากกว่า รูปทรงฝาชีหงายในระยะใบชุดที่ 3 แก่ และระยะหลังติดผล การตัดรากทำให้เปอร์เซ็นต์การผลิใบและ อัตราการเจริญด้านความกว้างสะสมของทรงพุ่มลังกลดง แต่ไม่มีผลต่องนาดของยอดใหม่ และปริมาณ ผลผลิตต่อด้น การตัดรากจากปลายทรงพุ่มเข้าไป 15 และ 30 เซนติเมตร มีปริมาณคลอโรฟิลล์ในใบ และอัตราการสังเคราะห์แสงลดลงในระยะใบชุดที่ 3 แก่ ถึงระยะติดผล

การตัดแต่งต้นทรงสี่เหลี่ยมร่วมกับการตัดรากทำให้ช่อดอกสั้นลง การตัดรากไม่มี ผลต่อค่า L (ความสว่าง) ของผลในต้นที่ตัดทรงครึ่งวงกลม การตัดรากถึกจากปลายทรงพุ่มเข้าไป 30 เซนติเมตร เพิ่มค่า L ในทรงฝาชีหงาย แต่ลดลงในทรงสี่เหลี่ยม การดัดรากลดการคายน้ำของต้น ในระยะหลังติดผล 12 สัปดาห์ในต้นที่ตัดทรงสี่เหลี่ยม และทรงครึ่งวงกลม แต่ไม่มีผลในต้นทรงฝาชีหงาย ในระยะใบชุดที่ 3 แก่การตัดราก 30 เซนติเมตร จากปลายทรงพุ่มเข้าไปลดค่าศักย์น้ำในใบ ของต้นลำไยทุกรูปทรงและการตัดลึก 15 เซนติเมตร ลดค่าศักย์น้ำของต้นทรงฝาชีหงายด้วย

Title

Controlling the canopy of high density planting

longan trees (Dimocarpus longan Lour.) by root

and shoot pruning and paclobutrazol application

Author

Mr. Chaloemchai Sangaroon

Degree of

Master of Science in Horticulture

Advisory Committee Chairperson

Dr. Sakesan Ussahatanonta

ABSTRACT

To control canopy size of 5 year old-high density planted longan trees c.v. E. daw, shoot and root pruning, and pacalobutrazol application were employed. The study was carried out in a farmer orchard in Maefaeg subdistrict, Chiang Mai province from February 2009 to April 2010, which was divided into 2 experiments, as follow:

Experiment 1: Study of canopy control of longan trecs was conducted by trees training and application of paclobutrazol in a 3×3 factorial in completely randomized design (CRD) experiment using 3 tree training shapes: half sphere (HS), flat canopy (FC) and cube shape (CS) with 3 folia spray of paclobutrazol at 0, 1,000 and 2,000 mg/L. Trees were induced to flowering by means of soil drenching with potassium ehlorate at 20 g/m² of canopy ground cover in August 2009. Results showed that canopy training shapes had no effect on the percentage of leaf flushing and new shoot size. However, FC trees had lower canopy width cumulative growth rate (CGR) than CS trees. Training shape was also found to have no effect on canopy height CGR but CS trees had the least flowering percentage although the number of fruits per panicle was not significantly different. FC trees gave lower yield per tree than HS trees. and also had lower leaf ehlorophyll content at the 3rd mature leaf flushing stage (3rd MLF) and before harvest, including lower photosynthetic rate at the 3rd MLF stage than other tree training shapes.

Application of paclobutrazol (PBZ) had no effect on the percentage of leaf flushing but the size of new shoot was reduced as concentration increased thus leading to a reduction in CGR of canopy width and height at flowering and before harvesting stage especially in higher concentration. PBZ had no effect on flowering percentage but application at 1.000 mg/L tended to extend inflorescence length and at 2,000 mg/L, fruit number per panicle was increased

and had higher yield per tree than the control. Moreover, PBZ at 2,000 mg/L showed to increase leaf chlorophyll content at the 3rd MLF stage to fruiting stage, and photosynthetic rate to preharvesting stage. Application of PBZ had no effect on leaf water potential.

Interaction between tree training shapes and PBZ application indicated that CS trees with 2,000 mg/L PBZ showed the highest percentage of all-flower panicles (76%), while HS trees with no PBZ application had the lowest (2%). At the 3rd MLF stage, PBZ at 2,000 mg/L showed reduction in transpiration rate in all training shape trees.

Experiment 2: Study of longan tree size control by canopy training and root pruning was conducted in an experimental design of 3×3 factorial in completely randomized design (CRD). The experiment included 3 tree training shapes of half sphere (HS), flat canopy (FC) and cube shape (CS) with 3 levels of root pruning (30 cm depth trench, no root pruning to 15 cm and 30 cm from the canopy edge inward). Results showed that FC and CS trees had higher percentage of leaf flushing than HS trees. CS trees had the highest CGR of the canopy width while FC and CS trees had higher CGR of canopy height than HS ones. Training shape had no effect on flowering percentage, yield per tree and total solid content of the fruits. For physiological characteristic, HS trees had higher leaf chlorophyll content than CS trees at flowering stage but no significant effect was observed in all training shapes at any other stages. CS and HS trees had higher photosynthetic rate than FC trees at the 3rd MLF and fruiting stage. Root pruning was shown to significantly reduced leaf flushing percentage and CGR of canopy width but had no effect on new shoot size and yield per tree. Leaf chlorophyll content and photosynthetic rate of root pruning to 15 and 30 cm from the canopy edge inward were decreased at the 3 rd MLF till fruiting stage.

Other results showed that root pruned-CS tree had shorter fluorescence but root pruning had no effect on "L" (lightness) values of longan fruit in HS tree. Root pruning to 30 cm tended to increase L value in FC trees but was reduced in CS trees. Root pruning was shown to reduce transpiration rate 12 weeks after fruiting stage in CS and HS trees but had no effect on FC trees at the 3rd MLF stage. Root pruning to 30 cm from the canopy edge inward was also observed to reduce leaf water potential in all shape trees while pruning to 15 cm was able to reduce leaf water potential in FC trees too.