ผลของการศึกษาวิจัยที่มีบุคคลภาพของกิจยศเดิมแล้วแต่ละแห่ง
ในระหว่างการเก็บรักษา

ถ้าใน วรวิทยา

วิชานิพนธ์นี้เป็นส่วนหนึ่งของงานสมบูรณ์ของการศึกษาตามหลักสูตร
ปริญญาตรี สาขาวิชาคอมพิวเตอร์ศิลป์ มหาวิทยาลัยแม่โจ้

พ.ศ. 2555

ลิขสิทธิ์ของมหาวิทยาลัยแม่โจ้
ใบรับรองวิทยานิพนธ์
สำนักบริหารและพัฒนาวิชาการ มหาวิทยาลัยนเรศวร
ปริญญามหาบัณฑิต สาขาวิชาเทคโนโลยีทางการ

ชื่อเรื่อง
ผลของรังสีกัลวิโอเลตที่มีผลต่อความทรมานของกลุ่มย่อยมันสัณฐาน

ในระหว่างการเกิดรักษา

โดย
ศิริธร วรรณทริกก์

พิจารณาเห็นชอบโดย

ประธานกรรมการที่ปรึกษา

(ผู้ช่วยศาสตราจารย์ดร.สุรชัย พิมพ์ไชย)
วันที่: 25 ตุลาคม พ.ศ. 2585

กรรมการที่ปรึกษา

(ผู้ช่วยศาสตราจารย์ ดร.ธารนิตย์ ตังค์ศัณห์)
วันที่: 27 ตุลาคม พ.ศ. 2585

กรรมการที่ปรึกษา

(ผู้ช่วยศาสตราจารย์ ดร.นฤณิต วาทะรัตน์)
วันที่: 17 ตุลาคม พ.ศ. 2585

ประธานกรรมการประจำสภากิจการ

(อาจารย์ดร.ปรีชา ฟานไทช์)
วันที่: 24 พฤศจิกายน พ.ศ. 2585

อนันท์วิทยานิพนธ์และพัฒนาวิชาการร่วมผลักดัน

(ผู้ช่วยศาสตราจารย์ ดร.ชัยวัฒน์ ศรีกิจ)
ประธานกรรมการบัณฑิตศึกษา
วันที่: 27 ตุลาคม พ.ศ. 2585

อนันท์วิทยานิพนธ์และพัฒนาวิชาการร่วมผลักดัน
ก้าวต่อมาสืบเนื่องเป็นผลิตภัณฑ์ที่ออกจากการวิจัยหรือการปรับเปลี่ยนที่ได้จากการ
กระบวนการสืบาน วิธีวิจัยมีความชัดเจนและสามารถนำไปใช้ได้สำหรับสิ่งที่ต้องการที่จะใช้
และมีความเป็นไปได้ ซึ่งมีข้อสำคัญในการสร้างให้เกิดขึ้น หรือมีการสืบเนื่องได้ทุกขั้นตอนของการเป็นของใช้สุขภาพที่จะส่งผลต่อ
ซึ่งจากการศึกษาเบื้องต้นพบว่าสามารถเกิดขึ้นได้ต่อมาสืบเนื่องที่ชุ่มชื้นยังคงได้เพียง 2 วันเท่านั้น
อย่างไรก็ตามตามที่โดยไม่ใช้ขอสืบเนื่องไปเลยที่สามารถผลิตได้มีผลต่อสุขภาพผลิตภัณฑ์อย่างมีนัยสำคัญสูง
t (p<0.05) โดยการใช้เป็นผลิตภัณฑ์ที่ความยาวถึง 254 นาโนเมตร ขนาด 15 วัสดุ จำนวน 8
ผลิตเป็นเวลา 2 นาที สามารถผลิตมาซึ่งเป็นแบคทีเรีย ชีส และไม่เกิดคีสใน oper หรือสารละลายได้ 1.25
และ 1.76 log cycles ตามลำดับ รังสีอินfrared ของผลิตภัณฑ์ที่เกิดผลิตภัณฑ์สัตว์
ธาตุบางอย่างที่มีนัยสำคัญมากที่สุด ทำให้เกิดการเกิดผลิตภัณฑ์ในกระบวนการสืบานที่สัมพันธ์รูป
และขออินfrared ได้ที่สูง ในกระบวนการผลิตภัณฑ์ไวอ้อนที่เกิดขึ้นส่วนคลาสเช่นคือจำนวนที่
อยู่มากที่ 15 25 และ 35 องศาเซลเซียส จนกระทั่งเกิดการสืบเนื่องเพิ่มขึ้น พบว่าชิมคลอปที่เก็บรักษา
เป็นปริมาณสัมพันธ์ที่มีผลต่อสุขภาพผลิตภัณฑ์ by สารเก็บเกี่ยวกับผลิตภัณฑ์สัตว์ได้ 7.4 และ 3 วัน
ตามลำดับ ที่นี้ความชัดเจนของผลิตภัณฑ์ไวอ้อนที่ส่งผลต่อสุขภาพถ้าได้รับการที่ใช้มีผลต่อความ
เป็นกระดูก และปริมาณผลิตภัณฑ์ที่มีผลต่อการเกิดผลิตภัณฑ์ (p<0.05) นอกจากนี้ยังมีผลกระทบทาง
การเก็บรักษาช่วง กล่าวถึงสัมพันธ์ของความเป็นเชื้อ (L.) เพื่อเพิ่มขึ้น (p<0.05) เนื่องจากเกิดการไฟ
กระแสช่องของเป็นขึ้นที่เป็นสิ่งดีรูป ผลการเก็บเกี่ยวกับผลิตภัณฑ์ไวอ้อน นั้นดังเจตนารมย์ในการเก็บรักษาเพิ่มขึ้น จนจนกระทั่งมีการใช้ผลิตภัณฑ์ชีส และจะขยายการ
เก็บรักษาเพิ่มขึ้น จะพบเกิดการเกิดผลิตภัณฑ์ชีส และราวการ
ประสานใช้ผลิตภัณฑ์ไวอ้อนความสุขๆการเก็บรักษาที่สัมพันธ์ที่เกิดขึ้นส่วนที่จะช่วยให้เกิดการเก็บรักษาเพิ่มขึ้นสืบเนื่องได้ อย่างไรก็ตามควา...
ถ้าความเนื้อสัมพันธ์และการยอมรับทางประสาทสัมผัสไม่แตกต่างจากชุดควบคุม (p>0.05) โดยทั่วไปทำให้ผลลัพธ์ที่เก็บไว้จำนวนกลุ่มหนึ่ง 25 องศาเซลเซียส มีความหนาของและผิวมันที่สูง
ABSTRACT

Fresh noodle is a product from broken rice or broken milled rice with high moisture content and water activity but low acidity. Thus it can only be stored for a shorter time or can be easily spoiled due to microbial contamination. In the initial study, fresh noodles could be stored in 2 days in room temperature. However, ultraviolet radiation technology was found to reduce microbial load in the fresh noodle. In this study, application of UV on the fresh noodle surface was assigned in different intensities and exposure times. Results showed that both factors significantly affected the product quality of noodle (p≤0.05) with best reduction of total viable count, yeast and mold count at approximately 2.5 and 1.76 log cycles, respectively, under the highest UV intensity (8 lamps of 254 nm in 5 watt each) and maximum exposure time (120 sec.). Ultraviolet radiation was found to directly affect the DNA of microorganism resulting in protein denaturation of cell surface leading to cell mutation and eventual death. In the application of UV to fresh noodle with varying storage temperatures (15, 25 and 35 °C) until spoilage, results showed that storage temperature was an important factor that enabled fresh noodle to be stored at 7, 4 and 3 days respectively, but UV intensity and storage temperatures had non-significant effect on specific noodle qualities: pH and total acidity as lactic acid (p>0.05). In addition, when storage time was increased, fresh noodle obtained higher lightness (L*) (p≤0.05) due to retrogradation of rice starch. Aside from this, when storage temperature and storage time were increased, the number of bacteria, yeast and mold were also found to be increasing (p≤0.05). Application of UV with cold storage temperature was also found to extend shelf-life of fresh noodle. However, sensory evaluation of fresh noodle applied with UV indicated that the overall acceptance was not significantly different from the control (p>0.05) with fresh noodle sample stored at 25°C found to be the most elastic and softest.
อัครกรรมประกาศ

ข้าพเจ้าขอขอบพระคุณ ผู้ช่วยศาสตราจารย์ ดร. ภูชาติ พิมพ์พีซ ประธานกรรมการที่ปรึกษา ที่ได้กรุณาให้ความรู้ คำปรึกษาและคำแนะนำในการจัดทำเรื่องรัฐมนตรี ตลอดจนให้ความเอาใจใส่และให้ความสนับสนุนรวมถึงช่วยตรวจสอบได้ที่จัดทำเรื่องรัฐมนตรีให้สมบูรณ์
ขอขอบพระคุณผู้ช่วยศาสตราจารย์ ดร. ราชวิทย์ จิตติพงษ์ ผู้ช่วยศาสตราจารย์ ดร. จันทพร วราธิค กรรมการที่ปรึกษา และผู้ช่วยศาสตราจารย์ ดร. ศิริญา ศรีวัฒนา ประธานกรรมการในการจัดทำเรื่องรัฐมนตรีที่ได้ให้คำปรึกษาและคำแนะนำในการจัดทำเรื่อง ตลอดจนช่วยตรวจสอบได้ให้สมบูรณ์มากยิ่งขึ้น
ขอขอบคุณสำนักงานวิชาการในเวลาที่มีอาจารย์ อาจารย์ธาราวุธและคุณที่มีความสามารถเก่งกาล่าทางการที่ปรึกษาและเห็นใจสิ่งเสียบุญลางที่ให้ไว้และที่ทางที่เล่าด้วยอัธิการที่เรียนใหม่ที่ได้สนับสนุนวัตถุประสงค์ ตลอดจนความร่วมมือในการประมุขคุณภาพติดตั้งและขอขอบคุณสำนักงาน กองทุนสนับสนุนการวิจัย ทุนวิจัยมหาวิทยาลัย สถาบัน สำนักวิทยาศาสตร์และเทคโนโลยี มาและโครงการสร้างรัฐบาลเพื่อพัฒนาคุณภาพสุคนธ์ (สถาบัน-มหาวิทยาลัย สถาบัน-มหาวิทยาลัย) ประจำปี 2550 ในกรณีสนับสนุนงบประมาณวิจัยเป็นอุปกรณ์ทุน สำนักงานกองทุนสนับสนุนการวิจัยไม่จำเป็นต้องมีค่าใช้จ่ายใดๆ
ขอขอบคุณสำนักงานพระคุณ ธุนภัทรินิค ทุนแม่เก่าน วรมนกินทร์ ที่ได้ส่งเสริมสนับสนุนให้ความช่วยเหลือที่พิเศษเสมอมา

ศุภชัย วรรณภูธนัย
อุบลราชธานี 2555
สารบัญ

บทคัดย่อ (3)
ABSTRACT (5)
กิตติกรรมประกาศ (6)
สารบัญ (7)
สารบัญตาราง (9)
สารบัญภาพ (13)
สารบัญภาพแนวนอน (14)
บทที่ 1 บทนำ 1
ความสำคัญของปัญหา 1
วัตถุประสงค์ของการวิจัย 2
ประโยชน์ที่คาดว่าจะได้รับ 2
บทที่ 2 การตรวจสอบข้อ 3
ข้อ 3
องค์ประกอบทางทฤษฎีของข้อ 3
ควรผลกระทบของรูปธรรม 10
กระบวนการผลิตเป็นข้อ 11
การตรวจสอบข้อสมมติของปัจจัยข้อ 15
ประโยชน์ของปัจจัยข้อ 16
ท้ายที่ 1 17
วัตถุประสงค์ที่ใช้ในการผลิตตัวต้นแบบ 18
การวิเคราะห์การผลิตตัวต้นแบบ 19
สรุปในทางสถิติของข้อที่มีต่อการก่อตัวของรูปเป็นข้อ 22
ปัจจัยที่มีผลต่อการเข้าสู่ของการล่วงเวลา 23
คุณภาพของการเข้าสู่ของการล่วงเวลา 25
เรื่องอื่นๆ 26
สิ่งที่เกิดขึ้นกับผลประหยัดในภายหลังของชุดที่มีต่อการเติบโตของรูปเป็นข้อ 27
กลไกการยืดหยุ่นของรูปเป็นข้อต่อไปอีก 28
<table>
<thead>
<tr>
<th>ตรง</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 องค์ประกอบภายในผลิตภัณฑ์</td>
<td>12</td>
</tr>
<tr>
<td>ความหมายของลักษณะและเพิ่มเติมที่ต่างๆ ในเชิงคุณภาพทางกายภาพจากการทำ</td>
<td>31</td>
</tr>
<tr>
<td>texture profile analysis และในเชิงคุณภาพทางระบบการทำงาน</td>
<td>39</td>
</tr>
<tr>
<td>องค์ประกอบพื้นฐานทางเทคนิคของผู้ผลิต</td>
<td>41</td>
</tr>
<tr>
<td>ปริมาณความชื้นของแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td>42</td>
</tr>
<tr>
<td>ปริมาณน้ำที่ระเหยของแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td>44</td>
</tr>
<tr>
<td>ความเป็นกรด-เบสของแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td>45</td>
</tr>
<tr>
<td>ปริมาณการตัดทับมากที่เกิดขึ้นในแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td>47</td>
</tr>
<tr>
<td>ความสัมพันธ์ระหว่าง (L*) ของแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td>48</td>
</tr>
<tr>
<td>ความเป็นอม 접แสงของ (a*) ของแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td>49</td>
</tr>
<tr>
<td>ความเป็นอมเฉียงของ (b*) ของแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td>51</td>
</tr>
<tr>
<td>การทดลองด้วยวิธีแบบตัวแทนที่เรียกว่าดินะโมด (log cycles) ของแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td>52</td>
</tr>
<tr>
<td>ปริมาณน้ำที่ระเหยของ (log cycles) ของแก้วน้ำเต้าสีต่างๆที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและระยะเวลาต่างๆ</td>
<td></td>
</tr>
</tbody>
</table>
ตาราง

14 การเปลี่ยนแปลงปริมาณความชื้นของต้นต่วยและสับสนที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเก็บรักษาต่างๆ

15 การเปลี่ยนแปลงค่าความเป็นกรด-เบสของต้นต่วยและสับสนที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเก็บรักษาต่างๆ

16 การเปลี่ยนแปลงค่าความเป็นกรด-เบสของต้นต่วยและสับสนที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเก็บรักษาต่างๆ

17 การเปลี่ยนแปลงค่าความยาว (L*) ของต้นต่วยและสับสนที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเก็บรักษาต่างๆ

18 การเปลี่ยนแปลงค่าความเป็นสีแห้ง-เขียว (a*) ของต้นต่วยและสับสนที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเก็บรักษาต่างๆ

19 การเปลี่ยนแปลงค่าความเป็นสีแดง-แม่เงิน (b*) ของต้นต่วยและสับสนที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเก็บรักษาต่างๆ

20 ปริมาณเบ็ดที่เกิดขึ้นสูงที่พบในต้นต่วยและสับสนที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเก็บรักษาต่างๆ

21 ปริมาณเบ็ดที่เกิดขึ้นสูงที่พบในต้นต่วยและสับสนที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความชื้นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเก็บรักษาต่างๆ
ตาราง

22 ค่าน้ำรั่ว (cutting) ของก๊าวยืดเยื้อสัมผันรั่วสิทธิ์ในการไล่ดัเทาความเชื่อมและเก็บรักษาในอายุหมู่ 15, 25 และ 35 องศาเซลเซียส ที่ระยะทางการเก็บรักษา ต่างๆ หลังจาก

78

23 ค่าน้ำรั่ว (cutting) ของก๊าวยืดเยื้อสัมผันรั่วสิทธิ์ในการไล่ดัเทาความเชื่อมและเก็บรักษาในอายุหมู่ 15, 25 และ 35 องศาเซลเซียส ที่ระยะทางการเก็บรักษา ต่างๆ หลังจาก

80

24 ค่าความแข็ง (hardness) ของก๊าวยืดเยื้อสัมผันรั่วสิทธิ์ในการไล่ดัเทาความเชื่อมและเก็บรักษาในอายุหมู่ 15, 25 และ 35 องศาเซลเซียส ที่ระยะทางการเก็บรักษาต่างๆ

82

25 ค่าความแข็ง (hardness) ของก๊าวยืดเยื้อสัมผันรั่วสิทธิ์ในการไล่ดัเทาความเชื่อมและเก็บรักษาในอายุหมู่ 15, 25 และ 35 องศาเซลเซียส ที่ระยะทางการเก็บรักษาต่างๆ หลังจาก

84

26 ค่าความเหนียวสัมผัน (stickiness) ของก๊าวยืดเยื้อสัมผันรั่วสิทธิ์ในการไล่ดัเทาความเชื่อมและเก็บรักษาในอายุหมู่ 15, 25 และ 35 องศาเซลเซียส ที่ระยะทางการเก็บรักษาต่างๆ หลังจาก

87

27 ค่าความเหนียวติดกัน (stickiness) ของก๊าวยืดเยื้อสัมผันรั่วสิทธิ์ในการไล่ดัเทาความเชื่อมและเก็บรักษาในอายุหมู่ 15, 25 และ 35 องศาเซลเซียส ที่ระยะทางการเก็บรักษาต่างๆ หลังจาก

89

28 ค่าความมันสุขในภาวะมัลติฟิวสูญ (adhesiveness) ของก๊าวยืดเยื้อสัมผันรั่วสิทธิ์ในการไล่ดัเทาความเชื่อมและเก็บรักษาในอายุหมู่ 15, 25 และ 35 องศาเซลเซียส ที่ระยะทางการเก็บรักษาต่างๆ หลังจาก

91

29 ค่าความสามารถในการกัดคัดมัลติฟิวสูญ (adhesiveness) ของก๊าวยืดเยื้อสัมผันรั่วสิทธิ์ในการไล่ดัเทาความเชื่อมและเก็บรักษาในอายุหมู่ 15, 25 และ 35 องศาเซลเซียส ที่ระยะทางการเก็บรักษาต่างๆ หลังจาก

93
ตาราง

30 ค่าความสามารถรวมด้านกัน (cohesiveness) ของแกวเผือกสีน้ำสดที่ผ่านรังสีออทรอไฟโลลด้วยระดับความเข้มแต่เก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ ก่อนอาหาร

31 ค่าความสามารถรวมด้านกัน (cohesiveness) ของแกวเผือกสีน้ำสดที่ผ่านรังสีออทรอไฟโลลด้วยระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ หลังอาหาร

32 ค่าความหดตัวเหยื่อ (Springiness) ของแกวเผือกสีน้ำสดที่ผ่านรังสีออทรอไฟโลลด้วยระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ ก่อนอาหาร

33 ค่าความหดตัวเหยื่อ (Springiness) ของแกวเผือกสีน้ำสดที่ผ่านรังสีออทรอไฟโลลด้วยระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ หลังอาหาร

34 ค่าความเหนียวเป็นยาง (gumminess) ของแกวเผือกสีน้ำสดที่ผ่านรังสีออทรอไฟโลลด้วยระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ ก่อนอาหาร

35 ค่าความเหนียวเป็นยาง (gumminess) ของแกวเผือกสีน้ำสดที่ผ่านรังสีออทรอไฟโลลด้วยระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ หลังอาหาร

36 ค่าความหยิ่นต่อการเคี้ยว (chewiness) ของแกวเผือกสีน้ำสดที่ผ่านรังสีออทรอไฟโลลด้วยระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ ก่อนอาหาร

37 ค่าความหยิ่นต่อการเคี้ยว (chewiness) ของแกวเผือกสีน้ำสดที่ผ่านรังสีออทรอไฟโลลด้วยระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ หลังอาหาร
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>โครงสร้างของอะมิโนแอส</td>
</tr>
<tr>
<td>2</td>
<td>โครงสร้างอะมิโนแอสติดตัว</td>
</tr>
<tr>
<td>3</td>
<td>การแยกกิจกรรม 3 แบบของอะมิโนแอสติดตัว</td>
</tr>
<tr>
<td>4</td>
<td>แผนภาพกระบวนการผลิตเปปไทด์น้ำลายจำานวนจำกัด</td>
</tr>
<tr>
<td>5</td>
<td>ผลิตภัณฑ์จากน้ำลาย</td>
</tr>
<tr>
<td>6</td>
<td>แผนผังการศึกษาการเก็บรักษาการผลิตเปปไทด์สำเร็จรูป</td>
</tr>
</tbody>
</table>
สารบัญภาพหน้า

ภาพหน้า หน้า
1 ก้าวเดินแสบสีน้ำตาล 123
2 คู่แคะเลกซิปิสและภายนอกผนังห้องคัดกรองไวโอเลต (Ultraviolet Chamber) 123
3 หลอดเรืองแสงไวโอเลต (Sylvania, 254 nm, 15 วัตต์) 124
4 แบบฟอร์มการประเมินผลกระทบทางประสิทธิภาพของก้าวเดินแสบสีน้ำตาลและไม้ผ่านการดูดในน้ำฟลูท็อค 138
บทที่ 1
บทนำ

ความสำคัญของปีทนา

ประเทศไทยมีการปลูกและบริโภคข้าวเป็นจำนวนมาก ข้าวเจ้า หรือ *Oryza sativa* L. สามารถนำมาปรุงเป็นอาหารได้หลากหลายชนิด ซึ่งรวมถึงข้าวผัดต้มข้าวต่าง ๆ เส้นที่กินจับกับผัก เช่นข้าวที่ใช้ในกระบวนการผลิตประเภทข้าวเจ้าหรือข้าวกระดูกข้าวที่ไม่มีหมวดการบริโภคโดยตรง มีปริมาณและมีประโยชน์บางอย่างที่แตกต่างกัน และมีความสุขทางสุขภาพที่สำคัญของประเทศไทยที่ข้าวกระดูกของเหล่านี้เกิดจากการปลูกและนำไปให้กลิ่นกลิ่นกัน อาหารที่เป็นทางเลือกหนึ่งให้กับผู้บริโภคได้หลายเดือน ได้จากข้าวต้มข้าวคนต่าง ๆ ที่มีทั่วไปตามท้องถิ่นต่าง ๆ ในการผลิตข้าวต้มข้าวอาหารที่อบอุ่น โดยเริ่มจากนำไปประกอบข้าวเจ้าที่นิยมมากและนำไปใช้กับสูตร เมื่อเป็นสูตรนี้แล้วจะเกิดเป็นสินค้าบางประเภทที่เรียกว่าข้าวแกงเดียว แต่ก็ไม่ได้ใช้คำว่าข้าวผัดต้มข้าวเป็นคำนำเริ่มต้นของสูตรใหม่ ต้องคำนึงถึงข้าวต้มข้าวภาษาที่มีความสุขทางสุขภาพที่มีประโยชน์ที่สูงและเส้นก้าวเดียวกันไม่สัมพันธ์กับข้าวผัดต้มข้าวที่มีประโยชน์ต่อกำไวย่อยมากอย่างรวดเร็ว ซึ่งส่งผลให้คุณภาพไตรภูมิค่อนข้าง

ปัจจุบันมีผู้ประกอบอาชีพข้าว ที่เดินทางจากสีของข้าวต้มข้าวและข้าวต้มข้าว ได้รับผลกระทบจากวัตถุประสงค์การปรุงอาหารที่ได้รับความแพร่หลายไปทุกที่ 대하여ผู้พิการเป็นมันต่ำน้ำมันเนื้อสันในอัลตราไวโอเลท (Ultraviolet, UV) ในการผลิตปิ้งข้าวมีคุณลักษณะที่มีความสุขทางสุขภาพให้โดยการปรุงข้าวต้มข้าว เป็นทางเลือกในการลดจำนวนของข้าวเจ้าหรือที่มีผิวสีของข้าวต้มข้าวได้ในปริมาณวัตถุที่เป็นไปตามที่ทำกินน้ำมันที่ข้าวต้มข้าวของผู้เชี่ยวชาญ

การใช้รังสีเอกซ์เรย์โอกาส เป็นทางเลือกหนึ่งในการลดจำนวนของข้าวเจ้าหรือที่มีผิวสีของข้าวต้มข้าวได้ในปริมาณวัตถุที่เป็นไปตามที่ทำกินน้ำมันที่ข้าวต้มข้าวของผู้เชี่ยวชาญ
ดังนั้นเพื่อให้ผู้บริโภคได้รับผลลัพธ์ที่มีคุณภาพ และปลอดภัยจากการปรับเปลี่ยนของข้อหุ้นทรัพย์และวัสดุกันเสียที่เก็บไว้ตามฐานะ จึงได้มีการศึกษาด้านรังสีอิเล็กทรอนิกซ์ให้ความหมายสืบสานกันมา มายุคยุคถึงยุคใหม่ในการประกอบการผลิตสิ่งส่วนต่างกันกับการจัดการเงินทุน และการจัดการทรัพย์สินที่มีค่า ยุคการผลิตสิ่งส่วนต่างกันกับการจัดการเงินทุน และการจัดการทรัพย์สินที่มีค่า

วัตถุประสงค์ของการวิจัย

1. เพื่อศึกษาถึงการประกอบพื้นฐานทางคณิตของวัตถุประสงค์ในการจัดการทรัพยากรและระยะเวลาการทำธุรกิจที่มีค่า ยุคการผลิตสิ่งส่วนต่างกันกับการจัดการเงินทุน และการจัดการทรัพย์สินที่มีค่า

2. เพื่อศึกษาถึงการจัดการทรัพยากรและระยะเวลาการทำธุรกิจที่มีค่า ยุคการผลิตสิ่งส่วนต่างกันกับการจัดการเงินทุน และการจัดการทรัพย์สินที่มีค่า

3. เพื่อศึกษาถึงการจัดการทรัพยากรและระยะเวลาการทำธุรกิจที่มีค่า ยุคการผลิตสิ่งส่วนต่างกันกับการจัดการเงินทุน และการจัดการทรัพย์สินที่มีค่า

ประโยชน์ที่คาดว่าจะได้รับ

1. การประยุกต์ใช้รังสีอิเล็กทรอนิกซ์ในการแสดงความสามารถด้านการจัดการทรัพยากรและระยะเวลาการทำธุรกิจที่มีค่า ยุคการผลิตสิ่งส่วนต่างกันกับการจัดการเงินทุน และการจัดการทรัพย์สินที่มีค่า

2. สามารถนำความรู้และเทคโนโลยีที่ได้ไปพัฒนาและประยุกต์ใช้กับการผลิตสิ่งส่วนต่างกันกับการจัดการเงินทุน และการจัดการทรัพย์สินที่มีค่า

3. สามารถลดต้นทุนสิ่งที่เกิดจากการดำเนินการกันในด้านที่เก็บของสิ่งส่วนต่างกันกับการจัดการเงินทุน และการจัดการทรัพย์สินที่มีค่า
บทที่ 2
การตรวจสอบสาร

ข้าว

ข้าวหมายถึง เมล็ดของพืชกรามเล็กในวงศ์ Gramineae ใช้เป็นอาหาร นิยมปลูกในประเทศรวม 2 กลุ่มใหญ่ คือ ข้าวตื้น และข้าวเหนียว ส่วนกว่า ข้าว (เหนียว) หรือ ข้าว
(เหนียว) หมายถึง ข้าวปลีก คาว่า ข้าวเหนียว หมายถึง ความมีเดือดข้าวต่างๆ เช่น ข้าวปลีก ข้าวสาลี คาว่า ข้าวเหนียว หมายถึง อาหาร คือข้าวและคาว่า ข้าวเหนียว หมายถึง พืชข้าวต่างๆ ดังนั้นข้าวใน
หมายถึงเมล็ดของข้าวเหนียว หรือข้าวปลีก เป็นข้าวกรามเล็กที่ได้มาจากข้าวเหนียว เมื่อผ่านการ
ประกอบอาหาร เรียกว่า ข้าวเหนียว หรือก็คือได้จากเมล็ดข้าวเหนียว ซึ่งได้มาจากเมล็ดของ
ข้าวกรามเล็กที่อยู่ในวงศ์กาแมเนส (Gramineae) นี้ ดังนั้นไม่ได้มาจากพืช ที่ปลูกที่มีอยู่เพียงหนึ่งในปี
(annual grass) ไว้ไซเดินเป็นถิ่นเดียว (monocotyledon) วิธีทางเป็นระบบที่มีดื้อ fibrous root
system) สามารถเจริญเติบโตได้ในที่ใกล้เคียงประเทศและภูมิภูมิภูมิที่ตั้งอยู่ในท้องถิ่น
(tropical zone) และเขตสกุญชี (temperate zone) มีเดือดที่น่าจะรู้จักไปเมื่อที่สูงกว่าไทยใน
จึงทำให้เกิดความหลากหลายของข้าวชนิดต่างๆ ที่จะกระจายไปทั่วโลก อย่างไรก็ตามพบว่ามี
เพียง 2 ชนิด ที่มีอยู่ปลูกเพื่อการบริโภค หรือเรียกว่า ข้าวปลูก (cultivated rice) ได้แก่ ข้าวเหนียว
(Oryza sativa Linn.) และข้าวเหนียวดำ (Oryza glaberrima Steud.) นอกจากนี้อาจข้าวปลูกดังกล่าว
แล้วข้าวที่ปลูกประมาณ 21 ชนิด จัดเป็นกลุ่มของข้าวขาว (wild rice) (รอบวง, 2550)

องค์ประกอบทางเคมีของข้าว

องค์ประกอบทางเคมีของข้าวมีผลมาจากพันธุ์ สารอาหารในกลุ่ม การเตรียม และ
กระบวนการชงและประกอบกลุ่มปลูกเป็นข้าวต่างกันและข้าวสาร การวิเคราะห์องค์ประกอบทางเคมี
โดยทั่วไป ใช้วิธีวิเคราะห์ปริมาณขององค์ประกอบกับการวัดทางเคมีโดยประมาณ (proximate
analysis) เพื่อให้ทราบองค์ประกอบทางเคมี หรือสารอาหารหลักที่มีในข้าว ซึ่งได้แก่ กรดไขมัน
โปรตีน น้ำตาล ไขมัน บาห์ร โปรตีน และน้ำหนักความ เช่น นิยมคัดคัดของข้าวที่ใช้ในกลุ่ม
ข้าวปลีก ข้าวเหนียว และข้าวขาวโดยมีกรดไขมันเป็นองค์ประกอบหลัก สารอาหาร
ประกอบด้วยย่อยได้ และจะมีโปรตีนในสัดส่วนมากกว่า กับข้าวเหนียวของข้าว ที่ให้ข้าวมี
ลักษณะในการหุง และกลิ่นหอมค่อนข้างก็ไป มีผลต่อคุณค่าทางอาหาร เมื่อจากเป็นแหล่งสวม
หลังจากสิ่งปฏิสนิทในช่วงต้นมันก็เป็นของอาหารโปรตีนหลัก ซึ่งจะช่วยในการเจริญเติบโตของผู้บริโภคในประเทศที่บริโภคคาร์บอย่างมากหลัก ส่วนนี้ยังมีในช่วงต้นเป็นกลุ่มไบนิมีที่มีรูปตรง (lipid bodies) หรือกลุ่มย่อย (spherosomes) โดยอุ่นร่วมกับเม็ดสารขาว และโปรดในด้านผลิตภัณฑ์และสินค้า ที่มีเนื้อมันจะมีผลในการเสื่อมเม็ดคาร์บอย่างมาก รวมทั้งเม็ดพืชปรุงเป็นผลิตภัณฑ์ต่างๆ นอกจากนี้ยังมีความชื้นมีผลต่อสุขภาพไม่ดีในด้านการเก็บรักษาของแกลงกัน (บรรณวิทย, 2550) สำหรับขอบเขตของผลต่อสุขภาพของมันดังกล่าว มีต้องติดต่อไป

1. สาระในนครศรีดิน

สาระเป็นการใส่ไตรตรองพระพุทธศาสนาที่พุ่มพุ่มที่สุดในเนื้อสมองของข้าว (ประมาณ 90 เปรียบเทียบ) ซึ่งมีผลต่อสุขภาพของข้าวมากที่สุด โดยในกลุ่มของสาระที่รวมตัวกันเป็นเม็ดสารขาว (starch granule) มีขนาด 3-5 ไมครอน ปุ่มแปลงลักษณะเป็นเหนียว หลายชั้น รวมตัวกันอยู่ภายในมีโหนดเวลา หรือกลุ่มของเนื้อเม็ดคาร์บอย่างงาน 20-60 มิลลิเมตร สาระเป็นกลุ่มถูกแยกหรืออาจใช้ ขนาดแย่ตามค่าสุทธิของกลุ่มเม็ดสารขาวในมะละกอในธรรมชาติประมาณ 7.39 ในธรรมชาติ (Champagne, 1990 อ้างโดย บรรณวิทย, 2550)

การสกัดสาระออกจากกลีบดีข้าว มันใช้การกระหนดด้วยน้ำ หรือสารละลายเบสที่มีสารประกอบโปรตีนและซอตอที่ไม่มีเม็ดสารขาวเสี้ยงในเนื้อข้าว เมื่อแยกสาระออกจากสารของน้ำแล้ว ทำให้เกิด แล้วเกิดให้ละเอียด ที่จะให้สาระจากข้าว ทั้งนี้จะมีกรด ทางเดียวที่มีสิทธิ์ต่อกันในเนื้อสารของข้าวที่เป็นสารสาร์ เช่น ความสามารถในการจับกันของสาระของสารขาวจะมีมากกว่าสารขาวผู้หนายในเรื่องที่มีปริมาณนิยมไทยในสาระขาวมากกว่า สาระขาวผู้หนายมีช่วงต่างกับสาระขาวผู้หนายนอกจากนี้สาระขาวผู้หนายจะยังคงการทำงานของสาระขาวผู้หนายและสารสาร์สาระขาวผู้หนายสามารถทำได้เฉพาะข้าวขาวผู้หนาย (Juliano, 1985)

ผลของสารขาวดำกระตออไปด้วยผลิตภัณฑ์ของกลีบใบร้อง 2 ลักษณะคือ อะซิโลและอะซิโลฟลูริน ซึ่งในกลุ่มที่จะมีชั้นเดิมมากนั้นเป็นเม็ดสารขาว โดยมีโครงสร้างลักษณะเป็นสาร์ผู้จากตกต่ำลงมาและผู้รุ่นของไกลบตาม

1.1 อะซิโล เป็นผลิตภัณฑ์ชิ้นส่วน (linear chains) ที่ประกอบด้วยกลีบใบร้องประมาณ 2,000 หน่วยเชิงต่อต่อกันพื้นผิวของไกลบ (glucosidic linkage) ขั้นต่อกันซ่อน 1,4 (α - 1, 4) ด้านใน 1 ส่วนเป็นชั้นชิ้นส่วนเช่น เป็นชั้นใบร้อง แบ่งภูมิ แบ่งชั้นใบร้อง มีปริมาณ อะซิโล อยู่ประมาณ 28% เมื่อจัดการที่จะแบ่ง ซึ่งเป็นน้ำสำหรับลงถึงแบ่งชั้นใบร้อง มีปริมาณอะซิโลต่อประมาณ 20% เป็นชั้นที่มีปริมาณอะซิโลประมาณ 17% และแบ่งชั้นใบร้อง
(waxy starch) ไม่มีวัตถุประสงค์ ซึ่งจะมีไกในเป็นแต่ละชนิดจะมีน้ำหนักถึงในกลุ่มและขนาดในกลุ่มหรือระดับขึ้นตามการกัดโพลิเมอร์ (degree of polymerization, DP) ที่แตกต่างกันไป เปรียบถึงที่มี
ในกลุ่มของวัตถุประสงค์ขึ้น ซึ่งมีแนวโน้มในภาวะกิจกรรมการลดซึ่ง (reretrogradation) ลอง อะมิโลส
อาจมีสกัดจากอยู่ในบางต้นกล้า (กล้าตอง และ เทอดกุล, 2550)

ภาพ 1 โครงสร้างของอะมิโลส
ที่มา: กล้าตอง และ เทอดกุล (2550)

โครงสร้างของกลุ่มของอะมิโลสมีกลูโคสเป็นหลัก (helix)
ดีเอทานอลหรือ อะมิโลสเป็นกลูโคสมี หรือกลูโคสที่คล้ายคลึง หรือกลูโคสอย่างไม่ชัดเจน (อรอนงค์, 2550)

1.2 อะมิโลซอลติน ประกอบด้วยน้ำตาลกลูโคสที่จัดเรียงเป็นโพลิเมอร์ที่มี
โซลูชันเป็นสารมาก ประมาณ 96% เชื่อมต่อกันด้วยกลุ่มไฮโดรไซดีน์ (glucoside linkage) ชื่อนี้
และด้วย-1, 4 (φ = 1, 4) และด้วย-4% ในส่วนที่เป็นกลุ่มซึ่งตัวที่เป็นโพลิเมอร์กลูโคซอลติน มีน้ำหนัก
อะมิโลส (DP) อุดมในระหว่าง 10-60 หน่วย เชื่อมต่อกันด้วยกลุ่มไฮโดรไซดีน์ด้วย-1, 6 (φ = 1, 6)
ดังภาพ 2
ตาราง 2 โครงสร้างอะมิโลเพดิน
ที่มา: กล้าслужง และเกื้อคุท (2550)

โครงสร้างโมลูกละของอะมิโลเพดินมีลักษณะเป็นกลุ่ม ลักษณะไอก่อกริยาจุลจากสายที่แต่ตัวน้ามาจากกลุ่โกเริ่มด้น ซึ่งมีการบวกด้วยที่หนึ่งเป็นอนุวัติชีวจุล (ภาพ 2) ดังนั้น
โมลูกละของอะมิโลเพดินแต่ละโมลูกละจะประกอบด้วยสายแยกที่ส่วนหนึ่งถึงสายที่ส่วนหนึ่ง (C-chain)
สำหรับสายที่แตกกับสายแยกนี้จะเป็นสายกิ่งมีดี (B-chain) ต่อสายแยกต่อๆ และสายที่มีจุดเชื่อม
ด้านหนึ่งเคลื่อน (A-chain) ดังภาพที่ 3 ซึ่งรวมถึงโมลูกละอะมิโลเพดิน โดยมีสัดส่วนของสายพันธ์
ต่างกันชิ้นต่ำต่ำประมาณ 1.0 ทั้งผื่นไฟและสายพันธ์ต่ำประมาณ 22-25 สายรวมทั้งกลุ่ม (cluster) ซึ่งแต่ละกลุ่มจะอยู่ในบริเวณสีกาก (crystalline regions) ของสารวัสดุ ขาวหนึ่งวัตถุอะมิโล
เพดินเกือบ 100% ดังนั้นกลุ่มสายพันธ์ต่ำรวมปนกลุ่มต่ำประมาณ 80-90% และที่เหลือจะมีสายพันธ์ต่ำ
เท่ากัน (บรรยัตง, 2550)
ภาพ 3 การแตกกิ่งที่ 3 แบบของมะลิโพกลีน
ที่มา: Lee (1983) อ้างโดย ปราณี (2549)

เมื่อนำมาดูสีเขียวและเปรี้ยวที่มีองค์ประกอบหลักของสารซึ่งผ่านกระบวนการ
แปรรูป สามารถรับการเปลี่ยนแปลงของสารซึ่งเนื่องจากการแปรรูปได้ล่าท้าย จึงมีผลต่อเนื่องสัมพันธ์
ของผลิตภัณฑ์จากข้าวหรือเปรี้ยวมีเรื่องเกี่ยวกับการตรวจความสมบูรณ์ของวัสดุผิวสัตว์ที่มีน้ำเปรี้ยว
แปรรูป จึงเป็นการปรับเปลี่ยนลักษณะของข้าว หรือเปรี้ยวที่มีน้ำเปรี้ยวรูปเล็กกว่า
เหมาะสมต่อการผนวกเล็กสินค้าของผลิตภัณฑ์จากข้าว หรือเปรี้ยวที่มีน้ำเปรี้ยวได้เป็นหลักว่า ด้วยการนำ
เปรี้ยวมาผสมกัน โดยไม่น้ำในปริมาณที่มากกว่าเปรี้ยวในสัดส่วนประมาณ 1-5% (ต่อมากขึ้นเปรี้ยว 100 กรัม เต็มน้ำ 101-105 กรัม) ในระยะเวลาจะเห็นขึ้น ว่าผสมน้ำมีสีเขียวขุ่น
ในลักษณะเป็นเปรี้ยวช่ออยู่ในน้ำ แต่เมื่อที่วิเศษน้ำจะหาย ถึงหมดจะแยกออกออกจาก
ส่วนน้ำซึ่งสีเขียวขุ่นซึ่งจะง่าย และอาจพบว่ามีผลต่อการผลิตไม่ดีซึ่งน้ำจะมีสีเขียวขุ่นได้
น้อยมาก เมื่อมีที่มีความเร็วและต้นส่วนของน้ำนั้นเปรี้ยวหรือมีผลต่อการเปลี่ยนแปลง โดย
มีการxffffffff ผ่านลูกลูดน้ำที่มีน้ำในที่ตู้ที่มีถังภูมิคุ้มครอง มีน้ำนี้เงาจากความเร็วไปทำลายผนัง
ไข่โดยที่ทำให้ส่วนต่างๆ ของระยะเพื่อให้เกิดกิ่งขึ้นในช่วงของสูญ(Long zone) จนกระทั่งจะทรง%s ไม่สูงหรือผลิตภัณฑ์สูงขึ้น สามารถจับกับผนังของน้ำใน
ส่วนผสม หรือกลับนำไปใส่ในเมล็ดสัตว์ที่ทำให้ผนังสัตว์พอกชั้นเรียกว่า หรือกับขึ้นเป็นน้ำสูญซึ่ง
ชี้ว่ากระดาษเกิดจากเนื้อกิ่ง (gelatinization) ซึ่งถือเป็นกระบวนการที่มีน้ำบาง น้ำจะขึ้นไปในบริเวณ
ผิว (crystalline zone) และทำลายโครงสร้างของเมล็ดสัตว์พร้อมที่จะควบคุมเนื้อสูญซึ่ง
น้ำจะขึ้นไปในเมล็ดสัตว์ชั้นไม่มีผลต่อเป็นน้ำอิสระในส่วนผสม แต่เมื่อน้ำส่วนผสมต่อไปเรื่อยๆ
ที่ดูเหมือนจะบูร์สิริยะระหว่าง (ประมาณ 20-30 นาที) พบว่าความหนืดติดลบ เนื่องจากซิริยะของเม็ดสตัวฮูท่าทำให้ไม่กลมของอะมิโนเปดัน และอะมิโนเปดันจะถูกลุกออกจากหลอดสตัวฮูท่าและแขวนอยู่ในส่วนผสม เมื่อคั่นทั้งต้นให้อยู่จะเกิดการถูกดันหนีไวหรือเรียกว่าขีด (set back หรือ retardation) เกิดลักษณะรูปกลับเข้าและมีความมืดขึ้นหนึ่งขึ้นที่มองไม่เห็น แต่เมื่อให้เนื้อสตัวฮูท่าผ่านน้ำที่มีการกระทบกับน้ำหรือเรียกว่าฟื้นฟูเนื้อสตัวฮูท่า พบว่าจะกลับถูกซิริยะอย่างดีและภูมิคุ้มกันในรอบอากาศ (precipitation) อีก สมาบิคของสัตว์ที่มีความคงที่ (constant) และอะมิโนเปดันเกิดออกจากหลอดสตัวฮูท่า ซึ่งมีผลต่อความทนต่อการสูญเสียความชื้นของเม็ดข้าว (ร้อยละ 25)

เม็ดข้าวที่ดูเหมือนจะเป็นอะมิโนเปดันที่ติดหรือถูกขีดที่ตัดไม่เนื้อสตัวฮูท่าจะเกิดขึ้นเมื่อเม็ดข้าววุกจะถูกน้ำและเม็ดข้าวจะต้องมีเม็ดข้าวที่ดูเหมือนจะไม่ขีดที่ตัดไม่เนื้อสตัวฮูท่าสำหรับการสูญเสียความชื้นของเม็ดข้าว

2. โปรตีน

โปรตีนเป็นสารอาหารที่มีในข้าวมากเป็นอันดับสองของจากการไปตามวิธีการซึ่งมีปริมาณแตกต่างกันขึ้นอยู่กับพันธุ์ข้าว ด้วยทั้งนี้จะมีปริมาณน้อยกว่าในข้าวชนิดข้าวบด การวิเคราะห์และค้นหาปริมาณโปรตีนในข้าว พบว่าคิดเป็นกิโลกรัมโดยวิธีคิดคิดอย่าง Levendahl และใช้เทคนิค 5.95 คูณปริมาณในน้ําวงบั้นหนึ่ง โปรตีนที่มีในข้าวจะเกิดขึ้นตามส่วนต่างๆ ของเม็ดข้าว โดยมีมากที่สุดในขั้นเปลือกที่กลมเม็ด และในส่วนนี้เมื่อตัดด้านนอกจะมีปริมาณโปรตีนมากกว่าในโลหะกลมเม็ด

Cagampang et al. (1996) ตั้งโดย ธรรมพงษ์, 2550 ทำการสกัดโปรตีนจากข้าว 3 พันธุ์ (ซึ่งมีปริมาณประมาณ 6.8-8.5%) พวนากำลังดังยอมไว้เมื่อได้ขีดการในน้ําหรือ เอลบัม (albumin) ประมาณ 3.8-8.8% ของโปรตีนทั้งหมด โปรตีนที่จะกลายไปในน้ําเกลือ หรือกูบิลนส์ (globulin) ประมาณ 9.6-10% ไปตกในน้ําเกลือ หรือโปรตีน (prolamin) หรือ โดย ซามิน (cystein) ประมาณ 6.6-7.8% และยังมีกลุ่มเล็กอีกโปรตีนหลักขององค์ประกอบในโปรตีนสกัด (storage protein) นี้มีการตรวจสอบโดยกลุ่มเล็กอยู่ในแหล่งน้ำในปริมาณที่สูงสุด จึงตัดเป็นโปรตีนที่มีคุณภาพดีกว่าโปรตีนในข้าวชนิดอื่นๆ
โมเลกุลของโปรตีนที่รวมตัวกันเป็นโปรตีนโปรตีน (protein bodies) ซึ่งมักเกิดใน
เป็นองค์ประกอบหลักลักษณะในนั้นจะมี 3 รูปแบบ คือ แบบคลอ (crystalline) แบบรูปโปรตีน
ขนาดเล็ก และแบบรูปโปรตีนขนาดใหญ่ ซึ่งโปรตีนที่กระจายอยู่ทำให้โปรตีนในเนื้อเยื่อจะมีโปรตีน
รูปโปรตีนขนาดเล็ก ส่วนโปรตีนปัจจุบันขนาดใหญ่จะมีรูปแบบที่ต่างกัน
และจะมีมากในส่วนที่
ประกอบใหญ่เนื่องในโปรตีนประกอบของโปรตีนจะเป็นโมเลกุลรวมกันภายในโปรตีน ส่วนรูปแบบ
โปรตีน (protein matrix) จะพบอยู่มากที่ไม่พบเลยในแผลของข้าวซึ่งต่างจากข้าวสาลี
ด้านที่มีลักษณะเช่นไข่โปรตีนปัจจุบัน (protein
granules) ระหว่างโปรตีนที่มีรูปร่าง เนื่องจาก
โปรตีนที่มีอยู่ในเนื้อเยื่อจะพบกลุ่มนวนในเม็ดสตอร์ส และโปรตีนที่ซึ่งไข่โปรตีนมีลักษณะ
อยู่ในต่อมการเกิดต่อมที่ใช้เชื่อมต่อมเนื้อเยื่อ โปรตีนให้การผลิตของตัวของเม็ดสตอร์สไม่ได้
จะมีผลต่อคุณภาพของข้าวหรือไข่ไข่เปลี่ยน ซึ่งส่งผลต่อเนื้อสันหลังของข้าวพืชที่มี
ลักษณะนั้นเหมือน หรือร่วม อย่างไรก็ตามถ้าไม่สามารถสรุปผลคัดจัดว่า โปรตีนมีส่วนเกี่ยวข้อง
กับสุขภาพและความสันหลังของข้าวโดยตรงซึ่งจัดเป็นต้องทำการวิจัยในด้านนี้ต่อไป (Hamaker, 1994
d้างโดย อะชัวน, 2550)

3. ไขมัน

ข้าวมีปริมาณไขมันประมาณ 3% คล้ายคลึงกับข้าวสาลีที่มีส่วน
ต่อมออกมันมักมากกว่าในกล่องเล็ก ดังนั้นการจัดสั่งซื้อข้าวมีชีวิตที่มีอยู่
เพียง 0.3-0.5% (Hosey, 1986 ต้างโดย อะชัวน, 2550) ซึ่งเป็นไร้มีมากที่สุดที่ต่อม (bound lipids)
กับสารออกซิไดซ์ 0.3-0.4% รวมในเจ้าหมู่แม่ในข้าวมีที่ต่อมนั้นยอดกว่า 0.03% โดยไขมันมี
ความสัมพันธ์กับเม็ดสตอร์ส 3 ลักษณะ คือ ไขมันอยู่กับเม็ดสตอร์ส ซึ่งอยู่ที่ต่อมของเม็ดสตอร์ส
ภายนอก หรืออยู่ด้วยกันกับโครงสร้างของเม็ดต่อมมีขนาดต่าง สาหรับ A หรือ B สนามของ
เม็ดสตอร์สในลักษณะที่ต่อมใน ไขมันจะอยู่ภายในเม็ดสตอร์สโดยอยู่ภายในภายนอกสร้าง และลักษณะ
ที่มากจะอยู่ภายในเม็ดสตอร์สแต่ไม่ได้เกิดกับสตอร์ส (Morrison, 1988 ต้างโดย อะชัวน, 2550)

ประเภทของไขมันในข้าวส่วนใหญ่คือ คอฟพอลีฟอสโฟติค (phospholipids), โคฟไกลโคพิท (glycolipids) และโคฟท_subscription (terpenoids) ทั้งไขมันภายนอกและ
ภายในเม็ดสตอร์สเป็นไขมันประกอบสตรีประกอบโมโนแอค (monoacyl) ซึ่งกลุ่มของ
โมโนแอคประกอบโมโนแอคไขมันอิมเมต้าแล้วบริโภคไขมันไม่ได้(', ซึ่งในแต่ละไขมันไม่ได้ส่วนมากกว่า
สำหรับไขมันภายนอก และไขมันภายในเม็ดสตอร์สอิมเมต้าไลโซไซทิน (lysolecithin) และการไขมัน
อิเลียด (Henry and Kettlewell, 1996 ต้างโดย อะชัวน, 2550)
4. ปริมาณความซ้ำ

องค์ประกอบของการเข้าใจข้อมูลภาษาของเกิดเข้าใจโดยตรงและทางอ้อม คือ
ปริมาณความซ้ำของข้อสั่น การสื่อสารข้อสั่นข้อสั่นปลีกและข้อสาร ใช้ความซ้ำเป็นเอกเครื่อง
มาตรฐานสั่นบนเนื้อหาของปริมาณความซ้ำที่สามารถมองเห็นและพิจารณาซ้อนข้อสั่น และบางทีอาจยุ่ง
การเก็บข้อสั่น หรือป้องกันข้อมูลปลีกโดยการเก็บข้อที่ก็จะมีทุกขณาภัย จากการทดสอบ
พบว่าข้อที่มีความซ้ำสูงจะเสียใจว่าข้อที่มีความซ้ำต่ำ ระดับความซ้ำข้อที่หมายถึงข้อสั่น
ที่ยอมรับว่าปลีกนี้ถือเป็นข้อสั่น คือ 13% ซึ่งจะเก็บข้อที่ได้เลิกมากกว่า 6 เต็ม และข้อที่
ความซ้ำ 12% จะเก็บข้อที่ได้เลิกมากกว่า 7 เต็มจากความซ้ำของข้อสั่นมีผลต่อคุณภาพการสื่อ
ข้อสั่นปลีก โดยปัจจัยสำคัญจะเป็นผลต่อการเปลี่ยนข้อสั่นที่เกิดขึ้นจากความซ้ำที่หมายถึง ซึ่งความซ้ำที่หมายถึง คือ 22-26%
จากนั้นมีการทดสอบข้อสั่นปลีกเพื่อความซ้ำนี้เองให้อุปการเกิดข้อที่ปลีกต่อการเก็บข้อ
(ความซ้ำไม่สูงกว่า 14%) จนจนล่าการสื่อข้อสั่นปลีกที่มีความซ้ำสูงเหมาะสมจะทำให้ได้ข้อสั่น
ปลีกในปริมาณสูง และยิ่งปริมาณข้อสั่นหนักหนัก (Juliano, 1985)

กระบวนการปรับปรุงข้อสั่น

การปรับปรุงข้อสั่นนั้นไม่ใช่เกิดข้อสั่นที่มีความซ้ำปลีกข้อสั่นที่เสนอทั้งหมด
ด้วยตัวเอง ข้อไทยใหม่ก็จะต้องมาด้วยข้อสั่นที่มีแนวคิดไว้ด้วยกัน ซึ่งข้อสั่นที่ให้ข้อมูลก็
นั่นจึงมีข้อสั่นย่อยข้อสั่นปลีกที่มีความซ้ำสูงสามารถจะทำให้ได้ข้อสั่นปลีก

1. การทำความสะดวก เพื่อเข้าใจข้อสั่นที่มีความซ้ำปลีกข้อสั่นให้เกิด
โดยการใช้เทคนิคและเครื่องช่วยที่จะทำให้ข้อมูลปลีกข้อสั่น เครื่องแสดงผลภายนอก
เพื่อให้ความเข้าใจและได้รับการรับฟังและเพื่อการแสดงข้อมูลที่มีความซ้ำสูง
การทำความสะดวกนี้ยัง

2. การทำความเข้าใจปลีก ถ้าเป็นการแยกชัดเจนข้อที่มีความซัวปลีกข้อสั่นโดยการใช้เครื่อง
เหมาะสมปลีกข้อสั่นช่วยกับข้อมูลที่ใช้การให้ข้อมูลปลีกข้อสั่นที่มีความซ้ำสูง
โดยใช้เครื่องแสดงผลภายนอกข้อมูลให้ข้อสั่น หรือซึ่งที่ก่อให้เกิดข้อสั่นปลีกข้อสั่นอื่น
ที่ 2 แต่เมื่อจะเป็นข้อที่มีความซัวสูง
จะยิ่งมีข้อสั่นกับข้อที่มีความซัวสูงปลีกข้อสั่นมีมิติในการทำความเข้าใจข้อสั่น

ข้าวเสียบมีการพักผ่อนของข้าวเปลือกทำละสม (ประมาณ 14%) และข้าวที่ได้รับกว่าข้าว
gลาง

3. การขับพ่นน้ำออกจากผักโขดซื้อต่อทำการขับพ่นข้าวก็ยังให้ข้าว
ด้วยเครื่องขับพ่นซึ่งใช้หลักการหมุนเวียนแม่สัมผัสกับผักโขด มีถังกับถังโดยสัญญาณ แล้วแยก
ร่อนผ่านแพร่กระจายไปยังทาง ควรใช้เครื่องขับพ่น 3-4 จุด เพื่อลดตัวการขับพ่นข้าวไม่ให้มาก
เกินไปจนเกิดหัวเราะทำให้เกิดความร้อนที่มากขึ้นจนทำลายคุณภาพของข้าวข้าวที่ขับพ่นแล้วนี้
เรียกว่าข้าวสาร

4. การขับพ่นน้ำออกจากผักโขด ในระดับเครื่องมาดาน้ำที่ออกซ้ายน้ำที่ถูกขับพ่นแล้ว
ละลายออกผ่านข้าวทำให้ข้าวสารที่มีคุณภาพต่างกันได้ก็คือ ข้าวสารเจ้า 100% ข้าวในที่ 2 ข้าวสารเจ้า 100% ข้าวสารเจ้า 100% ข้าวสารเจ้า 5% ข้าวสารเจ้า 10% ข้าวสารเจ้า 15%
และข้าวสารเจ้า เป็นต้น

ส่วนการใช้เครื่องเพื่อปั่นข้าว ทำโดยการเปิดปั่นข้าวผ่านน้ำบางส่วนนี้น้ำนี้ที่ผ่านน้ำ
แล้วไม่เก็บน้ำคั่นเครื่องไม่ละเกิดขึ้นเป็นน้ำเป็นน้ำ ฉีดข้าวเครื่องน้ำผ่านสายถักใน	
นำกัน
เป็นน้ำใช้เพื่อเร่งต่อกำรเจรจานและเม็ด ร่อนผ่านแพร่กระจายได้มีขนาดนั้นเสมอ จนนำไปใช้ทำผลิตภัณฑ์
ข้าวต่างๆต่อไป

กระบวนการผลิตข้าว

ข้าวที่ใช้ในกระบวนการผลิตจะเป็นข้าวที่ผ่านข้าวสารของข้าวอย่างที่ไม่เหมือนกันหรือ
บริโภคโดยตรง ข้าวที่อยู่ในเครื่องประกอบต่างๆ ดังstairs 1 เป็นข้าวที่มีการใช้ในอุตสาหกรรมอาหาร
ต่างๆ มากมาย ใช้เป็นส่วนประกอบของผลิตภัณฑ์ในอุตสาหกรรมเครื่องสำอาง และใช้เป็นส่วนเพิ่ม
ความคงลวดในการซักบริ (laundry stiffening agent)
ตาราง 1 องค์ประกอบภายในแม็คซ์ท้าก

<table>
<thead>
<tr>
<th>องค์ประกอบ</th>
<th>ปริมาณ (ร้อยละ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ความชื้น</td>
<td>12.0</td>
</tr>
<tr>
<td>สารวัตโจดตลาด</td>
<td>79.2</td>
</tr>
<tr>
<td>โปรตีน</td>
<td>7.0</td>
</tr>
<tr>
<td>ไขมัน</td>
<td>0.4</td>
</tr>
<tr>
<td>เหล้า</td>
<td>0.5</td>
</tr>
<tr>
<td>รวม</td>
<td>0.9</td>
</tr>
</tbody>
</table>

ที่มา: กลั่นแรงค์ และ เก่งฤทธิ์ (2550)

ในการผลิตเป้ชาร์ต้าในประเทศไทยนั้น ผิวจะเป็นการไม่ปิ้ยล แต่ไปปริ่มและสูงเป็นผลิตภัณฑ์ที่มีวัตถุประสงค์สูง แหล่งที่มี worthless ไว้เป็นน้ำไปกระจายออกไป เพราะผลิตภัณฑ์นี้จะผลิตภัณฑ์ (เช่น กระดับความ เทียบเท่า) ข้าวหอมมะลิที่จะประกอบไปโดยไม่ หมายถึงไม่ใช้ผลิตภัณฑ์ เพราะมีปริมาณของมีอิทธิพลสูง สำหรับผลิตภัณฑ์สุขภาพ (rice starch) คือ การตกค้างไปปริ่มและสูงเป็นผลิตภัณฑ์ในปัจจุบันวอดกามือแก้ว

กระบวนการผลิตเป้ชาร์ต้าเริ่มจากน้ำเข้าไปผลิตภัณฑ์ที่มีความสะอาด เหมาะสำหรับแปลงเป็นผลิตภัณฑ์ (เช่นเป็นข้าวเปลือก คือผ่านการขัดเสื่อม) เข้าในสายพันธุ์พืชหรือกับการ الذهب ที่อยู่สูงมีห้องเป็นน้ำ (24 ชั่วโมง เพื่อแยกไปปริ่มที่ผิดปกติมีผลต่อผิวจางออก ปล่อยให้เข้า ตกต่ำ แยกส่วนโดยไม่ใช้ผลิตภัณฑ์ (steep liquor) ออก ที่ชื่อขั้นตอนนั้นกระทั่งผลิตภัณฑ์นำมา น้ำมีผลกับข้าวเปลือกและผลพวงสัมพันธ์ที่มีส่วนในการ แช่ดูแลเปลี่ยนออก น้ำมีผลกับไตรตร์ไก่ ทำให้ผิวจาง น้ำแบ่งมาทำให้แห้ง ได้ผลิตภัณฑ์เป้ชาร์ต้า (Schoch, 1967 ช้างใหญ่ กลั่นแรงค์ และ เก่งฤทธิ์, 2550) (ภาพ 4)
ภาพ 4 แผนภูมิกระบวนการผลิตเปลือกสัตว์ข้าวเจ้า
ที่มา: กล้าสาระบุตรและเกื้อกูล (2550)

สำหรับ steep liquor ที่แยกได้ นำมาปรับสภาพให้เป็นกรด ทำให้ได้ปริมาณตะกอน เลิกกรองออก ทำให้คงเหลือ ใช้เป็นอาหารสัตว์

ในการผลิตเปลือกสัตว์ข้าวเจ้า สามารถทำจากเปลือกฟักขาวได้ โดยนำเปลือกฟักขาวแปรสภาพแล้วเปลี่ยนเป็นกรด (0.3% NaOH) 俣ละลาย 24 ชั่วโมง สามารถแยกออกได้ 86% (Wansukrit et al., 1999 กล้าสาระบุตรและเกื้อกูล 2550)
ขั้นตอนการไม่เป็น ทำได้ 3 วิธี คือ
1. การไม่เปิดหรือการไม่นำ

วิธีการนี้เป็นวิธีที่ใช้ในการผลิตเป็นข้าวเป็นส่วนใหญ่ โดยเฉพาะอย่างยิ่งในประเทศไทย เนื่องจากใช้วิธีดินสดหรือข้าวที่ตั้งเป็นพืชทอดได้จากการผลิตข้าวดินสดซึ่งมีลักษณะมากคือต้องการทำความสะอาดในระบบผ่านเครื่องแยกผลิตภัณฑ์ และต้องถึงขั้นตอนนี้ให้สะอาด แข่ข่าวที่จะนำไปใช้การทำไม่มีแม่บ้าน ซึ่งใช้พื้นที่ในการทำงานของเครื่องไม่ข้าวที่มีกรอบเก็บในปริมาณที่เหมาะสม จะทำให้ได้เป็นสิ่งที่จะถูกตัดสที่น้อยสถานะ ต้องมีขั้นตอนนี้เป็นขั้นตอนน้ำโปร่งซึ่งเครื่องแยกผลิตภัณฑ์ ของระบบนำผ่านไม่มีใช้เครื่องทำดินสดองค์สูง (filter press) จะได้ถึงขั้นตอนนี้ที่มีความชื้นประมาณ 40% ต้องการทำให้ถูกน้ำเพื่อให้เป็นสิ่งที่มีน้ำ ผ่านขั้นตอนนี้จะถูกแยกออกเป็นหู อาจใช้วิธีเป่าน้ำโดยการผ่านผ่านในติวประเวศน์ นำผ่านขั้นตอนนี้แล้วจะได้เป็นน้ำมีน้ำมันดั่งที่น้อย โดยที่ทำไปประมาณ 180 โมล ละมีน้ำมันที่ไม่เกิน 13%

2. การไม่แปลงผล

การไม่แปลงผลนี้ขั้นตอนการไม่แค่ขั้นตอนที่ใช้วิธีการไม่เปิดในขั้นตอนการล้างข้าวหัก แข่ข่าวข้าวที่นั้นมี ต้องมีขั้นตอนนี้นำข้าวหักขึ้นจากน้ำ แปรผกผันถึงน้ำแล้วผ่านไปยังเครื่องทำดินสดองค์สูง (Roto press ประมาณ 15-17%) ข้าวที่ผ่านขั้นตอนนี้จะถูกตัดสที่น้อยสถานะ น้ำมันมีน้ำมันมันไม่ถูกน้ำเพื่อให้เป็นสิ่งที่มีน้ำมันผ่านผ่านในติวประเวศน์ นำผ่านขั้นตอนนี้แล้วจะได้เป็นน้ำมันมันดั่งที่น้อย โดยที่ทำไปประมาณ 180 โมล ละมีน้ำมันที่ไม่เกิน 13%

3. การไม่แห้ง

เป็นการนำข้าวหักที่ผ่านกระบวนการทำความสะอาดแบบนี้ให้แล้วขั้นสู่น้ำเหลืองไม่หรือกัดเจ้าเป็นขั้นตอนนี้ผ่านผ่านผ่านในติวประเวศน์ (180 โมล ละ)

เป็นขั้นตอนที่ติดต่อกับที่กล่าวมานี้จะ 2 จุดคือ เป็นขั้นตอนนี้และเป็นขั้นตอนนี้ที่จะ นำไปต่อในกระบวนการเพิ่มมากขึ้น ดังนั้นเพื่อเป็นการส่งเสริมอุตสาหกรรมการผลิตข้าวเจ้าและเป็นขั้นตอนนี้ที่มีมูลค่าเพิ่มเป็นแนวทางในการตรวจสอบข้อมูลเพาะพันธุ์ข้าวเจ้าและ ผู้ที่ไม่สามารถส่งผลต่อข้าวเจ้าการเกษตร (2529) กระทรวงอุตสาหกรรมฯ ได้กำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรมข้าวเจ้า (มย. 638-2529) โดยกำหนดผลิตภัณฑ์ที่ต้องการ วัตถุประสงค์ในการ ระดับการผลิตข้าวเจ้าและนำผ่านผ่านผ่านการตัดสินใจและเลขพันธุ์ติดต่อกันในการผลิตข้าวเจ้าที่มีการส่งเสริมประการสำคัญ ถึงขั้นข้าวเจ้าเป็นแผนที่ไม่ข้าวเจ้าที่มีปริมาณประมาณ 180 โมล ละมีน้ำมันที่ไม่เกิน 2.5% โดยน้ำหนัก ดีям มีสีขาวหรือขาว
เวลา มีกลิ่นความรอมรอมความสุขใจจ้า ไม่มีกลิ่นอัน หัน เหมือนนี้วี้วิวิ มีกลิ่นไม้ฟงฟุ้งกลิ่น
สีน้ํา ค่อประชาระค่อเปล่งปลั่งและเมื่อยลักษณะดีของตุ๊กสรรพคณ์จะเห็นเมื่อสละรางข้าwarzี
ลักษณะเป็นรูปร่างหายหรือขนาด 2-9 ไมโครเมตร

Yoonyongkiddaghal and Noomhorn (2002) ศึกษาผลการเตรียมวัสดุต่อ
คุณภาพของต้นหรือหนักจงเจ้าข้าว พบว่า วิธีการไม่เหมือนกันและไม่เป็นไปลักษณะเป็นข้าวที่มีคุณภาพและมีผล
สูง มีผลต่อคุณทางการกิน และคุณทางด้านตุ๊กสรรพคณ์ โดยต้นไม้ที่เตรียมจากแป้ง
ไม่เหมือน มีปริมาณแป้งที่สูงเสี่ยงในระหว่างการดูดมากกว่า และมีภูมิสัมพันธ์ที่ต้นมันที่
เตรียมจากแป้งไม่เป็นปีก และส่วนใหญ่จากทางการค่า บอกจ้านหนึ่ง ขนาดของต้นของแป้งข้าว มีอิทธิพล
ต่อคุณทางการกิน (cooking quality) และคุณทางด้านต้นเนื้อสัมพันธ์ (textural quality) ของต้น
ที่มี คือ ต้นที่เตรียมจากแป้งข้าวที่มีผิวหน้าใหญ่ จะสูญเสียปริมาณแป้งในระหว่างการคำ
มากกว่าและเนื้อสัมพันธ์ไม่ดีทำให้ต้นมันที่เตรียมจากแป้งข้าวที่มีผิวหน้าเล็กกว่า

การตรวจสอบคุณสมบัติของแป้งข้าว

เมื่อเช้าต้นมาข้าวต้นมาข้าวที่เตรียมแป้งข้าว ที่มีการตรวจสอบคุณสมบัติ
ของแป้งข้าวต้นมันให้ถึงการตรวจสอบคุณสมบัติของแป้งข้าวที่นำมาใช้เป็นวัสดุต่อในวิธีการไม่เหมือนกัน
เพื่อวิเคราะห์คุณภาพของแป้งข้าวต้นมัน ซึ่งจะทำให้ข้าวไม่เสียสามารถนำไปเป็นข้อมูลใน
การพัฒนาและปรับปรุงการใช้ประโยชน์ของแป้งข้าวให้เป็นผลลัพธ์บวกได้อีกด้วย

คุณสมบัติต่างกันของแป้งข้าวที่ตั้งขึ้นอยู่ได้แก่ โปรตีน ไขมัน คาร์ซิค กล
ตัวสารของมันและมันและมันของต้นมันในแป้งข้าว ซึ่งต้นมันเป็นคุณทางวัสดุต่อทางการ
และพิจารณาได้แก่ การวัดอัตราการเปลี่ยนแปลง ค่าอัตราการเปลี่ยนแปลงและอัตราการเปลี่ยนแปลง
ความหนาอัตราการเปลี่ยนแปลง และอัตราการเปลี่ยนแปลง รูปแบบการเปลี่ยนแปลงตามคำวิทยา
หรือการวัดอัตราการเปลี่ยนแปลงตามคำวิทยา (rapid visco analyser, RVA) การวัดอัตราการเปลี่ยนแปลงตามคำวิทยา

ปัจจุบันมีการแปรรูปเป็นข้าวเป็นผลิตภัณฑ์อาหารอื่นๆ ได้มากขึ้น ทั้งอาหารหลัก เช่น อาหารเส้นต่างๆ ได้แก่ ก๋วยเตี๋ยวเส้นใหญ่ เส้นเล็ก เส้นหนักริม และขนมจีน เป็นต้น ส่วนอาหาร ว่าง เช่น อาหารข้าวเต้าหู้แบบประกอบ ได้แก่ ข้าวแกงเรียบชนิดต่างๆ หรืออาหารข้าวเต้าหู้แบบบรรจุ แค่ไม่เพียง ได้แก่ ขนมทะมัก และกรอบเด็กชนิดต่างๆ อาหารหวาน เช่น ขนมข้าว ขนมปังotts ครอบแห้ง และอื่นๆ ดังภาพ 5 นอกจากนี้ยังมีข้าวเป็นอาหารเสริม อุดมด้านอาหาร หรืออาหารเสริม เช่น อาหารข้าวจากข้าวสาลี อาหารเด็กอนุมหรืออาหารเด็กเล็ก เป็นต้น (ธรรมนนงค์ 2550)

![Diagram](image-url)

ภาพ 5 ผลิตภัณฑ์จากข้าว
ที่มา: ตลาดยางอธิบายวิทยาศาสตร์และเทคโนโลยีการอาหาร (2546)
ก้าวแรก

ก้าวแรก คือ ผลิตภัณฑ์ที่ให้การนํามาเป็นข้าวเจ้าที่มีความเข้มข้นเหมาะสมมาให้ความร้อนด้วยไอนํา จนเกิดการเจริญเติบโตขึ้น ได้ลักษณะเป็นฟิล์มบางๆ แล้วจึงลดความขัน ส่วนในปัจจุบันได้ผ่านพิธีที่มีความคลาดเคลื่อนไม่เหมือนที่นรานิยม เป็นปัจจัยสำคัญที่สุดที่มีผลต่อผลิตภัณฑ์ ถือ 12วัตรีปีที่นํามาเกลี้ยเป็นข้าวเจ้า (ประจวบ, 2549) เมื่อข้าวปลูกที่นํามาถูกเป็นข้าวเจ้า ตามความคลาดเคลื่อนได้ เพราะข้าวหรือข้าวที่ใช้เป็นวัตถุดิบในการผลิตนั้นเป็นผลผลิตได้จากการปลูกข้าว ซึ่งมักจะรวมทั้งข้าวต่างชนิดเจ้าตัวกัน ข้าวแต่ละสายพันธุ์มีปริมาณและมีโอกาสเกิดการผลิตต่างกัน จึงมีผลต่อคุณภาพของส่วนก้าวแรก โดยปริมาณและมีโอกาสที่เหมาะสมจะทำให้ผักถิ่นที่นิยมเป็นผักต้น

เก็บทำกําลังที่ผลิตในประเทศไทย แบ่งออกเป็น 2 ประเภทคือ เส้นเกลียวติดไม้ หนัก และเส้นเกลียวติดด้ายนิมิต โดยเส้นเกลียวติดไม้หนัก ได้แก่ เส้นเกลียวขนันใหญ่ เส้นเล็ก เส้นมัน และเส้นเกลียวจาง โดยเส้นเกลียวติดด้ายนิมิตมีลักษณะของปริมาณผลิตติดต่อกันที่สุด ส่วน เส้นเกลียวติดด้ายนิมิต ได้แก่ ขนันเเหะ

ผลิตภัณฑ์ก้าวแรกที่มีมูลค่าพิเศษกว่าไปสามารถแบ่งตามลักษณะเส้นได้ 4 ชนิดคือ (สรรพ, 2538; วิช, 2541)

1. ก้าวแรกสด เป็นก้าวแรกที่ได้จากการนํามาผัดกับข้าวที่มีความ 이것이เป็นส่วน เส้นใหญ่ มีขนาดกว้าง 1-2-5 เซนติเมตร ส่วนเส้นเล็กมีขนาดกว้าง 0-4-0-5 เซนติเมตร มีความขันประมาณ 62-64 ออกฤทธิ์เป็นประมาณ 1-2 วัน

2. ก้าวแรกซับเส้นก็แห้ง เป็นก้าวแรกที่ได้จากการนํามาเส้นด้วยผงเพื่อเพิ่มความขันลง จนกระทั่งมีความขันประมาณ 12-13 แล้วจึงติดต่อกัน ส่วนก้าวแรกเป็น 2-3 วัน

3. ก้าวแรกซับเส้นแห้ง เป็นก้าวแรกที่ทำให้แห้งได้จากการผงบูรคละผสมจากคัดเป็นเส้นแล้ว ถอยออกไปเมื่อมีความขันประมาณ 12-13 หรือตั้งเวลา สามารถเก็บรักษาได้นานใน ภาวะที่เหมาะสม

4. แห้งก้าวแรก เป็นก้าวแรกที่จะให้สูบที่สูงขึ้นอีกต่อไปของความนํามาผัดคัดให้มีขนาด 3-0-3-5 เซนติเมตร มีความขันประมาณ 12-13 เนื่องจากความสูง จะบวมเป็นปลอก
วัฒนธรรมในการผลิตสั่นก๊อพเพื่อ

1. ข้าวทัก หรือข้าวทอม

ข้าวทักที่ใช้ในการผลิตสั่นก๊อพมีผลต่อระบบที่มีการผลิตสั่นก๊อพต่างๆ อย่างไรบ้าง สำหรับการผลิตสั่นก๊อพนั้น มีชีวิตและสมบัติโดยรวมทั้งหมด 27-33 (นริyan, 2550) โดยถูกเรียกข้าวทอมแล้วตลาดที่ได้เกี่ยวกับเส้นใยในแนวประมาณ 4 เดือนขึ้นไป ซึ่งจะมีความเร็วประมาณ 20 จั่วที่น้ำมันตลาดสั่นก๊อพอยู่ต่ำที่ห่าง จนถึงขั้นกลิ่น

วัฒนธรรมการผลิตสั่นก๊อพ

วัฒนธรรมการผลิตสั่นก๊อพมีผลต่อระบบโดยรวมทั้งหมด 27-33 (นริyan, 2550) โดยถูกเรียกข้าวทอมแล้วตลาดที่ได้เกี่ยวกับเส้นใยในแนวประมาณ 4 เดือนขึ้นไป ซึ่งจะมีความเร็วประมาณ 20 จั่วที่น้ำมันตลาดสั่นก๊อพอยู่ต่ำที่ห่าง จนถึงขั้นกลิ่น

2. น้ำ

น้ำที่ใช้ในการผลิตสั่นก๊อพเป็นน้ำสะอาดหรือสำหรับการบริโภค ประมาณไม่

ขั้นตอนที่ใช้ออกมีความแข็งค้าตัวมีผลกระทบ 0.2-0.5 สำหรับลักษณะ ความเป็นกรด-เบสที่ดีระหว่าง 5.0-7.9 ซึ่งจะทำให้ผลิตภัณฑ์กลิ่นมีความเป็นกรด-เบสที่ดีกว่า ซึ่งมีความเป็นกรด-เบสที่ดีในน้ำนั้นทำให้ผลิตภัณฑ์กลิ่นมีความดี

3. วัสดุในการผลิต

วัสดุในการผลิตสั่นก๊อพมีผลกระทบต่อฟิล์มในน้ำนั้น มีการผลิตสั่นก๊อพหรือผลิตภัณฑ์ที่มีเหตุการณ์ต่างๆ ซึ่งขึ้นอยู่กับผลิตภัณฑ์สั่นก๊อพจากผลิตภัณฑ์ผลิตภัณฑ์ต่างๆ ซึ่งมีผลต่อผลิตภัณฑ์สั่นก๊อพมีความดีในผลิตภัณฑ์สั่นก๊อพ

วัสดุในการผลิตสั่นก๊อพมีผลกระทบต่อฟิล์มในน้ำนั้น มีการผลิตสั่นก๊อพหรือผลิตภัณฑ์ที่มีเหตุการณ์ต่างๆ ซึ่งขึ้นอยู่กับผลิตภัณฑ์สั่นก๊อพจากผลิตภัณฑ์ผลิตภัณฑ์ต่างๆ ซึ่งมีผลต่อผลิตภัณฑ์สั่นก๊อพมีความดีในผลิตภัณฑ์สั่นก๊อพ
น้ำได้ค้ำกว่ายู่ในรูปของกรด กระแสไฟฟ้าจะขยับไปยังกัณฑาระเรียกของจุลินทรีย์ที่ทำการนำเลี้ยง แต่ละท่าจะไฟฟ้าจะเปลี่ยนไปอย่างรวดเร็วเสร็จใช้ร่วมกันเช่นพื้นโดยขึ้นใจ โดยเริ่มจากการแบบโรคได้รับไฟฟ้าแบบไหลที่มุ่งยากทำให้ทำไปไม่กี่ 1,000 วันไม่มีต่อมส่วน (ศรียา สกฤช, 2551)

4. น้ำมันที่ใช้เลือดมันควัวยื่น

น้ำมันที่ใช้คัดเป็นน้ำมันสำหรับการบริโภค มีลักษณะไม่มีกลิ่นและไม่ควรใช้ในที่ที่มีสูญหายของสูง โดยปกติโบราณสถานกระทำต่อเนื่องต่อมีลักษณะนี้มีผลนพชีว ได้แก่ น้ำมันดั้งเดิม ทั้งนี้น้ำมันที่ผ่านการใช้แล้วไม่ควรนำกลับมาใช้ในกระบวนการผลิตอีก (กิติยาภิ, น.ป.ป., ผู้โดย ศรียา สกฤช, 2551)

กระบวนวิธีผลิตเต็มต่อมิตร

1. การคัดเลือกตัวดีบุก โดยทั่วไปไม่มีใช้จราจบรักษาประโยชน์จ้าเนื่องจากมีราคา

2. การทำความสะอาด ข้าววัวดุบรังมิตรสิ่งที่เป็นและสิ่งที่เป็นเช่น สารเคมี,

3. การล้างและแช่ข้าวเป็นสิ่งที่ทำให้ความสะอาดสิ่งที่ตกต่อข้าวหน้า

4. การปิดใช้การไม่ปิดของน้ำมันไม่อิ่มสำหรับที่จะทนอีก ด้วยเครื่องไม่

แบบที่มีความผ่อนผันได้ชีวิต ซึ่งสามารถปรับปรุงระหว่างจุดไม่เพียงให้ความสะอาดของ

ของเป็นต่อการ ปรับตัวข้าวของข้าวสารจากกระถมและอย่างรวดเร็วของน้ำสูงไม่เพียงให้

ความเข้มข้นของน้ำมันในการทำให้ข้าวมีค่าน้ำมันไม่ได้

ผลิตภัณฑ์ได้รับ ทำให้ที่มีประโยชน์และน้ำมันผลิตภัณฑ์จับคู่กันไม่ได้ ส่งผลให้ข้าวมีค่าเทียบเท่าของน้ำมัน

น้ำมันที่ได้ทำการเก็บไว้ส่งขายน้ำมันให้กับเลือดเช้ำไปในมีเดียเช่นขึ้น และทำวาระนักเรียนเพื่อให้มีค่าความ
เป็นการทดสอบที่เหมือนสถาปัตยกรรมวิจัยของ Tatsunami et al. (2003 อ้างโดย ศรีภรณ์, 2551) ที่พบว่าแม้แผ่นมีที่อุดทุ่ม 35 องศาขั้นชั้น ขนาด 27 ชั่วโมง จะมีความสูญเป็นกราด-เบียน 4.0 ส่งผลให้บ้านเก่าดีขึ้นว่ามีความโยงกัน หน้าต่างในบ้านที่ทำจากมันน้ำ แผ่นที่อุดทุ่ม 35 องศาขั้นชั้น เป็นเวลา 3 ชั่วโมง จะทำให้บ้านเก่าดีขึ้นมีสีขาวๆ เนื้อแน่น และไม่ยุ่ยตุ่น

5. การทดสอบที่ได้ความดันการทดสอบ เพื่อให้มีความเป็นมือออกวัตถุและการ แตกสลายของบ้านคามธงสูง

6. การบันทึกลงไปที่บ้านกลางเดย์จะบ้านอุดทุ่มได้ไปในแนวที่มีความดัน น้ำท่วมไม่ได้เป็นผลต่อลักษณะ คันกลางน้ำที่สามารถปรับระยะระหว่างอุดทุ่มเพื่อให้ความทนต่อพายุดาวต่างๆ ดังนี้ ที่สามารถปรับระยะระหว่างอุดทุ่มเพื่อให้ความทนต่อพายุต่างๆ มีบ้านที่ทำจาก แผ่นอุดทุ่มจะมีการกลับกลืนของแผ่นกลืนอุดทุ่ม น้ำท่วมจะทำบ้านขาดก้นบ้านกลืนอุดทุ่มที่ทำจากแผ่น หินปูนสูงที่มีความสูงเพื่อบ้านคามธงสูง ที่บ้านน้ำมีผืนพื้นผืนดิน คลื่นขึ้นไปในชั่วโมงที่มีความสูงขึ้นประมาณ 4 นาที ให้ ความร้อนด้านใต้บ้าน ใช้ระยะเวลาประมาณ 3 นาที จะได้แก่กันค่าที่ต่ำกว่าที่อุดทุ่มสูงแล้วมีความสูง ประมาณ 1 นาทีหรือมากกว่านั้นก็เล็กที่สุดในบ้านจะมีน้ำผ่านพื้นที่ปรับระยะ เพื่อให้กันมัน มีให้คิดค้นการที่ทำบ้านลอยน้ำและปรับแกนที่เหมาะสม เมื่อจากมีผลต่อกุนบาทของคลังน้ำ และช่องคลังน้ำที่บ้านได้

7. การทดสอบ สำหรับส่วนมากด้านใต้เป็นชั่วโมงที่น้ำท่วมผ่านบ้านผ่านชั้นที่มี หินปูนสูงที่มีความสูงประมาณ 62% ซึ่งค่อนข้างมากบ้าน ทำให้เกิดเป็นขึ้น หลุดด้าน lower ทางที่มีความสูงประมาณ 1 ชั่วโมง

8. การทดลอง การทดลองคาว่าน์อย่างที่ทำกันได้โดยใช้แผ่นกลืน ที่มีความสูงประมาณ 17-11 ซึ่งมีความสูงอย่างไรไม่ได้เป็นผลต่อกลืนอุดทุ่ม ขนาด 45-50 องศาขั้นชั้น ขนาด 27 ชั่วโมง หากถูกตรวจนวัตกรรมน้ำจะทำให้บ้านเป็นภายนอก แต่ละ และมีหลุมเป็นบ้านอุดน้ำ (cracking) สิ่งเกิดจากการกลืนของแผ่นกลืน ทำอย่าง รวดเร็วทำที่ให้เกิดกัน โดยที่มีการเปลี่ยนน้ำเกินกว่าอัตราชั่วโมงที่บ้าน

9. การทดสอบเมื่อบ้านที่ทำบ้านผ่านกลืนอุดทุ่มสูงที่ร้อนน้ำท่วม แผ่น ก้อนอุดทุ่มจะเคลื่อนไปตามพื้นบ้าน โดยมีการเปลี่ยนอุดทุ่มอย่างไรไม่ได้เป็นผลต่อกลืนอุดทุ่ม แผ่น น้ำที่ร้อนน้ำที่จะเคลื่อนไปตามพื้นบ้าน โดยมีการเปลี่ยนอุดทุ่มอย่างไรไม่ได้เป็นผลต่อกลืนอุดทุ่ม ที่ทำบ้านผ่านกลืนอุดทุ่มสูง ทำอย่าง รวดเร็วทำให้เกิดบ้านอุดน้ำ (cracking) สิ่งเกิดจากการกลืนของแผ่นกลืน ทำอย่าง รวดเร็วทำที่ให้เกิดกัน โดยที่มีการเปลี่ยนน้ำเกินกว่าอัตราชั่วโมงที่บ้าน
9.1 เสนอการยื่นศาล ต่อศาลจังหวัดน่าน สำนักงานศาลจังหวัดน่าน ศาลจังหวัดน่าน ภายในวันที่ 1 วัน

9.2 เสนอการยื่นคำกล่าวโทษ จะมีการฟ้องร้องในที่มีความผิดเกี่ยวกับคดีนี้ ณ ศาลจังหวัดน่าน สำนักงานศาลจังหวัดน่าน ภายในวันที่ 1 วัน

9.3 คำกล่าวร้อง ให้ยื่นในศาลจังหวัดน่าน ภายในวันที่ 1 วัน

11. การยื่นหลักทรัพย์การยื่นเรื่องตามที่ 3 แล้วต่อการยื่นคดีตรวจว่ามีความผิดหรือไม่ภายในเวลา 60 วันนับแต่วันที่นัดหมายตามคำสั่งของศาลจังหวัดน่าน สำนักงานศาลจังหวัดน่าน

สำนักงานศาลจังหวัดน่าน ตามคำสั่งของศาลจังหวัดน่าน สำนักงานศาลจังหวัดน่าน
สมบัติความเหนียวของข้าวสำหรับผลิตเส้นก๋วยเตี๋ยว

คุณภาพของข้าวสำหรับผลิตเส้นก๋วยเตี๋ยวมีความสำคัญในการผลิตข้าว ได้แก่

1. สัดส่วนของละเอียดสีแดงและละเอียดสีขาว

Proctor and Goodman (1985) พบว่า อัตราส่วนระหว่างละเอียดสีแดงและละเอียดสีขาวเป็นปัจจัยสำคัญที่ทำให้การผลิตเส้นก๋วยเตี๋ยวของข้าวแต่ละชนิดมีลักษณะแตกต่างกัน แปลงข้าวที่มีละเอียดสีแดงจะดูดน้ำและขับน้ำมารดาในระหว่างการปรุงมากกว่าเบื้องจอที่มีละเอียดสีขาว ทำให้เส้นก๋วยเตี๋ยวมีลักษณะแข็งและแห้งหัว ส่วนเบื้องจอที่มีละเอียดสีขาวจะดูดน้ำและขยายตัวน้อยกว่า ทำให้เส้นก๋วยเตี๋ยวมีลักษณะนุ่ม และไม่แตกตัวกัน

2. ความคงค่าของนอก (gel consistency)

ปริมาณละเอียดสีแดงเป็นปัจจัยสำคัญที่ทำให้เกิดเพลียเกิดขึ้น เนื่องจาก Cagampang et al. (1973) ต้องการหาความแตกต่างของข้าวต่างสายพันธุ์ที่มีปริมาณละเอียดสีแดงต่างกัน โดยวิเคราะห์ผิวคีวระหว่างความหนาและแบบภาพเคลื่อนที่ว่าข้าวแต่ละสายพันธุ์มีความหนาแตกต่างกัน ซึ่งนี้เนื่องจากกรดด้านของสารชีวมีขึ้นเอง แต่ถ้าใช้ลักษณะเฉพาะที่มีความแข็ง หรือความคงค่าแตกต่างกัน Varavinit et al. (2002) ต้องการหาผลกระทบของข้าวที่มีปริมาณละเอียดสีแดงมีความคงค่าการกินรูปจากกระบวนการ.Testing ดังกล่าวจะดีกว่าผลจากการปรุงที่มีปริมาณละเอียดสีขาว การค้นรูปด้วยอุณหภูมิที่สูงจะทำให้เกิดลักษณะเฉพาะที่เกี่ยวข้องกับอุณหภูมิได้

3. อุณหภูมิการกิดเจาะวันใส่ข้าว (gelatinization temperature, GT)

อุณหภูมิที่ใช้ในการกัดเจาะวันนี้เป็นอุณหภูมิที่เกิดขึ้นในข้าวเมื่อเวลานำเข้าลงในน้ำและเปลี่ยนลักษณะจากฟิล์มแดงเป็นใยมันแดง อยู่ในระหว่างการกัดเจาะวันที่มีความสูงกว่าเกณฑ์กับระยะเวลาการนำข้าวใส่ลงในน้ำ แปลงที่มีอุณหภูมิ GT ต่ำจะดีกว่าในกระบวนการผลิตเส้นก๋วยเตี๋ยว เพราะว่ากี้ออกไปและคุณภาพของเส้นก๋วยเตี๋ยวมีผลต่อความแคบของข้าว เมื่อให้ถึงอุณหภูมิ GT แล้วกันจะมีความหมายมากกว่าจะใช้เวลาในการนำเข้าลงในน้ำ เพราะว่า

4. ความชื้น

ความชื้นในเม็ดข้าวมีผลต่อลูกคุณภาพของเส้นก๋วยเตี๋ยวที่มีความชื้นต่ำส่งผลต่อมนุษย์เป็นข้าวที่มีน้ำมันผลิตเป็นเส้นก่ำเตี๋ยว จะให้เส้นก่ำเตี๋ยวมีลักษณะแข็งและคงตัวน้ำกว่าเป็นไปตามที่ได้จากข้าวไม่นุ่ม
5. ไปรดิน

Suwansri and Meullenet (2004) พบว่า ความแข็งของข้าวมีความสัมพันธ์กับปริมาณไปรดิน เนื่องจากไปรดินเป็นตัวชี้วัดของการชื้นช่อย่างใกล้ชิดเพื่อให้เข้มข้น ถ้าปริมาณไปรดินสูงจะทำให้กรดชื้นข้นของข้าวเปลือกน้อย การใช้พลังงานมากในการทำให้เกิดผลลัพธ์เช่น เช่น การส่งผลให้ผลิตภัณฑ์ที่ผลรูปษาเป็นข้าวที่มีลักษณะดังกล่าว มีลักษณะแห้ง เข็ง และความหนาสูงลง นอกจากนี้ยังพบว่าไปรดินชื้นข้นอริยามิ (oryzamin) ทำให้ประสิทธิภาพกรดข้นข้นของสารสกัดต้นต่ำลง ทำให้เนื้อสัมผัสของข้าวว่านั้นดั่ง (Hamaker, 1994; Ramesh et al., 2000 ถ้าใช้โดยธรรมดากว่า 2550)

ปัจจัยที่มีผลต่อการเลือกใช้ของข้าว

1. ชนิดของขุนต้น

การเปลี่ยนแปลงของขุนต้นหรือการเกิดการผิดแปลงของขุนต้น วิธีการคลิกระบบทะʋ และสภาพการเปลี่ยนแปลงอาหาร ขุนต้นหรือความสัมพันธ์กับอาหารที่ผลต่ำกับไป เมื่อขุนต้นหรือเจริญเติบโตจะทำให้เกิดการเปลี่ยนแปลงในอาหาร เป็นผลทำให้เกิดผลต่ำ และมีสภาพของอาหารเปลี่ยนแปลงไปนั่นอาจเป็นผลลัพธ์หรือเปลี่ยนแปลงได้

1.1 Staphylococcus aureus เป็นแบคทีเรียแพร่บวก ย้อมคลีสิวบาง รูปเรียกว่ากลุ่ม Staphylococci ไม่มีเอนไซม์เจริญเติบโตได้ที่สภาพที่มีและไม่มีออกซิเจน (facultative anaerobes) ลักษณะไคโนสิทธิ์ เซรามิตร้างลิ่มที่หัวเดียวที่pH 6.0-7.0 ดูเหลือง37 องศาเซลเซียส พบได้ตามพื้นผิวน้ำและส่วนต่างๆของว่าใช้

1.2 Bacillus cereus เป็นแบคทีเรียแพร่บวก รูปเหมือน สร้างปิโอ คือการอธิบายในการเจริญเติบโต (aerobes) พบได้ในอาหาร และอาจเกิดผลพลิกเป็นการเจริญเติบโต (exoenzyme) ออกโปรตีน และคาร์บอนไดออกไซด์เข้าข้อมัน ทำให้อาหารเน่าเสีย และส่งสารพิษ enterotoxin ซึ่งเป็นสาเหตุของโรคอาหารเป็นพิษ (food poisoning)

1.3 Escherichia coli อยู่ในกลุ่มของ coliform bacteria เป็นแบคทีเรียขั้นต้น ต้นอาหาร คือเป็นแบคทีเรียแพร่บวก รูปเรียกว่า สามารถเจริญเติบโตได้ในสภาพที่มีออกซิเจน (aerobic) และไม่มีออกซิเจน (anaerobic) จัดเป็นแบคทีเรียจัดพวก facultative anaerobes พบในลักษณะกลุ่มและสัตว์เลี้ยงแก่น ซึ่งเป็นแบคทีเรียประจำกลุ่ม (normal flora) ที่ไม่เกิดโรค อาจ
2. จุดสูงมีของจุลินทรีย์

จุลินทรีย์และชนิดมีจุดสูงมีที่เหมาะสมต่อกำรเจริญเติบโตโดยแตกต่างกัน และอาจเจริญได้ที่จุดสูงมีต่อกำรเจริญเติบโตที่มักเกิดขึ้นในอิเล็กทรอนิกส์ อย่างไรก็ตาม จุลินทรีย์แต่ละกลุ่ม จะเจริญได้ในจุดสูงมีที่แตกต่างกัน

จุดสูงมีสูงสุดและจุดสูงมีต่อกำรเจริญเติบโตโดยได้นั้น ซึ่งอยู่กับปัจจัยต่างๆ ที่มีผลกระทบต่อกำรเจริญเติบโต โดยเฉพาะเจเนเรชันเป็นต้น จำเป็นต้องประเมินการเจริญเติบโตโดยได้นั้น

3. ความเป็นกราด-เบส (pH)

โดยทั่วไปเลือกจุดสูงมีของจุลินทรีย์ยอมให้อยู่ที่ Ionic H+ หรือ OH− ผ่านเข้าออกเพื่อเก็บไฟฟ้าและนำน้ำ รวมทั้งทำให้ค่าในกราด-เบสที่เหมาะสมของจุลินทรีย์มีระบบใดฟิวเจอร์ความสมดุลกับเปลี่ยนแปลงของความเป็นกราด-เบส จึงทำให้ที่ค่าในกราด-เบสในเซลล์ของจุลินทรีย์ค่าใกล้เคียงกับ 7 หากค่านิวเบสเป็นกราด-เบสอยู่จากที่จุดสูงมีจะเจริญได้ อาจเกิดผลเสียต่อตัวที่ต่างๆ ของเซลล์ก็ได้ เนื่องจากเกิดกับกรุณารุ่นแนะนำและเจาะจงต่างๆ มีการเปลี่ยนแปลง ซึ่งอาจทำให้กระแสในกรุณารุ่นได้ในกรุณารุ่นใช้ในการเจริญเติบโตน้ำที่ทางภายนอกเซลล์และสิ่งแวดล้อมต่างๆ ตลอดจนกรุณารุ่นการสร้าง adenosine triphosphate (ATP) ในเบสที่เป็นซึ่งเกิดขึ้นในกรุณารุ่น

แบคทีเรียส่วนใหญ่ค่า pH ที่เหมาะสมต่อกำรเจริญเติบโตในช่วง 6.5-7.5 ซึ่งต่อจะเจริญเติบโตได้ที่ค่า pH ต่ำและ pH ที่เหมาะสมคือ 5 แต่เจริญได้ที่ค่า pH มากกว่า 7 (บาง
ลักษณะ และ บริษัท, 2547)

4. ปริมาณน้ำสัมตร (A)

จุลินทรีย์ดองการน้ำในกำรเจริญเติบโต หากจะมีจุดสูงมีจุลินทรีย์ก็ไม่สามารถเจริญเติบโตได้ เฉพาะของสัมตรจะมีปริมาณน้ำในปริมาณมาก เช่น มากกว่าระบบน้ำ 75 สิ่งนี้จะต้องมีปริมาณน้ำสัมตรกิจกรรมวิ่งทางที่มีน้ำในปริมาณมาก ทำให้มีปริมาณน้ำสัมตร รวมที่จุลินทรีย์จะไม่สามารถเจริญเติบโตได้และสิ่งแวดล้อมถูกทำให้เกิดความสูญเสียน้ำ โดยปริมาณน้ำสัมตร หากมีความสูงสุดของน้ำ (vapor pressure) ของน้ำ (vapor pressure of water) ที่จุลินทรีย์มีสัมตร

การพิจารณาขั้นตอนการเจริญเติบโตจะที่ค่าความสูงสุดของน้ำสัมตรจะลดลง ดังนั้นจะลดผลกระทบที่เกิดขึ้นตามสมการจะไม่มีผลกระทบต่อค่าน้ำที่จะทำให้เกิดความสูญเสียของน้ำสัมตรค่าจะมีค่าเท่ากับ 1 ในขณะที่ตัวปรับวัสดุจะมีค่าเท่ากับ 0
สำหรับของค่า a, คัจจูนทริบิย์นั้น พบว่าจุตินทริย์มีจัวของค่า a, ที่จะเสริมได้
ซึ่งค่า a, ที่เหมาะสมกับโครงการเสริม ช่วงใหญ่จะอยู่ใกล้ 1 ซึ่งเป็นค่าที่สูง แต่ที่จุดที่มี
สารอาหารละลายอยู่ ซึ่งเหมาะสมกับการเสริมของจุตินทริย์ ค่า a, คู่ที่จุดที่จุตินทริย์จะเสริมได้ดีอยู่ที่
0.61 ซึ่งจุตินทริย์เหล่านั้น ได้แก่ รายต่างๆ หากค่า a, ลดลงกว่าจุดสู่หน้าที่จุตินทริย์จะสามารถเสริม
ได้ จะส่งผลทำให้จุตินทริย์ไม่สามารถเสริมได้ และก่อตัว หาย
ความเสี่ยงของการสูญเสียแรงดันภายในเซลล์ที่ทำให้เซลล์กลับ
เซลล์จะเปลี่ยน การเสริมดีโดยการแบ่งเซลล์ทุ่มเสียก็ได้เพื่อหุ้มเซลล์กลับค่าสูงด้วย
เอนไซม์ในไข่ของปลาซีบุกท่าลายด้วย

คุณภาพของส่วนก้านต้น

คุณภาพของส่วนก้านต้นเพื่อความสำนักงานมาตรฐานอุตสาหกรรม (บต. 959-2533)
ก้าวหน้า ดี ต้องมีขนาดใกล้เคียงกัน มีความทรงกลมเหมาะสม โดยมีความยาวเฉลี่ยไม่เกิน 0.7 ± 0.2
มิลลิเมตร ความยาวนอกต้นสะอาด มีกลิ่นหอมตามธรรมชาติ ไม่มีสิ่งที่ไม่ควรเกิดกับสิ่งที่
ของส่วนก้านต้นจะมีความแตกต่างกันกับส่วนก้านต้นที่ทำให้ผลผลิต ดีมากที่มีโปรตีนสูง จะ
มีผลต่อกำวจึงทำให้สูงค่าสูงด้วย เนื่องจากนี้ส่วนก้านต้นของผลผลิตผู้ใช้รินตันมีน้ำตาล
น้ำตาล ให้สารประกอบสิ้นน้ำตาล (จนท.าน, 2541)
รังสีอัลตราไวโอเลต (Ultraviolet Radiation, UV)

รังสีอัลตราไวโอเลตจัดอยู่ในกลุ่มรังสีอิเล็กทรอนิกส์ (electromagnetic radiations) มีความยาวคลื่นอยู่ในช่วง 100-400 นาโนเมตร ซึ่งเป็นช่วงที่ไม่สามารถมองเห็นได้ด้วยตาเปล่า รังสีอัลตราไวโอเลตถูกเรียกว่ารังสีอิเล็กตรอนิกส์ non-ionizing radiation ซึ่งจะไม่ทำให้อะตอมของไมโครสเทอร์สแตก รังสีอัลตราไวโอเลตก็สามารถแบ่งได้ตามระดับของความยาวคลื่นเป็น 3 ชนิดคือ รังสี UV-A มีความยาวคลื่น 315-400 นาโนเมตร รังสี UV-B มีความยาวคลื่น 280-315 นาโนเมตร รังสี UV-C มีความยาวคลื่น 100-280 นาโนเมตร โดยที่ความยาวคลื่น 254 นาโนเมตร วิยุตสมบัติในการทำลายเซลล์ของสัตว์ชีวิต

แหล่งของรังสีอัลตราไวโอเลตที่สำคัญ คือ แสงจากดวงอาทิตย์ ในปัจจุบันมีการประยุกต์ใช้รังสีไวโอเลตที่มีความยาวคลื่นในการกำจัดแบคทีเรียและสิ่งสกปรกต่างๆ ตลอดจนรังสีอัลตราไวโอเลตที่มีความยาวคลื่น 254 นาโนเมตร เรียกว่า germicidal lamp หรือ U.V. lamp นิยมใช้กันมากที่ต้องจัดการควบคุมเชื้อโรคในห้องผู้ป่วย ในโรงพยาบาล ในห้องปฏิบัติการของโรงงานผลิตสิ่งซิกล และในโรงงานอุตสาหกรรมอาหารและยา (น้ำยาแอลกอฮอล์และน้ำสี, 2547)

การใช้รังสีอัลตราไวโอเลตนี้ในการอิดาลูกรังสีอัลตราไวโอเลตในปี 1945 ช่วยป้องกันและควบคุมการเจริญเติบโตของเชื้อโรคที่เป็นสาเหตุทำให้อาหารเสีย โดยเฉพาะที่ถูกคัดคัดป้องกันได้เชื้อโรคต่างๆ มีความปลอดภัยกว่าการทำเชื้อโรคโดยใช้สารเคมี นอกจากนี้ ยังมีการใช้รังสีอัลตราไวโอเลตนี้ในการกำจัดเชื้อโรคในห้องปฏิบัติการ ควบคุมกลิ่นสัตว์ที่อยู่ในชุดที่จัดเตรียมเชื้อโรคที่ต้องการให้ขึ้นมาใช้ ซึ่งเป็นสาเหตุทำให้เกิดการป้องกันได้ตามมาในใบเล็กของเชื้อโรคและสิ่งสกปรกต่างๆ เป็นสาเหตุทำให้ข้อลักษณะภายนอกที่ไม่สมบูรณ์เป็นพื้นที่ที่มีรังสีอัลตราไวโอเลต

มีการประยุกต์ใช้รังสีอัลตราไวโอเลตนี้ในการบังคับการเชื้อสกปรกเชื้อโรคในต่ำ ครึ่งไม้บนชั้นต้น ยางผ้าป้องกันประสิทธิภาพในการยับยั้งการเจริญเติบโตของเชื้อโรคที่เป็นพืชและสัตว์ ซึ่งมักดันสารตะกอนกันซึ่งยู่ในร่างกายรังสีอัลตราไวโอเลตที่นิยมใช้ในงานอุตสาหกรรมอาหารและยา (Annelida) ฟิชและกรมป้องกันโรค (Kuo, et al., 1997) พบว่าการใช้รังสีอัลตราไวโอเลตในช่วง 254 นาโนเมตร ที่ระดับความเข้ม 4350 μW/cm² เป็นระยะเวลา 15 นาที สามารถกำจัดเชื้อโรคในต่งของเชื้อรา (fungus spores) และเชื้อรา (Monilinia fructicola (brown rot), Rhizopus stolonifer (soft rot) และ Penicillium digitatum (green mold) ในมะเขือเทศ ฟักบรรทุกส้ม มะนาว มะรุม ฟัก และแอนแนร์ ลดลง 20-50%
ปัจจัยที่มีผลต่อประสิทธิภาพการยับยั้งจุดดินทร์ของรังสีอัลตราไวโอเลต

1. เวลาในการให้รังสี (exposure time)
ที่ระดับความเข้มข้นนั้นๆ ของรังสีอัลตราไวโอเลต ประสิทธิภาพในการยับยั้งการเจริญเติบโตของจุดดินทร์จะเพิ่มขึ้น เมื่อใช้เวลาในการให้รังสีเพิ่มขึ้น เนื่องจากทำให้จุดดินทร์ได้รับรังสีไว้ยาวนานที่สุด ทั้งนี้การรับรังสีอัลตราไวโอเลตที่จุดดินทร์ได้รับ (UV dose) เป็นผลดีต่อความเข้มข้นของรังสีกับเวลาในวันที่ในการให้รังสี

2. ความเข้มข้นของรังสีอัลตราไวโอเลต (UV intensity)
โดยทั่วไปว่าความเข้มข้นของรังสีอัลตราไวโอเลตจะวัดในหน่วยวัตต์ต่อตารางเซนติเมตร (W/cm²) เมื่อความเข้มข้นของรังสีที่ใช้เพิ่มขึ้น เฉพาะในระยะแรกการรังสีทำให้ประสิทธิภาพในการยับยั้งการเจริญเติบโตของจุดดินทร์หรือรังสีอัลตราไวโอเลตเพิ่มขึ้น

3. ความสามารถในการแทรกผ่านวัตถุ (penetration) ของรังสีอัลตราไวโอเลต
รังสีอัลตราไวโอเลตมีความสามารถในการทะลวงกระท่อม่ายาวนาน การแทรกผ่านวัตถุนั้นจะมีความโปร่งใส เช่น น้ำอะชอร์ที่มีผลทำให้ความเข้มข้นของรังสีอัลตราไวโอเลตลดลงได้ และทำให้รังสีอัลตราไวโอเลตไม่สามารถกระจายได้ โดยรวมสามารถใช้เจริญเติบโตของจุดดินทร์ของอาหารในน้ำเพิ่มเติม

4. ชนิดของตัวอย่างอาหาร
อาหารและชนิดของประกอบทางกายภาพ และเกณฑ์พื้นผิวสั่นรวมถึงรูปร่างของอาหาร ซึ่งอาจมีผลต่อประสิทธิภาพในการยับยั้งจุดดินทร์ของรังสีอัลตราไวโอเลต โดยทั่วไปจุดดินทร์จะได้รับรังสีไว้มากขึ้นในสารผสมทับทิม เมื่ออาหารที่มีประกอบไปด้วยสารผสม ก็มีผลทำให้รังสีอัลตราไวโอเลตได้เคลื่อนที่ฝั่งบนของอาหารและในน้ำค่อนข้างมาก ทำให้รังสีอัลตราไวโอเลตแพร่กระจายไปอย่างมาก ทำให้รังสีอัลตราไวโอเลตได้เคลื่อนที่ฝั่งบนของอาหารและในน้ำค่อนข้างมาก ทำให้รังสีอัลตราไวโอเลตแพร่กระจายไปอย่างมาก ทำให้รังสีอัลตราไ
อัตราไวโอลแคทนส์อาจมีส่วนช่วยในการยับยั้งอุทิศหรือผู้สูงกว่าตัวอย่าง
อาหารที่มีชีวิตชีวา หรือออกกําลังได้รับพื้นผิวที่ไม่เรียบ อาจมีปริมาณที่สังเกตได้โดยไม่
สามารถมองเห็น ทำให้อุทิศหรือผู้สูงกว่าตัวอย่างไวเพิ่มขึ้น เช่นเดียวกันกับการเกิดอนุรักษ์
(Mild rancidity) หรือทำให้อุทิศหรือผู้สูงกว่าตัวอย่างต่อเนื่องจากเครื่องมือที่ใช้

5. ชนิดของอุทิศหรือผู้สูงกว่าตัวอย่าง

แนวคิดที่เรียบง่ายบางมาตรการต้านทานการรักษาอุทิศหรือผู้สูงกว่าตัวอย่างได้ใช้วิธีที่เรียบง่ายตาม
โดยทั่วไปแนวคิดที่สามารถสร้างสมบัติการต้านทานได้มากกว่าพวกที่ไม่สร้างสมบัติโดยทั่วไป
ผลและอาจมีความไวต่อการรักษาอุทิศหรือผู้สูงกว่าตัวอย่างที่เรียบง่าย

6. จำนวนจุลินทรีย์

จำนวนของจุลินทรีย์มีผลต่อประสิทธิภาพของการรักษาอุทิศหรือผู้สูงกว่าตัวอย่าง การใช้ความร้อน และสารเคมีที่ทำลายจุลินทรีย์ ทำให้จำนวนจุลินทรีย์มากกว่ารูปแบบความเร็วของการ
รักษาอุทิศหรือผู้สูงกว่าตัวอย่างอาจมีความสัมพันธ์ระหว่างการเจริญเติบโต ตลอดจน

7. อายุของจุลินทรีย์

แนวคิดที่เรียบง่ายในด้านการต้านทานการรักษาอุทิศหรือผู้สูงกว่าตัวอย่าง (lag phase) ของการ
เจริญเติบโต จุลินทรีย์จะมีการรักษาอุทิศหรือผู้สูงกว่าตัวอย่างแบบการเจริญเติบโต (log phase) และจะมีความ
สัมพันธ์ต่อการรักษาอุทิศหรือผู้สูงกว่าตัวอย่างแบบการเจริญเติบโต

กลไกการอับฉัยจุลินทรีย์ของเร้าอีสตาได้ไวโอลแคท

ไวโอลแคทมีผลต่อโครงสร้างของจุลินทรีย์ที่ดูดซับรังสีไวโอลแคท เช่น DNA, RNA, โปรตีนและสารอินทรีย์อื่นๆ การดูดซับรังสีไวโอลแคทจะเกิดได้ที่ความยาวคลื่น 250-260 นา
โนเมตร ส่วนโปรตีนจะดูดซับรังสีไวโอลแคทที่ยาวคลื่น 280 นาโนเมตร ซึ่งเป็นการดูดซับของโครงสร้าง
ในที่มีโครงร่าง aromatlc ring ได้แก่ ทริฟิลเพน พิโลเซฟัน และโปรตีน ในจำนวน
โครงสร้างของจุลินทรีย์ไวโอลแคทมีความสัมพันธ์ต่อเจลส์

มาจากฐุพุจ ทราบว่า DNA เป็นสารพันธุ์สร้างความสุขภัตถะในการดับเนินชีวิตของจุลินทรีย์ DNA เป็น
โครงสร้างของเจลส์ที่ยืดผังเป็นแลกเชื้อ ในแต่ละสายประกอบด้วยซิลิคอนแก้ว (silica)
และ เซริเนตต่างๆ มีผลต่อการเกิดและสลายของ DNA จะมีซิลิคอนตอร์กตัวซึ่ง hydrogen bond
ของโปรตีนโรสู กล่าวคือ adenine จับกับ thymine และ guanine จับกับ cytosine ซึ่งพันมะรนี
ไตรโตร์เจนุก้า กลายได้ว่ายังด้วยความร้อนหรือสภาพอื่นๆ เป็นผลให้สายของ DNA แยกจากกัน จึงเกิดการเปลี่ยนแปลงของ DNA ได้ (Lado et al., 2002)

โครงสร้างพื้นฐานในการสร้างสิ่งตัวต่ำของ DNA คือเบสซีนต่างๆ บ้านจอม โดยเบส pyrimidine (thymine และ cytosine) จะมีความยาวตรงที่มากกว่าเบส purine (adenine และ guanine) ดังนั้นเมื่อก่อให้ร่างสิ่งตัวต่ำไวโอล์ตจะทำให้เกิดการรวมด้านบนของเบส pyrimidine สร้างด้ายที่คู่กันได้ในสภาพกันกิ้ว covalent bond เป็น dimer ซึ่งมานำสู่ร่าง dimer ที่เกิดขึ้นเป็นชนิดแรก ได้แก่ thymine dimer และอาจพบว่าเกิด dimer ของเบสฐานอื่นๆ เช่น thymine-cytosine และ cytosine dimer ได้จากนี้ Adams и Moss, 2000

ผลจากการรวมกันของเบสใน DNA เป็น dimer นั้นทำให้ hydrogen bond ที่ถูกระหว่างสายของ DNA ถูกทำลายเป็นผลให้เกิดการแปลงของ DNA ถูกทำลาย นอกจากนี้การเกิด dimer ยังทำให้การเคลื่อนที่ของเบสที่ถูกกันในแต่ละสายของ DNA ไม่เกิดขึ้น เป็นผลให้ร่างของ DNA ปรับเปลี่ยนแปลง DNA ซึ่งไม่สามารถควบคุมที่จะแก้ไขได้ (DNA replication) หรือไม่สามารถย้ายไป ของ RNA ซึ่งไม่สามารถย้ายไปกับการแปลงของ DNA ทำให้เกิดการรวมต่างๆของเซลล์ เช่น การสร้างหนึ่งงานและการปฏิสัมพันธ์กับอีกที่ไม่ที่มา Manzoceco et al., 2011 ยังทำให้เกิดการเกิด dimer ดังกล่าวนี้ทำให้เซลล์มีอิสระไม่ได้ทำให้เกิดได้ DNA ไม่สามารถจัดจ่องต่ำองได้ หรือทำให้เป็นพันคุณค่าที่สำคัญของเซลล์ติดกันไป

นอกจากนั้นพันวัฏจำลองไวโอล์ตได้มีทางอื่นในการทำลายผิวติดหรืออวัยวะใดในร่างสิ่งตัวต่ำของ DNA โดยยังสิ่งตัวต่ำไวโอล์ตที่มีความยาวเส้นๆ จะทำให้เกิดการรวมต่างของดีเอ็นเอเป็นโปรตีน หรือทำให้เซลล์มีอิสระในการรวมต่างๆเป็นโปรตีนเปลี่ยนไข่ของเครื่องมือที่มีออกซิเจนและสารประกอบอินทรีย์ต่างๆ อยู่ด้วย จะทำให้เกิดโปรตีนไข่ของสารประกอบอินทรีย์ต่างๆ ซึ่งทำให้เกิดคุณลักษณะที่สำคัญต่างๆ ได้
การทดลองทางประสพภาพสัณฐานและเครื่องทดสอบลักษณะเนื้อสัมผัส

ลักษณะทางเนื้อสัมผัสในอาหารเป็นผลประกอบกันของสมบัติทางกาย และกายภาพ ซึ่งรวมไปถึง ขนาดครุภัณฑ์ จำนวน และการจัดเรียงของข้อโครงสร้างอื่นๆ ซึ่งเป็นผลมา จากโครงสร้างรวมของดินสัมผัส ดังนั้นลักษณะเนื้อสัมผัสของอาหารจึงมีความจำเป็นอย่างมากต่อการยอมรับของผู้บริโภค ในปัจจุบันมีเครื่องมือทดสอบลักษณะเนื้อสัมผัส (texture profile analyzer) ได้ใช้หลักการจำลองการใช้พ้อนosphate เพื่อใช้ประเมินและเปรียบเทียบกับผลการทดลองทางประสพภาพสัณฐาน สามารถช่วยยืนยันความแน่นอนและความขัดเคลื่อนของข้อมูลได้มากยิ่งขึ้น
ตาราง 2 ความหมายของคุณลักษณะเมื่อมีผักต่างๆ ในขึ้นคุณภาพทางกายภาพจากการทํา texture profile analysis และในชีวิตคุณภาพทางประสิทธิภาพ

<table>
<thead>
<tr>
<th>คุณลักษณะ</th>
<th>คุณภาพทางกายภาพ</th>
<th>คุณภาพทางประสิทธิภาพ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ความแข็ง (hardness)</td>
<td>แรงที่ใช้ในการทําให้ด้วงอย่างสิ้นรูป</td>
<td>แรงที่ใช้ในการกดด้วยระยะระหว่างผิวความดื้อเขียวรูปแหวนด้วงอย่าง</td>
</tr>
<tr>
<td>ความสามารถสั่นควบคู่กัน (cohesiveness)</td>
<td>ขอบเขตของวัสดุที่สามารถรูป่างกัน</td>
<td>ความแข็งแกร่งของผิวพื้นที่ที่เกิดขึ้นในชั้นด้วงอย่างแล้วทําให้ด้วงอย่างทับตรงที่กระจายกัน ด้วงอย่างที่กระจายหรือแยกออกจากกัน</td>
</tr>
<tr>
<td>ความยืดหยุ่น (springiness)</td>
<td>อัตราการแกนเรียบของวัสดุ</td>
<td>ระดับความสามารถในการยืดหยุ่น อีกทั้งยังมีผลต่อการยืด แรงดื้อใจไม่ตกด้วงอย่าง</td>
</tr>
<tr>
<td>ความสามารถในการกัดตัดผิวสูง (achesiveness)</td>
<td>แรงที่ใช้ในการกัดตัดผิวสูงที่มีพื้นผิว</td>
<td>แรงที่ใช้ในการกัดตัดผิวสูงที่มีพื้นผิว ติดอยู่ในปาก (โดยปกติเกิดจากพื้นผิว ปาก) ในระหว่างระยะระหว่างกั้นต่าง</td>
</tr>
<tr>
<td>การทนต่อการถลอก (chewiness)</td>
<td>แรงที่ใช้ในการกัดตัดผิวสูงที่มีพื้นผิว</td>
<td>ระดับการกัดตัดผิวสูงที่มีพื้นผิว ติดอยู่ในปาก</td>
</tr>
<tr>
<td>ความเหนียวเปื่อย (gumminess)</td>
<td>แรงที่ใช้ในการกัดตัดผิวสูงที่มีพื้นผิว</td>
<td>ผลการทำงานที่เชื่อมต่อผิวสูงที่มีพื้นผิว</td>
</tr>
</tbody>
</table>

ที่มา: ข้อมูล-arw (2550)
Lyon et al. (2000) ประเมินฟิล์มและเนื้อสัตว์จำพวกหูหงูจากข้าว 6 พันธุ์ ซึ่งมีลักษณะเฉพาะต่างกันปานกลางและบกพร่อง ปัญญาในสถานที่ต่างกัน โดยการวัดทางประสบการณ์และเครื่องทดสอบกลับและเนื้อสัตว์ (TA-XT2 Texture analyzer) ผลการหาความสัมพันธ์ของค่าวัดจากทั้ง 2 วิธี ปรากฏว่าทำให้ความต่างกันความเหนียว (stickiness) และความเหนียวติดหู (adhesiveness) มีความสัมพันธ์กันน้อยในกลุ่มผู้ทดสอบข้าว และเครื่องมือวัด การทดสอบด้วยเครื่องวัดเครื่องมือสัตว์ในกลุ่มและการทดสอบรอบได้ผลของค่าวัดในเส้นความแข็งความยืดหยุ่น ความยางค์ติดหู ความเหนียวติดหู ความเหนียวชี้มิติ และการเที่ยวที่แตกต่างกันน้อยกว่าผลจาก การทดสอบข้าว

Bhattacharya et al. (1999) ศึกษาสมบัติทางคณิตศาสตร์ข้าว 11 พันธุ์ ต่อการเคลื่อนตัวต้นต้น พบว่า ปริมาณและมีนิสถ์เป็นปัจจัยหลักที่มีผลต่อสมบัติการเปลี่ยนแปลงความเหนียว และสมบัติด้านเนื้อสัตว์ข้าวแต่ละสายพันธุ์ โดยปริมาณและมีนิสถ์ มีความสัมพันธ์ทางสถิตกับค่าการขับด้วยวิธี และมีความสัมพันธ์ทางบวกกับความแข็ง (hardness) ความเหนียว ชี้มิติ (gumminess) การกลับการเที่ยว (chewiness) และความต้านแรงดึง (tensile strength) ซึ่งการวัดการเปลี่ยนแปลงความเหนียว สามารถที่拿来คุณค่าของข้าวเพื่อใช้ในการเคลื่อนตัวต้นต้นได้.
บทที่ 3
อุปกรณ์และวิธีการ

วัสดุและวิธีการ

1. ภูเขาดินสีดำ (หุบ. อิสริยะบุตร, เชียงใหม่)

เครื่องมือ

1. ห้องแสงเอกซ์ที่อินฟราเรด �отสวานาสีเขียวไวโอลีต (Sylvania, 254 nm, 15 วัตต์)
2. เครื่องชั่งทางเคมี 4 ตันหนึ่ง (analytical balance: Sartorius, Germany)
3. ห้องอบที่ร้อน (hot air oven: Binder, Germany; Termaks, Norway)
4. เตาฝาแก้ว (muffle furnace: Carbolite, England)
5. เครื่องวัดมวลน้ำอิสระ (kjeldahl nitrogen equipment: Tecator, Sweden)
6. เครื่องวัดน้ำน้ำมัน (soxhlet apparatus: Tecator, Sweden)
7. เครื่องวัดความเป็นกรด-เบส (aρ (water activity meter: Aqualab 3TE, U.S.A.)
8. เครื่องวัดเรซิลิอิน (colorimeter: Tri-stimulus colorimeter, Japan)
9. เครื่องวัดความเป็นกรด-เบส (pH meter: Metromh 744, Switzerland)
10. เครื่องปั่น (blender: Moulirex, China)
11. หินเชื่อม (lamina flow: Holten Laminar HB2472, Denmark)
12. ห้องอบที่ร้อน (incubator: Ieraeus B12, Germany)
13. หม้อฆ่าเชื้อ (autoclave)
14. เครื่องวัดความหยาบหยาบนิยม (TA.XT plus texture analyzer: Stable Micro system Ltd., UK)
15. เครื่องชั่งทางเคมี 4 ตันหนึ่ง (analytical balance: Sartorius CP 224S, Germany)
16. เครื่องชั่งทางเคมี 2 ตันหนึ่ง (analytical balance: Sartorius BP 610, Germany)
อุปกรณ์

1. จานพาซ์เซิฟ (plate)
2. กระบอกวง (cylinder)
3. หลอดทรงกลม (tube)
4. ขวดดูแลน (duran)
5. ขวดรูปทรงพู่ (flask)
6. ขวดวัสดุปริมาตร (volumetric flask)
7. บีเดอร์ (beaker)
8. บีแดร์ (burette)
9. ไมโครพิปเพ็ท (micropipette)
10. ปีเพ็ททีป (pipette tip)
11. ปิปเพ็ท (pipette)
12. กระบอกโบชเนอร์ (buchner funnel)
13. กระดาษกรอง (filter paper)
14. หลอดหยด (dropper)
15. ยางห่วง (rubber)
16. ขวดน้ำกลั่น (wash bottle)
17. กระป๋องละอองนินีโอมิวเรียมแคง (moisture can)
18. โดดดิล่ามิวเรีย (desiccator)
19. ถ้วยซิลิเกอร์โย่ง (crucible)
20. แท่งผสมผังสา (stirring rod)

สารเคมี

1. Ethanol (commercial grade)
2. Sodium hydroxide (Merck, Cat No. 106498)
3. Boric acid (Merck, Cat No. 100165)
4. Hydrochloric acid (Merck, Cat No. 100317)
5. Bromocresol green (Fisher, Cat No. B/4320/44)
6. Methyl red (Riedel, Cat No. 32654)
7. Sulfuric acid (Merck, Cat No. 100731)
8. Kjeldahl catalyst (Riedel, Cat No. 31816)
9. Petroleum ether (Ajax, Cat No. A361)
10. Glacial acetic acid (Merck, Cat No. 100063)
11. Iodine (Carlo, Cat No. 455959)
12. Phenolphthalein indicator

การเตรียมสิ่งชื้อ

1. Peptone water (Himedia, Cat No. MO28)
2. Plate count agar (Difco, Cat No. 247940)
3. Potato dextrose agar (Difco, Cat No. 213400)

วิธีการทดลอง

1. การคัดแยกของประเภทพื้นฐานทางกลีบของด้านดึกส้ม

ก้าวต่อไปคือการใช้เอ็นไซต์พฤติกรรมHong Kong ในการคัดแยกของด้านดึกส้ม ด้วยการใช้ผลลัพธ์จากการทดลองที่ได้สิ่งชื้อ และสามารถใช้เป็นวิธีการวิเคราะห์ปริมาณความชื้น แอล ไซน์ โปรตีน และคาร์โบไฮเดรต (AOAC, 1995)

2. การคัดแยกของความชื้นของเจริญเติบโตในโยเตอร์ และระยะเวลาที่มีการสะสมที่ดีที่สุด

การคัดแยกของความชื้นของเจริญเติบโตในโยเตอร์ และระยะเวลาที่มีการสะสมที่ดีที่สุด วิธีการคัดแยกสิ่งชื้อ 2 ปีจึงได้แก่
ปัจจัยที่ 1 ระดับความขั้มของรังสีถีลหราวาโยโซดี (จำนวนละลายถีลหราวาโยโซดี และระยะเวลาระหว่างก็จะตั้งค่าส่วนลดและหลอดไฟ) ปัจจัยที่ 2 ระยะเวลาการจราจรถีลหราวาโยโซดี (0-120 วินาที)

ตัวแปรและปัจจัยที่เกี่ยวข้องในกระบวนการขั้ม ลาดเหลืองก่อนถีลหราวาโยโซดี ต้านทานและมันล้าง ต้านทาน ละลาย และละลาย ทดสอบ สามารถปรับระดับได้ ด้วยการกำหนดระดับที่เหมาะสม แต่ละเกณฑ์การขั้มก่อนถีลหราวาโยโซดีอยู่ระหว่างหลอดก่อนถีลหราวาโยโซดีทั้ง 2 ต้าน โดยระดับความขั้มของรังสีถีลหราวาโยโซดีที่ใช้ในการทดลองคือ

\[
UV_1 = UV \text{ 4 หลอด (ค้านับ 2 หลอด และด้านล่าง 2 หลอด) ระยะเวลาระหว่างหลอดไฟ 10 เซนติเมตร} \\
UV_2 = UV \text{ 8 หลอด (ค้านับ 4 หลอด และด้านล่าง 4 หลอด) ระยะเวลาระหว่างหลอดไฟ 10 เซนติเมตร} \\
UV_3 = UV \text{ 4 หลอด (ค้านับ 2 หลอด และด้านล่าง 2 หลอด) ระยะเวลาระหว่างหลอดไฟ 15 เซนติเมตร} \\
UV_4 = UV \text{ 8 หลอด (ค้านับ 4 หลอด และด้านล่าง 4 หลอด) ระยะเวลาระหว่างหลอดไฟ 15 เซนติเมตร}
\]

ตัวอย่างการทดลองสั่งส่งต่อการกระจายถีลหราวาโยโซดีที่ระดับความขั้มต่างๆเป็นเวลา 0, 20, 40, 60, 80, 100 และ 120 วินาที ตัวอย่างที่ค้างในการกระจายถีลหราวาโยโซดีอยู่หน้าระดับขั้มใหญ่ปฏิกิริยาขั้มสภาพ การขั้มได้แก่ ค่าในระบบ CIE (L* a* b*) (colorimeter: Tri-stimulus colorimeter, Japan) และปริมาณน้ำยืดหยุ่น (a*) (water activity meter: Aqualab 3TE, U.S.A.) สบทบิลก์ภูมิ ได้แก่ ปริมาณความชื้น ปริมาณการตั้งค่ามันภูมิที่ยับยั้งการเซลล์ (AOAC, 1995) ค่าความเป็นกรด-เบส (pH) (pH meter, metrohm 744) และทางจุดขั้มวิทยา ได้แก่ ปริมาณขั้มเกณฑ์เปลี่ยนทุก (total viable count) และปริมาณขั้มเยสและมอลด (yeast and mould count) โดยอาศัยการจัดการสั่งส่งแบบบล็อกสุ่มสมบูรณ์ (randomized complete block design) ทำการทดลองทั้งหมด 3 ซ้ำ มีการวิเคราะห์ความแปรปรวนทางสถิติ (ANOVA) และความแตกต่างของค่าเฉลี่ยโดยวิธี Duncan’s New Multiple Range Test (DMRT) ที่ระดับความขั้มเบี่ยวของ 95 ตัวโปรแกรมสำหรับโปรแกรมสำรีจูไป_blocks (SPSS)
3. การศึกษาถึงการเก็บรักษาสิ่งเดิมยิ่งนั้น

จากภาพที่มีที่สุดในการกระจายสิ่งเดิมยิ่งไปในตัวอย่างวัตถุจิตร์ที่ได้จาก
ตอนที่ 2 ได้ รายละเอียดถึงการใช้ตัวอย่างวัตถุจิตร์ 120 วันที่ ได้นำมาใช้ในการศึกษาขั้นตอนนี้ปริมาณที่อนุกิจจิตร์สี่สิ่งเดิมยิ่ง
สิ่งเดิมยิ่งของวัตถุจิตร์และไม่ผ่านการกระจายสิ่งเดิมยิ่งไปในตัวอย่าง
(ชุดควบคุม) โดยศึกษา
ปัจจัยซึ่งมีอุปกรณ์การบริการที่มีผลต่อคุณภาพทางยาภาพ บริการ และจุดช่วยเหลือของวัตถุจิตร์
เก็บสิ่งเดิมยิ่งที่มีปัจจัยระดับความเข้มข้นของวัตถุจิตร์ไปในตัวอย่างที่ 2 ระดับ คือ ระดับสูง และระดับต่ำ
สำนัก ด้วยวิธีการระดับสิ่งเดิมยิ่งที่ศึกษาดังนี้

A คือ วิธีเพื่อสิ่งเดิมยิ่งที่ผ่านการกระจายสิ่งเดิมยิ่งของวัตถุจิตร์ที่ไม่ผ่านการกระจายสิ่ง
เดิมยิ่งไปของตัวอย่าง (ชุดควบคุม)

B คือ วิธีเพื่อสิ่งเดิมยิ่งที่ผ่านการกระจายสิ่งเดิมยิ่งของวัตถุจิตร์ที่ผ่านการกระจายสิ่ง
deิมยิ่งไปของตัวอย่าง (ชุดควบคุม) หล่อรังสีการกระจายสิ่งเดิมยิ่งไป 4 หล่อ ที่ระยะทาง 10
ชุดเดินะรับ ระยะเวลา 120 วันที่

C คือ วิธีเพื่อสิ่งเดิมยิ่งที่ผ่านการกระจายสิ่งเดิมยิ่งของวัตถุจิตร์ที่ผ่านการกระจายสิ่ง
deิมยิ่งไปของตัวอย่าง (ชุดควบคุม) หล่อรังสีการกระจายสิ่งเดิมยิ่งไป 8 หล่อ ที่ระยะทาง 10
ชุดเดินะรับ ระยะเวลา 120 วันที่

ด้วยอย่างที่จัดจะต้องถูกเก็บรักษาโดยการดัดแปลงสิ่งเดิมยิ่งไปที่ใช้ในการวิจัย
ที่การเก็บรักษาที่ชูหน่วย 15-25 และ 35 องศาเซลเซียส ค่าภาพ 6
วิธีวิจัยที่ได้จากสิ่งเดิมยิ่งเพื่อวิเคราะห์ค่าภาพเพื่อให้ถูกต้อง
colorimeter: Tri-stimulus colorimeter, Japan) และปริมาณน้ำอิสระ (a(1) (water activity meter:
Aqualab 3TE, U.S.A.) บนสิ่งเดิมยิ่งที่ได้แก่ ปริมาณความชื้น ปริมาณการผันผวนสิ่งเดิมยิ่งเก็บผลลิค
(AOAC, 1995) ความดันเป็นน้ำดี (pH) (pH meter, metrohm 744) และจุดช่วยเหลือที่
ได้แก่ ปริมาณเข้าออกที่มีชีวิตนิเวศ (total viable count) และปริมาณเยื่อไว้และสาร (yeast and mold
count) จนกระทั่งถูกเพิ่มสิ่งเดิมยิ่งเก็บผลลิคโดยการมีการจัดการสิ่งเดิมยิ่งเก็บผลลิค
in CRD มีการวิเคราะห์ความเป็นไปทางสถิติ (ANOVA) และความแตกต่างของค่าสิ่งเดิมยิ่งโดยใช้
Duncan’s New Multiple Range Test (DMRT) ที่ระดับความเชื่อมั่นร้อยละ 95 ค่าที่เก็บแปลง
สิ่งเดิมยิ่งไปทางสถิติ (SPSS) นอกจากนี้ยังได้ทำการวิเคราะห์ Texture profile analysis (TPA)
(ลักษณะวัสดุ) และการทดสอบกับตัวอย่างทางสถานีสิ่งเดิมยิ่งไปทางตัวอย่างจากผู้ประกอบการ
<table>
<thead>
<tr>
<th>ชุดควบคุม</th>
<th>ชุดทดลองระดับต่ำ</th>
<th>ชุดทดลองระดับสูง</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
</tr>
</tbody>
</table>

เก็บรักษาที่อุณหภูมิต่างๆ
- 15 องศาเซลเซียส (A15, B15, C15)
- 25 องศาเซลเซียส (A25, B25, C25)
- 35 องศาเซลเซียส (A35, B35, C35)

ภาพ 6 แผนผังการศึกษาอายุการเก็บรักษาที่อุณหภูมิต่างๆในสมบัติ
บทที่ 4
ผลการวิจัยและวิจารณ์

การสังเกตองค์ประกอบพื้นฐานทางมีชีวิตความเครียดอันตราย

จากการวิเคราะห์องค์ประกอบพื้นฐานทางมีชีวิตความเครียดอันตราย (ตาราง 3) พบว่าประกอบด้วยปริมาณความเครียดร้อยละ 64.22 ปริมาณมีร้อยละ 0.15 ปริมาณไปรื่นร้อยละ 0.16 ปริมาณใหญ่มันร้อยละ 0.82 และปริมาณการไปไซบอร์จร้อยละ 34.32 จะเห็นว่าคำว่าความเครียดอันตราย

มีปริมาณความขันตุงิ่งร้อยละ 64 ซึ่งจะส่งผลต่อการเปลี่ยนแปลงของเจ้าของที่เกี่ยวข้องอย่างมากเนื่องจากการเปลี่ยนแปลงของเจ้าของที่เกี่ยวข้องอย่างมากเนื่องในการหลอกถึงความทุกข์ไม่ให้คิด

กับถูกปนเปรียบผลิติค ส่วนปริมาณไปยังนั้นมีผลต่อกำกับไปตามชนิดของการพันธุ์ที่นำมาใช้เป็นวัตถุคลื่นในการผลิติค (นิวเวอร์และกริดา 2546)

ตาราง 3 องค์ประกอบพื้นฐานทางมีชีวิตความเครียดอันตราย

<table>
<thead>
<tr>
<th>องค์ประกอบพื้นฐานทางมีชีวิต</th>
<th>ปริมาณ (ร้อยละ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ความเครียด</td>
<td>64.22 ± 0.78</td>
</tr>
<tr>
<td>ไปรื่น</td>
<td>0.15 ± 0.00</td>
</tr>
<tr>
<td>ไปใหญ่</td>
<td>0.16 ± 0.03</td>
</tr>
<tr>
<td>ไปมัน</td>
<td>0.82 ± 0.11</td>
</tr>
<tr>
<td>ไปไซบอร์จ</td>
<td>34.32 ± 1.36</td>
</tr>
</tbody>
</table>

หมายเหตุ: คำว่าข้อมูลแสดงค่าเฉลี่ย ± คำนวณแบบมาตรฐาน (n=3)
การศึกษาของความเข้าใจของระดับอัตราการใช้โฟลต และระยะเวลาที่เหมาะสมในครรภ์ที่รับคุณพยาบาล

ในการศึกษาของช่วงระยะเวลาขั้นต่ำของระดับการใช้โฟลต (จำนวนห้องจริง อัตราการใช้โฟลต 4 และ 8 ห้อง ระยะทั้ง 10 และ 15 ชั่วโมงต่อ 120 วินาที เพื่อฤกษ์เบื้องจาก
เปลี่ยนแปลงของค่าความต่ำนี้) จากการให้รังสีกันยิ้ม พบว่า ค่าความต่ำนี้มีปริมาณ
ความชันสูงสุ่มร้อยละ 64 (ตาราง 4) และปริมาณนัยอิสระ 0.988 (ตาราง 5) สอดคล้องกับงานวิจัย
ของ ventas et al. (2008) ที่พบว่า ปริมาณของนัยอิสระของค่าความต่ำนี้จะอยู่ในช่วง 0.97-0.98

ระยะเวลาการทานรังสีอัตราการใช้โฟลตมีผลต่อการเปลี่ยนแปลงของปริมาณนัย
อิสระ อย่างมีนัยสำคัญทางสถิติ (p<0.05) จากการทดลองพบว่า เมื่อเพิ่มระยะเวลาการรังสี
อัตราการใช้โฟลต สำรวจให้ปริมาณนัยอิสระมีค่าที่น้อยขึ้นเมื่อเทียบกับ น certify ค่าความต่ำนี้มีปริมาณ
ความชัน และปริมาณนัยอิสระสูง จึงเป็นปัจจัยหนึ่งที่ทำให้ค่าความต่ำนั้นลดลงได้ง่าย ซึ่ง
สอดคล้องกับข้อมูลจาก (245) ที่พบว่า ปริมาณนัยอิสระที่ทำให้ถึงภาวะเกิดการเปลี่ยนที่สุด มีค่า
เท่ากับ 0.90

Li et al. (2011) ได้ทำการศึกษามะยุของปริมาณนัยอิสระและกรดเจริญชีวิตซึ่งมีต่อ
อายุการเก็บรักษาของคุณพยาบาล ได้ทำรายการติดต่อของริน 3%, โพลิอิน ใกล้ก่อ 2%,
สารประกอบเพลวอิน 0.4% และเกิด 3% ลงในกรณีผลต่อค่าความต่ำนี้ สอดคล้องกับปริมาณนัยอิสระ
ของค่าความต่ำนี้มีค่าเท่ากับ 0.900 ซึ่งลดลงเท่ากับค่าปริมาณเพิ่มขึ้นกว่าค่าความต่ำนี้สูงชุด
ความชันที่มีค่าปริมาณนัยอิสระเท่ากับ 0.979

Adams and Mos (2000) กล่าวว่า โดยทั่วไปที่ผ่านไปมีการเจริญชีวิตใกล้ได้อย่าง
รวดเร็วเมื่อปริมาณนัยอิสระสูงกว่า 0.91 ขณะที่มีอัตราการเจริญชีวิตใกล้ได้อย่างมากปริมาณนัย
อิสระในช่วง 0.85-0.90 จากการทดลองโดยผู้ทดลองโดยไม่เกี่ยวข้องค่าความต่ำนี้ลดปริมาณนัย
อิสระนี้ ซึ่งสามารถช่วยในการเจริญชีวิตของแบคทีเรียได้ทั้งหมดและราวรัดให้พิจารณาอย่าง เฉพาะ
หากคิดการวิเคราะห์ภูมิคุ้มกันอาจทำได้จากที่ผู้มีการเจริญชีวิตใกล้ได้อย่างมากปริมาณนัยอิสระใน
ข้อเสนอแนะการบริหาร
ตาราง 4: ปริมาณความชื้นของข้อเท้าเส้นเลือดที่ผ่านรังสียลตรaviolet ของระดับความเข้มและระยะเวลาต่างๆ

<table>
<thead>
<tr>
<th>ระยะเวลาการฉายรังสี</th>
<th>ระดับความเข้มรังสียลตรaviolet</th>
<th>ผลของระยะเวลาการฉายรังสียลตรaviolet</th>
</tr>
</thead>
<tbody>
<tr>
<td>(วินาที)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>64.50 ± 0.25</td>
<td>64.23 ± 0.66</td>
</tr>
<tr>
<td>20</td>
<td>64.08 ± 0.60</td>
<td>64.10 ± 0.80</td>
</tr>
<tr>
<td>40</td>
<td>64.35 ± 0.60</td>
<td>64.10 ± 0.62</td>
</tr>
<tr>
<td>60</td>
<td>64.12 ± 0.74</td>
<td>64.09 ± 0.72</td>
</tr>
<tr>
<td>80</td>
<td>64.25 ± 0.42</td>
<td>63.94 ± 0.74</td>
</tr>
<tr>
<td>100</td>
<td>64.08 ± 0.80</td>
<td>63.98 ± 0.75</td>
</tr>
<tr>
<td>120</td>
<td>64.19 ± 0.53</td>
<td>64.03 ± 0.76</td>
</tr>
</tbody>
</table>

ผลของระดับความเข้มของรังสี UV โดยเฉลี่ย:

- UV1 = UV 4 หลอด ระยะห่างระหว่างหลอดไฟ 10 เซนติเมตร, UV2 = UV 8 หลอด ระยะห่างระหว่างหลอดไฟ 10 เซนติเมตร
- UV3 = UV 4 หลอด ระยะห่างระหว่างหลอดไฟ 15 เซนติเมตร, UV4 = UV 8 หลอด ระยะห่างระหว่างหลอดไฟ 15 เซนติเมตร

หมายเหตุ:
- "ไม่มีความแตกต่างของค่าเฉลี่ยที่มีความแตกต่างทางสถิติ (p<0.05)"
ตาราง 5 ปริมาณน้ำถังขยะของกฐินเพื่อส่นย่อยที่ระดับความเข้มและระยะเวลาต่างๆ

<table>
<thead>
<tr>
<th>ระยะเวลาการขนถังถัง (วินาที)</th>
<th>ระดับความเข้มรังสียีหลีดโวไลด์ (UV)</th>
<th>ผลของระยะเวลาการขนถัง</th>
<th>รังสีโดยเฉลี่ย</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UV_1</td>
<td>UV_2</td>
<td>UV_3</td>
</tr>
<tr>
<td>0</td>
<td>0.987 ± 0.00</td>
<td>0.988 ± 0.00</td>
<td>0.986 ± 0.00</td>
</tr>
<tr>
<td>20</td>
<td>0.987 ± 0.00</td>
<td>0.987 ± 0.00</td>
<td>0.986 ± 0.00</td>
</tr>
<tr>
<td>40</td>
<td>0.989 ± 0.00</td>
<td>0.987 ± 0.00</td>
<td>0.988 ± 0.00</td>
</tr>
<tr>
<td>60</td>
<td>0.988 ± 0.00</td>
<td>0.988 ± 0.00</td>
<td>0.988 ± 0.00</td>
</tr>
<tr>
<td>80</td>
<td>0.988 ± 0.00</td>
<td>0.988 ± 0.00</td>
<td>0.987 ± 0.00</td>
</tr>
<tr>
<td>100</td>
<td>0.988 ± 0.00</td>
<td>0.988 ± 0.00</td>
<td>0.987 ± 0.00</td>
</tr>
<tr>
<td>120</td>
<td>0.987 ± 0.00</td>
<td>0.988 ± 0.00</td>
<td>0.987 ± 0.00</td>
</tr>
</tbody>
</table>

ผลของระดับความเข้มของรังสี UV โดยเฉลี่ย:

| | 0.988 ± 0.00^c | 0.988 ± 0.00^a | 0.987 ± 0.00^c | 0.988 ± 0.00^c | 0.988 ± 0.00 |

หมายเหตุ:
- **UV_1** – UV 4 หลอด ระยะทางระหว่างหลอดไฟ 10 เซนติเมตร, **UV_2** – UV 8 หลอด ระยะทางระหว่างหลอดไฟ 10 เซนติเมตร
- **UV_3** – UV 4 หลอด ระยะทางระหว่างหลอดไฟ 15 เซนติเมตร, **UV_4** – UV 8 หลอด ระยะทางระหว่างหลอดไฟ 15 เซนติเมตร
- **^a** อักษรด้านซ้ายที่มีความแตกต่างกันในแนวคิดชีวภาพแสดงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- **^c** อักษรด้านซ้ายที่มีความแตกต่างกันในแนวคิดชีวภาพแสดงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.00)
จากตาราง 6 และ 7 ค่าผิดศักย์สีน้ำตาลที่เป็นที่มาเป็นการเปลี่ยนแปลงสภาพแบบรังสีอย่างมีนัยสำคัญทางสถิติ (p<0.05) โดยปริมาณการหลั่งคลื่นที่มีสัดส่วนของค่ากับค่าสีน้ำตาลที่ไม่ผ่านการฉายรังสีมีค่าสูงกว่าค่าที่ผ่านการฉายรังสีอีกครั้งรังสี
ตาราง 6 ค่าความเป็นกรด-เบสของรูปรักษาเส้นสำที่ผ่านรังสีอินกรุวโคลดที่ระดับความเข้มและระยะเวลาต่างๆ

<table>
<thead>
<tr>
<th>ระยะเวลาการฉายรังสี (วินาที)</th>
<th>ระดับความเข้มรังสีอินกรุวโคลด</th>
<th>ผลของการระลึกการฉายรังสีโดยรวม**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UV<sub>1</sub></td>
<td>UV<sub>2</sub></td>
</tr>
<tr>
<td>0</td>
<td>5.2 ± 0.06</td>
<td>6.1 ± 0.06</td>
</tr>
<tr>
<td>20</td>
<td>5.6 ± 0.67</td>
<td>5.7 ± 0.45</td>
</tr>
<tr>
<td>40</td>
<td>5.8 ± 0.40</td>
<td>5.7 ± 0.15</td>
</tr>
<tr>
<td>60</td>
<td>5.8 ± 0.51</td>
<td>5.8 ± 0.26</td>
</tr>
<tr>
<td>80</td>
<td>5.8 ± 0.45</td>
<td>5.8 ± 0.36</td>
</tr>
<tr>
<td>100</td>
<td>5.8 ± 0.23</td>
<td>6.0 ± 0.38</td>
</tr>
<tr>
<td>120</td>
<td>5.7 ± 0.55</td>
<td>5.9 ± 0.32</td>
</tr>
</tbody>
</table>

ผลของการระลึกความเข้มของรังสี UV โดยรวม**

5.7 ± 0.43 5.9 ± 0.28 5.9 ± 0.25 5.8 ± 0.34 5.8 ± 0.34

หมายเหตุ:
- UV₁ = UV 4 หลอด ระยะห่างระหว่างหลอดไฟ 10 เซนติเมตร, UV₂ = UV 8 หลอด ระยะห่างระหว่างหลอดไฟ 10 เซนติเมตร
- UV₃ = UV 4 หลอด ระยะห่างระหว่างหลอดไฟ 15 เซนติเมตร, UV₄ = UV 8 หลอด ระยะห่างระหว่างหลอดไฟ 15 เซนติเมตร
- ** ไม่มีความแตกต่างของค่าสนิทอย่างมีนัยสำคัญทางสถิติ (p<0.05)
ตาราง 7 ปริมาณการนำหนามคิคลีที่ยับการเล็กติก (ร้อยละ) ของรังสีต่างส่วนที่กินรังสีเอ็มราวด้านที่ระดับความเข้มและระยะเวลาต่างๆ

<table>
<thead>
<tr>
<th>ระยะเวลาการฉายรังสี (วินาที)</th>
<th>ระดับความเข้มรังสีเอ็มราวด้านที่</th>
<th>ผลของระดับความเข้มที่รังสีเอ็ม-ra</th>
<th>รังสีเอ็ม-ra</th>
<th>รังสีเอ็ม-ra</th>
<th>รังสีเอ็ม-ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.36 ± 0.22</td>
<td>0.34 ± 0.11</td>
<td>0.39 ± 0.15</td>
<td>0.37 ± 0.15</td>
<td>0.37 ± 0.14</td>
</tr>
<tr>
<td>20</td>
<td>0.28 ± 0.14</td>
<td>0.27 ± 0.06</td>
<td>0.21 ± 0.08</td>
<td>0.26 ± 0.13</td>
<td>0.25 ± 0.10</td>
</tr>
<tr>
<td>40</td>
<td>0.27 ± 0.04</td>
<td>0.32 ± 0.12</td>
<td>0.23 ± 0.08</td>
<td>0.23 ± 0.07</td>
<td>0.26 ± 0.08</td>
</tr>
<tr>
<td>60</td>
<td>0.22 ± 0.04</td>
<td>0.27 ± 0.08</td>
<td>0.26 ± 0.02</td>
<td>0.24 ± 0.07</td>
<td>0.25 ± 0.06</td>
</tr>
<tr>
<td>80</td>
<td>0.24 ± 0.06</td>
<td>0.24 ± 0.08</td>
<td>0.25 ± 0.03</td>
<td>0.22 ± 0.04</td>
<td>0.24 ± 0.04</td>
</tr>
<tr>
<td>100</td>
<td>0.27 ± 0.08</td>
<td>0.20 ± 0.09</td>
<td>0.23 ± 0.08</td>
<td>0.27 ± 0.07</td>
<td>0.24 ± 0.08</td>
</tr>
<tr>
<td>120</td>
<td>0.25 ± 0.05</td>
<td>0.30 ± 0.12</td>
<td>0.21 ± 0.04</td>
<td>0.23 ± 0.07</td>
<td>0.25 ± 0.08</td>
</tr>
</tbody>
</table>

ผลของระดับความเข้มของรังสี UV โดยเฉลี่ย**

หมายเหตุ
- UV1 = UV 4 หลอด ระยะทางระหว่างหลอดไฟ 10 เซนติเมตร, UV2 = UV 8 หลอด ระยะทางระหว่างหลอดไฟ 10 เซนติเมตร
- UV3 = UV 4 หลอด ระยะทางระหว่างหลอดไฟ 15 เซนติเมตร, UV4 = UV 8 หลอด ระยะทางระหว่างหลอดไฟ 15 เซนติเมตร
- "" ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสําคัญทางสถิติ (p<0.05)
- "** อธิบายถึงระดับที่มีความแตกต่างกันในแนวตั้งแต่ละระดับความแตกต่างกันอย่างมีนัยสําคัญทางสถิติของค่าเฉลี่ย (p<0.05)
ในการวิเคราะห์ลักษณะทางกายภาพของวัสดุที่สังหารน้ำ ได้ใช้วัดค่าสีในระบบ CIE ที่ประกอบด้วยค่า L* a* และ b* โดยค่า L* หมายถึง ค่าความสว่างที่ก้าหูในช่วง 0-100 โดยที่ 0 คือ สีดำ และ 100 คือ สีขาว ค่า a* หมายถึง ค่าความเป็นสีแดง ค่า -a* หมายถึง ค่าความเป็นสีเขียว ส่วนค่า b* หมายถึง ค่าความเป็นสีเหลือง และค่า -b* หมายถึง ค่าความเป็นสีน้ำเงิน ถ้าค่าดังกล่าวมี สัดส่วนใหญ่เป็นสีแดง (Fu, 2008) ซึ่งจากการวิเคราะห์ดังกล่าวพบว่ามีความสัมพันธ์อย่างมีนัยสำคัญทางสถิติ (p<0.05) กับค่าสีเหลืองขณะที่ผ่านการระเหยผลสิ่งอื่นไปได้ปลอดภัยอย่างมีประสิทธิภาพ ค่าความสว่าง (L) ในช่วง 76.67-79.80 (ตาราง 8) ค่าความเป็นสีแดง (a) อยู่ในช่วง 0.77-3.25 (ตาราง 8) และค่าความเป็นสีเหลือง (b) อยู่ในช่วง 2.55-3.62 (ตาราง 10) โดยสีของวัสดุดังกล่าวเป็นผลมาจากการปริมาณโปรตีนของ ข้าวที่ใช้เป็นวัตถุดิบในการผลิต หากค่าความเป็นสีแดงจากร่างกายพันธุ์ที่มีปริมาณโปรตีนสูงจะมีสีแดงกว่าขณะที่ความเป็นสีเหลืองจะมีสีเหลืองมากขึ้น นอกจากนี้การผลิตมีการปรับรูปแบบปิคิว
ตาราง 4 ค่าความยาว (L*) ของกวางเหยื่อสวนเขตที่ผ่านรังสีอัลตราไวโอเลตที่ระดับความเข้มและระยะเวลาต่างๆ

<table>
<thead>
<tr>
<th>ระยะเวลาการจ่ายรังสี (วินาที)</th>
<th>ระดับความเข้มรังสีอัลตราไวโอเลต</th>
<th>ผลของระยะเวลาการจ่ายรังสีโดยเฉลี่ย<sup>**</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UV<sub>1</sub></td>
<td>UV<sub>2</sub></td>
</tr>
<tr>
<td>0</td>
<td>79.66 ± 0.81</td>
<td>78.36 ± 0.90</td>
</tr>
<tr>
<td>20</td>
<td>78.77 ± 1.86</td>
<td>78.11 ± 1.18</td>
</tr>
<tr>
<td>40</td>
<td>77.62 ± 1.87</td>
<td>78.59 ± 2.07</td>
</tr>
<tr>
<td>60</td>
<td>77.94 ± 1.81</td>
<td>78.68 ± 1.04</td>
</tr>
<tr>
<td>80</td>
<td>78.14 ± 2.27</td>
<td>78.60 ± 1.94</td>
</tr>
<tr>
<td>100</td>
<td>77.93 ± 2.10</td>
<td>78.46 ± 0.43</td>
</tr>
<tr>
<td>120</td>
<td>78.15 ± 2.20</td>
<td>77.79 ± 1.66</td>
</tr>
<tr>
<td>ผลของระดับความเข้มของรังสี UV โดยเฉลี่ย<sup>**</sup></td>
<td>78.32 ± 1.72</td>
<td>78.37 ± 1.23</td>
</tr>
</tbody>
</table>

หมายเหตุ: - UV₁ = UV ₄ หลอดระยะระหว่างหลอดไฟ 10 เซนติเมตร, UV₂ = UV ₄ หลอดระยะระหว่างหลอดไฟ 10 เซนติเมตร
- UV₃ = UV ₄ หลอดระยะระหว่างหลอดไฟ 15 เซนติเมตร, UV₄ = UV ₄ หลอดระยะระหว่างหลอดไฟ 15 เซนติเมตร
- * ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
ตาราง 9 ค่าความเป็นระดับ-เฉลี่ย (x̅) ของจุลชีวิตเยื่อสัมผัสที่ผ่านรังสีอินฟราไวโอเลตที่ระดับความเข้มและระยะเวลาต่างๆ

<table>
<thead>
<tr>
<th>ระยะเวลาการจ่ายรังสี (วันที่)</th>
<th>ระดับความเข้มรังสีอินฟราไวโอเลต</th>
<th>ผลของระยะเวลาการจ่ายรังสีโดยเฉลี่ย**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UV_1</td>
<td>UV_2</td>
</tr>
<tr>
<td>0</td>
<td>0.77 ± 0.23</td>
<td>3.16 ± 0.71</td>
</tr>
<tr>
<td>20</td>
<td>2.07 ± 1.17</td>
<td>2.84 ± 1.22</td>
</tr>
<tr>
<td>40</td>
<td>2.18 ± 1.70</td>
<td>2.88 ± 1.39</td>
</tr>
<tr>
<td>60</td>
<td>2.96 ± 1.32</td>
<td>2.36 ± 1.67</td>
</tr>
<tr>
<td>80</td>
<td>2.62 ± 0.75</td>
<td>2.41 ± 1.22</td>
</tr>
<tr>
<td>100</td>
<td>1.97 ± 2.42</td>
<td>1.96 ± 0.71</td>
</tr>
<tr>
<td>120</td>
<td>2.25 ± 1.72</td>
<td>2.83 ± 1.26</td>
</tr>
<tr>
<td>ผลของระดับความเข้มของรังสี UV_5 โดยเฉลี่ย**</td>
<td>2.12 ± 0.40</td>
<td>2.63 ± 1.08</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- $UV_1 - UV_4$ คือค่าระยะระหว่างระยะห่างหลอดไฟ 10 เซนติเมตร, $UV_5 - UV_8$ คือค่าระยะระหว่างระยะห่างหลอดไฟ 15 เซนติเมตร
- $UV_1 - UV_4$ คือค่าระยะระหว่างระยะห่างหลอดไฟ 15 เซนติเมตร, $UV_5 - UV_8$ คือค่าระยะระหว่างระยะห่างหลอดไฟ 15 เซนติเมตร
- ** ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
ตาราง 10 ค่าความเป็นกั้นสั่น-น้ำมัน (**) ของกั้นเคลื่อนสั่นพื้นที่ผ่านรังสียูวีในวันที่ที่ระดับความเข้มและระยะเวลาต่างๆ

| ระยะเวลาการกระจายถึง (วันที่) | ระดับความเข้มรังสียูวีในวันที่ | ผลของระยะเวลาการกระจายรังสีโดยเฉลี่ย**
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UV₁</td>
<td>UV₂</td>
</tr>
<tr>
<td>0</td>
<td>3.62 ± 0.45</td>
<td>3.39 ± 0.79</td>
</tr>
<tr>
<td>20</td>
<td>3.46 ± 0.84</td>
<td>2.80 ± 0.49</td>
</tr>
<tr>
<td>40</td>
<td>3.12 ± 0.64</td>
<td>2.86 ± 0.51</td>
</tr>
<tr>
<td>60</td>
<td>2.84 ± 0.81</td>
<td>3.13 ± 0.63</td>
</tr>
<tr>
<td>80</td>
<td>2.89 ± 0.78</td>
<td>3.27 ± 0.29</td>
</tr>
<tr>
<td>100</td>
<td>3.03 ± 0.83</td>
<td>3.16 ± 0.89</td>
</tr>
<tr>
<td>120</td>
<td>2.90 ± 0.55</td>
<td>2.86 ± 0.57</td>
</tr>
</tbody>
</table>

ผลของระดับความเข้มของรังสี UV โดยเฉลี่ย**

3.12 ± 0.66 3.07 ± 0.69 3.04 ± 0.91 3.25 ± 0.82 3.12 ± 0.77

หมายเหตุ:
- UV₁ = UV 4 หลอด ระยะทางระหว่างหลอดไฟ 10 เซนติเมตร, UV₂ = UV 8 หลอด ระยะทางระหว่างหลอดไฟ 10 เซนติเมตร
- UV₃ = UV 4 หลอด ระยะทางระหว่างหลอดไฟ 15 เซนติเมตร, UV₄ = UV 8 หลอด ระยะทางระหว่างหลอดไฟ 15 เซนติเมตร
- ** ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
จากการวิเคราะห์ปริมาณเชื้อดุสติหรือในก่างดินพบว่าปริมาณเชื้อดุสติหรือในก่างดินจากกลุ่มต้นแบบคอลเลกชันซึ่งมีค่า 13.2x10^6 cfu/g ปริมาณเชื้อดูสติหรือในก่างดินจากกลุ่มต้นแบบคอลเลกชันซึ่งมีค่า 2.0x10^7-7.9x10^10 cfu/g เหมือนกับก่ายดินที่มีปริมาณความชุ่มชื้นและปริมาณน้ำอิสระที่สูงจะมีการเจริญเติบโตของดุสติหรือ และอาจเกิดการเปลี่ยนแปลงของดุสติหรือในระหว่างกระบวนการผลิตรวมถึงนิวชิзависимที่เกี่ยวข้อง

จากการทดลองพบว่าเมื่อเพิ่มระดับความเข้มของรังสีอัลตราไวโอเลต และเพิ่มระดับในอาการรังสีอัลตราไวโอเลตมีประสิทธิภาพในการยับยั้งการเจริญเติบโตของเชื้อดุสติหรือในก่างดิน สถานิตกับงานวิจัยของ Gomez et al. (2010) ศึกษาผลของระดับรังสีอัลตราไวโอเลต (UVC) ที่มีค่าต่อความเข้มของแบคทีเรียที่เพิ่มขึ้น พบว่ารังสีอัลตราไวโอเลตที่ระดับความเข้ม 1.1 kJ/m² สามารถยับยั้งการเจริญเติบโตของ Listeria innocua ATCC 33090, Saccharomyces cerevisiae KE 162 และ Escherichia coli ATCC 11229 ได้ 0.57, 0.60 และ 0.95 log cycles ตามลำดับ และเมื่อเพิ่มระดับความเข้มรังสีอัลตราไวโอเลต 11.2 kJ/m² สามารถยับยั้ง การเจริญเติบโตของดุสติหรือในก่างดินเพิ่มขึ้นเป็น 1.9, 1.2 และ 1.0 log cycles ตามลำดับ

พบว่าเมื่อใช้ระดับความเข้มของรังสีอัลตราไวโอเลตและระยะเวลาการที่สูง (UV 8 หลอด ระยะเวลา 10 เซนติเมตร และระยะเวลา 10 วัน) จะพบการลดลงที่ระดับของจำนวนแบคทีเรีย ชิสเตรียและรายีกิจประการ 2.15 และ 1.76 log cycles ตามลำดับ (p≤0.05) ต่อดำ所属ในตาราง 11 และ 12 ทั้งนี้อาจเป็นผลเนื่องจากรังสีอัลตราไวโอเลตได้ทำลายโครงสร้างมณฑายาถุกและเข้าไปใน DNA ของชีสเตรียหรือเกิดการคัดแปลงโครงสร้าง DNA ทำให้เกิดการคัดแปลงในการเปลี่ยนแปลงของพันธุกรรมและชีสเตรียในที่สูง (เฉพาะการ, 2012) สถานิตกับงานวิจัยของ Bhat et al. (2011) ที่พบว่ารังสีอัลตราไวโอเลตมีผลต่อการยับยั้งการเจริญเติบโตของแบคทีเรียมากกว่ารังสีในรูปแบบของรังสีอัลตราไวโอเลตที่สูงและนพดล์ข้อมูลที่ระบุในตารางที่เมื่อต่างกันและผังชิสเตรียยืดตัวและมีความหนาบางกว่าแบคทีเรีย ทำให้มีความต้านทานต่อรังสีอัลตราไวโอเลตสูงกว่า
ตาราง 11 การทดลองของอุปกรณ์แบบที่เรียงลำดับ (log cycles) ของระดับความแข็งแกร่งที่ผ่านรังสียีดาโวโลติดที่ระดับความเข้มข้นและระยะเวลาต่างๆ

| ระยะเวลาการจากรังสี (วินาที) | ระดับความเข้มข้นรังสียีดาโวโลติด | ผลของระยะเวลาการจากรังสี | รังสีโคเดลิเอ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.29 ± 0.15</td>
<td>0.10 ± 0.18</td>
<td>0.36 ± 0.64²</td>
</tr>
<tr>
<td>40</td>
<td>0.52 ± 0.38</td>
<td>0.16 ± 0.20</td>
<td>0.55 ± 0.63³</td>
</tr>
<tr>
<td>60</td>
<td>0.31 ± 0.10</td>
<td>0.37 ± 0.15</td>
<td>0.60 ± 0.62⁴</td>
</tr>
<tr>
<td>80</td>
<td>0.33 ± 0.46</td>
<td>0.40 ± 0.10</td>
<td>0.66 ± 0.60⁵</td>
</tr>
<tr>
<td>100</td>
<td>1.02 ± 0.65</td>
<td>0.54 ± 0.23</td>
<td>0.93 ± 0.66⁶</td>
</tr>
<tr>
<td>120</td>
<td>1.20 ± 1.20</td>
<td>0.70 ± 0.37</td>
<td>1.33 ± 0.89⁷</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- UV₁ = UV 4 หลอด ระยะเวลาประมาณ 10 เซนติเมตร, UV₂ = UV 8 หลอด ระยะเวลาประมาณ 10 เซนติเมตร
- UV₃ = UV 4 หลอด ระยะเวลาประมาณ 15 เซนติเมตร, UV₄ = UV 8 หลอด ระยะเวลาประมาณ 15 เซนติเมตร
- ** อัตราการก้าวหน้าที่มีความแตกต่างกันในแนวตั้งแต่ละระยะเวลานานสูงกว่าระดับการก้าวหน้าของค่าเฉลี่ย (p<0.05)
- *** อัตราการก้าวหน้าที่มีความแตกต่างกันในแนวนอนแต่ละระยะเวลานานสูงกว่าระดับการก้าวหน้าอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
ตาราง 12 ปริมาณอิทธิพล (log cycles) ของรังสีดื่มสแบนที่ผ่านรังสีอิทธิพลไวโอยเอเพซิวี่ระดับความเข้มและระยะเวลาต่างๆ

<table>
<thead>
<tr>
<th>ระยะเวลาการกระจายถัง</th>
<th>ระดับความเข้มวังสีอิทธิพลไวโอยเอเพซิวี่</th>
<th>ผลของระยะเวลาการกระจายถัง</th>
</tr>
</thead>
<tbody>
<tr>
<td>(วันที่)</td>
<td>UV₁</td>
<td>UV₂</td>
</tr>
<tr>
<td>20</td>
<td>0.40 ± 0.56</td>
<td>0.38 ± 0.55</td>
</tr>
<tr>
<td>40</td>
<td>0.47 ± 0.58</td>
<td>0.53 ± 0.57</td>
</tr>
<tr>
<td>60</td>
<td>0.84 ± 1.09</td>
<td>0.73 ± 0.57</td>
</tr>
<tr>
<td>80</td>
<td>0.75 ± 0.40</td>
<td>0.93 ± 0.61</td>
</tr>
<tr>
<td>100</td>
<td>0.85 ± 0.81</td>
<td>1.59 ± 0.71</td>
</tr>
<tr>
<td>120</td>
<td>1.20 ± 1.10</td>
<td>1.76 ± 1.59</td>
</tr>
</tbody>
</table>

ผลของการกระจายความเข้ม ของรังสี UV โดยเฉลี่ย**

**หมายเหตุ - UV₁ = UV 4 หลายระยะเวลาผ่านชั่วโมงที่ 10 เชอร์เดชิวเตอร์, UV₂ = UV 4 หลายระยะเวลาผ่านชั่วโมงที่ 15 เชอร์เดชิวเตอร์, UV₃ = UV 8 หลายระยะเวลาผ่านชั่วโมงที่ 15 เชอร์เดชิวเตอร์, UV₄ = UV 8 หลายระยะเวลาผ่านชั่วโมงที่ 15 เชอร์เดชิวเตอร์
- ** อักษรที่ตัดกันที่มีความแตกต่างกันในแบบตัวเลขสัมประสิทธิ์ความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของตัวเลขที่ (p<0.05)
- ** "ไม่มีความแตกต่างของตัวเลขสัมประสิทธิ์มีนัยสำคัญทางสถิติ (p>0.05)"
การศึกษาการเก็บรักษาข้อมูลเกี่ยวกับเล้นสด

ตาราง 13 การประเมินลักษณะทางประสาทภื้นผิวของวัสดุแก้วสีน้ำตาลที่ผ่านการสั่นสะเทือนโดยวิธีหินที่ระดับความแข็งและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ จำแนกประเภทการสั่นสะเทือนดังนี้

<table>
<thead>
<tr>
<th>ทรัพยากร</th>
<th>อุณหภูมิ (องศาเซลเซียส)</th>
<th>ระยะเวลาเก็บรักษา (วัน)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>จุกคะควาย</td>
<td>15</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>/</td>
</tr>
<tr>
<td>บุรีระดับต้น</td>
<td>15</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>/</td>
</tr>
<tr>
<td>บุรีระดับชั้น</td>
<td>15</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>/</td>
</tr>
</tbody>
</table>
จากการศึกษาพบว่ากวางเตี้ยสัมพันธ์ที่เกี่ยวข้องที่อุณหภูมิ 15, 25 และ 35 องศาเซลเซียส มีปริมาณความรู้สึกต่อระยะเวลา 62.57-64.77 (p<0.05) ค่าตาราง 14 มีความแตกต่าง แต่เมื่อระดับภาวะหกเก็งกิจจะเกิดขึ้นก็จะเกิดขึ้นกิจแบบครอบครัวมากขึ้น และแสดงถึงผลกระทบที่เกี่ยวข้องกับการปรับสภาพความรู้สึกไม่เปลี่ยนแปลงมากนัก ซึ่งปริมาณความรู้สึกของกวางเตี้ยสัมพันธ์ที่ลดลง จึงได้จากการสูญเสียความรู้สึกเกี่ยวข้องกับกิจการไว้นานขึ้น (ดูโจทย์ และคณะ, 2551 อ้างโดย ศรีสุทธิ์, 2551) ปริมาณน้ำหนักครั้ง (kg) ลดลงอาคารภายนอกกิจการกีฬา มีค่าเท่ากับ 0.99 ไม่มีการเปลี่ยนแปลงมากนัก วิ่งด้วยเส้นเดียวกับปริมาณน้ำหนักครั้งที่สูง เป็นปัจจัยที่เหมาะสมต่อการทำงานของเชื้อจุลินทรีย์ ตลอดจนกิจการกีฬาของ Xu et al. (2008) ที่พบว่า กวางเตี้ยสัมพันธ์อยู่กิจการเกี่ยวรายที่สัมพันธ์เนื่องจากมีองค์ประกอบที่เป็นน้ำในปริมาณสูง และปริมาณของน้ำหนักครั้งดีอยู่เส้นของคุณ 0.97-0.98
ตาราง 14 การเปลี่ยนแปลงปริมาณความชื้นของข้างศีรษะและขาหลังเล็บในวิถีอากาศที่ระดับความขั้นและเล็กที่ระดับในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระดับการเก็บรักษากล้า

<table>
<thead>
<tr>
<th>ทริกแมงค์</th>
<th>อุณหภูมิ</th>
<th>ระดับการเก็บรักษากล้า (วัน)</th>
<th>ผลของทริกแมงค์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>64.34 ± 0.37</td>
<td>63.97 ± 0.66</td>
<td>64.03 ± 0.68</td>
</tr>
<tr>
<td>25</td>
<td>64.48 ± 0.48</td>
<td>64.56 ± 0.27</td>
<td>63.53 ± 1.47</td>
</tr>
<tr>
<td>35</td>
<td>64.67 ± 0.21</td>
<td>64.77 ± 0.39</td>
<td>63.62 ± 2.15</td>
</tr>
<tr>
<td>鳊กระดูก</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>64.43 ± 0.40</td>
<td>64.43 ± 0.54</td>
<td>63.82 ± 1.40</td>
</tr>
<tr>
<td>25</td>
<td>64.06 ± 0.55</td>
<td>64.20 ± 0.24</td>
<td>63.74 ± 0.76</td>
</tr>
<tr>
<td>35</td>
<td>64.43 ± 0.11</td>
<td>64.07 ± 0.18</td>
<td>62.57 ± 2.80</td>
</tr>
<tr>
<td>鳊กระดูก</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>64.29 ± 0.36</td>
<td>64.20 ± 0.34</td>
<td>63.37 ± 1.62</td>
</tr>
<tr>
<td>25</td>
<td>64.00 ± 0.55</td>
<td>64.20 ± 0.24</td>
<td>63.74 ± 0.76</td>
</tr>
<tr>
<td>35</td>
<td>64.43 ± 0.11</td>
<td>64.07 ± 0.18</td>
<td>62.57 ± 2.80</td>
</tr>
<tr>
<td>鳊กระดูก</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>64.29 ± 0.20</td>
<td>64.20 ± 0.34</td>
<td>63.75 ± 1.04</td>
</tr>
<tr>
<td>25</td>
<td>64.41 ± 0.53</td>
<td>64.41 ± 0.52</td>
<td>63.34 ± 1.02</td>
</tr>
<tr>
<td>35</td>
<td>64.07 ± 0.16</td>
<td>63.93 ± 0.28</td>
<td>63.27 ± 1.57</td>
</tr>
<tr>
<td>鳊กระดูก</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>64.26 ± 0.26</td>
<td>64.18 ± 0.40</td>
<td>63.45 ± 1.09</td>
</tr>
</tbody>
</table>
ตาราง 14 (ต่อ)

<table>
<thead>
<tr>
<th>รหัสหน่วยสัดส่วนสมบูรณ์</th>
<th>ระดับเวลา(กับรักษา) (วัน)</th>
<th>ผลของรักษาหน่วยสัดส่วนของ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ผลของยา</td>
<td>15</td>
<td>64.27 ± 0.28</td>
</tr>
<tr>
<td>ระยะเวลายา</td>
<td>25</td>
<td>64.32 ± 0.45</td>
</tr>
<tr>
<td>การดื่มยา</td>
<td>35</td>
<td>64.39 ± 0.30</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- **: ต่างกันกับที่มีความแตกต่างกันในแนวค่าเฉลี่ยความแตกต่างกับก่อนอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ***: ต่างกันกันที่มีความแตกต่างกันในแนวค่าเฉลี่ยความแตกต่างกับก่อนอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "": ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย±ค่าเบี่ยงเบนมาตรฐาน (n=3)
ระดับการกระจายสัดส่วนวิวัฒนาการและอุณหภูมิในการเก็บรักษาไม่ส่งผลต่อค่าความในกรด-เบสของก๊าซเสียสบสัศน์ (p>0.05) (ตาราง 15) ค่าความในกรด-เบสของก๊าซเสียสบสัศน์จะมีการกระจายสัดส่วนและอุณหภูมิได้ในช่วง 4.9-5.3 ลดลงต่ำกว่าค่าเก็บรักษา (p<0.05) วิเคราะห์ได้ว่ามีความไม่เป็นกรด-เบสที่เหมาะสมกับการเจริญเติบโตของแบคทีเรียเพื่อในช่วง 6.5-7.5 ถึง 5.0-6.0 เนื่องจากแสงและอุณหภูมิที่เรียกเจริญเติบโตได้ดีสุด (ทุ่งเขา, 2547)
ตาราง 15 การเปลี่ยนแปลงค่าความเป็นกรด-เบสของกลไกด้วยสังเคราะห์ผ่านวิศวกรรมไวโอลินที่ระดับความเข้มและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ

<table>
<thead>
<tr>
<th>ทรีแบบตัว</th>
<th>อุณหภูมิ</th>
<th>ระยะเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทรีแบบตัว</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>5.0 ± 0.06</td>
<td>5.0 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.2 ± 0.25</td>
<td>5.1 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>5.0 ± 0.06</td>
<td>5.0 ± 0.06</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>5.1 ± 0.18</td>
<td>5.0 ± 0.05</td>
<td>5.0 ± 0.09</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>5.0 ± 0.10</td>
<td>5.1 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.2 ± 0.21</td>
<td>5.1 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>5.0 ± 0.10</td>
<td>5.1 ± 0.12</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>5.1 ± 0.15</td>
<td>5.1 ± 0.13</td>
<td>5.0 ± 0.14</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>5.0 ± 0.00</td>
<td>5.0 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.3 ± 0.26</td>
<td>5.1 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>5.0 ± 0.06</td>
<td>5.1 ± 0.15</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>5.1 ± 0.20</td>
<td>5.1 ± 0.14</td>
<td>5.0 ± 0.11</td>
</tr>
</tbody>
</table>
ตาราง 15 (ต่อ)

<table>
<thead>
<tr>
<th>ทวีทัย (กิจ)</th>
<th>รายละเอียด (วัน)</th>
<th>ผลของทวีทัย</th>
<th>ไตรภูมิ (มก.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ผลของสูง</td>
<td>15</td>
<td>5.0 ± 0.06</td>
<td>5.0 ± 0.12</td>
</tr>
<tr>
<td>ระยะเวลา</td>
<td>25</td>
<td>5.2 ± 0.22</td>
<td>5.1 ± 0.11</td>
</tr>
<tr>
<td>การเสริม</td>
<td>35</td>
<td>5.0 ± 0.07</td>
<td>5.1 ± 0.11</td>
</tr>
<tr>
<td>วันที่</td>
<td>ค่าเฉลี่ย</td>
<td>5.1 ± 0.17</td>
<td>5.1 ± 0.17</td>
</tr>
</tbody>
</table>

หมายเหตุ
- "" ถ้ามีการต่างกันในแนวโน้มแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p < 0.05)
- "" ถ้าไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p > 0.05)
- ค่าของข้อมูลแต่ละค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 16 การเปลี่ยนแปลงค่าความเป็นกรดกรดคลดแคลนกรดเล็กดิ่ง (ร้อยละ) ของกัญชาข้าวบ้านสังเคราะห์พันธุ์เลือกไวอยด์ที่ระดับความเย็นและเก็บ
รักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระดับการเก็บรักษาต่างๆ

<table>
<thead>
<tr>
<th>ทรัพยากรน้ํา</th>
<th>อุณหภูมิ</th>
<th>ระดับการเก็บรักษา (ร้อย)</th>
<th>ผลของทรัพยากรน้ํา</th>
<th>โลหะอ่อน</th>
<th>โลหะแข็ง</th>
<th>โลหะเหล็ก</th>
</tr>
</thead>
<tbody>
<tr>
<td>ชูค่ำคูมู</td>
<td>15</td>
<td>0.37 ± 0.02 0.39 ± 0.15 0.39 ± 0.05</td>
<td>0.42 ± 0.10 0.28 ± 0.08 0.34 ± 0.09</td>
<td>0.31 ± 0.07 0.29 ± 0.04</td>
<td>0.35 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.32 ± 0.15 0.43 ± 0.17 0.37 ± 0.07</td>
<td>0.34 ± 0.03 0.32 ± 0.08</td>
<td>0.36 ± 0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>0.35 ± 0.02 0.39 ± 0.14 0.37 ± 0.06</td>
<td>0.37 ± 0.06</td>
<td>0.37 ± 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>คำเสีย</td>
<td>15</td>
<td>0.35 ± 0.08 0.40 ± 0.13 0.38 ± 0.05</td>
<td>0.38 ± 0.07 0.30 ± 0.08 0.34 ± 0.09</td>
<td>0.31 ± 0.07 0.29 ± 0.04</td>
<td>0.36 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.33 ± 0.10 0.35 ± 0.11 0.36 ± 0.06</td>
<td>0.35 ± 0.10 0.31 ± 0.11 0.40 ± 0.24</td>
<td>0.35 ± 0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>0.35 ± 0.04 0.41 ± 0.10 0.38 ± 0.05</td>
<td>0.31 ± 0.07 0.33 ± 0.09</td>
<td>0.35 ± 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>คำเสีย</td>
<td>15</td>
<td>0.36 ± 0.07 0.37 ± 0.10 0.37 ± 0.07</td>
<td>0.33 ± 0.07 0.32 ± 0.08 0.37 ± 0.16</td>
<td>0.32 ± 0.09 0.27 ± 0.06</td>
<td>0.35 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.36 ± 0.03 0.38 ± 0.09 0.38 ± 0.09</td>
<td>0.31 ± 0.09 0.30 ± 0.09</td>
<td>0.31 ± 0.04 0.27 ± 0.06 0.27 ± 0.05</td>
<td>0.32 ± 0.07</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>0.31 ± 0.13 0.35 ± 0.02 0.34 ± 0.05</td>
<td>0.30 ± 0.08 0.34 ± 0.11</td>
<td>0.35 ± 0.13 0.32 ± 0.09</td>
<td>0.33 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>คำเสีย</td>
<td>15</td>
<td>0.40 ± 0.04 0.39 ± 0.09 0.39 ± 0.09</td>
<td>0.30 ± 0.10 0.29 ± 0.07</td>
<td>0.30 ± 0.06</td>
<td>0.34 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0.36 ± 0.07 0.37 ± 0.07 0.37 ± 0.07</td>
<td>0.30 ± 0.08 0.31 ± 0.09 0.32 ± 0.08 0.30 ± 0.07 0.27 ± 0.05</td>
<td>0.33 ± 0.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ตาราง 16 (ต่อ)

| ผลของวิธีมันหน้า | จำนวนกลุ่ม*n | ระยะทางการเก็บรักษา (วัน) | ผลทางวิธีมันหน้า | โคเอฟฟิค | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------------|--------------|---------------------------|------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ผลของวิธีมันหน้า | 15 | 0.34 ± 0.03 | 0.37 ± 0.11 | 0.38 ± 0.07 | 0.36 ± 0.09 | 0.30 ± 0.08 | 0.33 ± 0.05 | 0.30 ± 0.07 | 0.28 ± 0.04 | 0.34 ± 0.08 |
| ระยะทางการเก็บรักษา | 25 | 0.32 ± 0.11 | 0.38 ± 0.11 | 0.36 ± 0.05 | 0.33 ± 0.07 | 0.32 ± 0.09 | 0.37 ± 0.17 | 0.32 ± 0.09 | 0.34 ± 0.10 |
| การเก็บรักษา | 35 | 0.37 ± 0.04 | 0.40 ± 0.10 | 0.38 ± 0.06 | 0.33 ± 0.07 | 0.31 ± 0.07 | 0.30 ± 0.06 | 0.35 ± 0.07 |
| รักษา | 0.35 ± 0.07* | 0.38 ± 0.10* | 0.37 ± 0.06* | 0.34 ± 0.08* | 0.31 ± 0.08* | 0.34 ± 0.11* | 0.30 ± 0.07* | 0.28 ± 0.04* | 0.34 ± 0.08 |
| โรคหลอดเลือด | 0.35 ± 0.07* | 0.38 ± 0.10* | 0.37 ± 0.06* | 0.34 ± 0.08* | 0.31 ± 0.08* | 0.34 ± 0.11* | 0.30 ± 0.07* | 0.28 ± 0.04* | 0.34 ± 0.08 |

หมายเหตุ:

- "*" ต่างกันที่มีความแตกต่างกันในแนวทางวิธีมันหน้าและความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "**" ไม่มีความแตกต่างกันของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ที่ย้ายความสัมพันธ์ที่先导ัยศึกษามีค่าความสัมพันธ์ (L*) อยู่ในช่วง 69.22-73.32 (ตาราง 17) ค่าความเป็นเสี้ยว (α*) อยู่ในช่วง 0.59-2.26 (ตาราง 18) และค่าความเป็นเสี้ยวสูง (β*) (ตาราง 19) อยู่ในช่วง -2.71 - -5.90 ซึ่งจากการวิเคราะห์ข้อมูลทางสถิติพบว่าการให้รังสีอินฟราไวโอหลไม่มีผลต่อการเปลี่ยนแปลงค่าความเป็นเสี้ยว (α*) และค่าความเป็นเสี้ยวสูง (β*) (p >0.05) เมื่อปรับเพื่อบันข้อมูลทั้งหมด

ในจำนวนที่ 3 ตัวอี L* ของชุดควบคุมที่ดูดสนิมกิจเกิดร่างมากที่ 15 องศาเซลเซียส (72.05) มีค่าสูงกว่าตัวอีคำมณีสีเพื่อเป็นร่างที่ดูดสนิมที่ดูดสนิม 25 และ 35 องศาเซลเซียส ซึ่งมีค่าเท่ากัน 71.05 และ 70.68 ตามลำดับ (p <0.05) (ตาราง 17) อย่างไรก็ตามเมื่อร้อยละของการเกิดร่างเพิ่มขึ้น ค่าอี L* ของตัวอย่างหัวเสื้อด้านสัมผัส จะมีค่าเพิ่มขึ้นหรือมีความช่วงมากขึ้น (p <0.05) ทั้งนี้เนื่องจากเป็นจำพวกที่ใช้เป็นวัสดุสิ่งในการผลิตภัณฑ์มีอุณหภูมิวิเศษในระดับการเก็บร้านเสื้อ กายกิจวิสกรุกซนเป็นรังสีการได้ทำให้เกิดขึ้นเนื่องจากเกิดร่างเพิ่มขึ้น ซึ่งมีค่าป่าต้นที่เกิดการเจาะร่างที่เนื่องนั้นจะต้องต่อไปง่ายน้ำง่ายและก็มีรายการแบบหลักของรังสีอินฟราไวโอซิค ส่งผลให้มีค่าเป็นผลมีต่อชุดห้าขึ้นหรือต่ำลงที่ขึ้น นอกจากนี้การเก็บร้านที่ดูดสนิมจะช่วยวิเคราะห์การคำนวณส่งผลให้มีต่อชุดห้าขึ้น (Zobel and Kulp, 1996)
ตาราง 17 การเปลี่ยนแปลงค่าความสว่าง (L*) ของกั้วเด่อสับเสกที่ผ่านรังสีอินตราไวโอเลตที่ระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ

<table>
<thead>
<tr>
<th>ทรัพยากร</th>
<th>อุณหภูมิ</th>
<th>ระดับเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทรัพยากร</th>
</tr>
</thead>
<tbody>
<tr>
<td>ชุดควบคุม</td>
<td>0</td>
<td>70.73 ± 0.26</td>
<td>72.00 ± 0.47</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>70.85 ± 2.68</td>
<td>70.33 ± 0.34</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>69.73 ± 0.31</td>
<td>70.71 ± 1.80</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>70.44 ± 1.53</td>
<td>71.01 ± 1.21</td>
</tr>
<tr>
<td>UVระดับต่ำ</td>
<td>15</td>
<td>69.65 ± 0.38</td>
<td>70.31 ± 0.42</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>70.18 ± 2.03</td>
<td>69.76 ± 0.47</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>69.22 ± 0.96</td>
<td>69.85 ± 0.39</td>
</tr>
<tr>
<td>ตำแหน่ง</td>
<td>UVระดับสูง</td>
<td>15</td>
<td>69.58 ± 0.45</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>69.90 ± 1.70</td>
<td>69.61 ± 0.64</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>69.87 ± 0.07</td>
<td>69.92 ± 0.83</td>
</tr>
<tr>
<td>ตำแหน่ง</td>
<td>UVระดับสูง</td>
<td>15</td>
<td>69.78 ± 0.89</td>
</tr>
</tbody>
</table>
ตาราง 17 (ต่อ)

<table>
<thead>
<tr>
<th>หัวนมคี</th>
<th>อุณหภูมิ (องศาเซลเซียส)</th>
<th>ระยะเวลาการดื่มวิกฤติ (วัน)</th>
<th>ผลของหัวนมคี</th>
<th>ไบเดลส์</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผสมของ</td>
<td>15</td>
<td>69.99 ± 0.79</td>
<td>70.76 ± 1.04</td>
<td>71.62 ± 0.98</td>
</tr>
<tr>
<td>ระยะเวลายา</td>
<td>25</td>
<td>70.31 ± 1.93</td>
<td>69.90 ± 0.55</td>
<td>70.85 ± 0.87</td>
</tr>
<tr>
<td>การสุญยาน</td>
<td>35</td>
<td>69.61 ± 0.59</td>
<td>70.16 ± 1.09</td>
<td>69.77 ± 0.23</td>
</tr>
<tr>
<td>รักษา</td>
<td>ค่าเฉลี่ย</td>
<td>68.97 ± 1.24<sup>a</sup></td>
<td>70.27 ± 0.96<sup>b</sup></td>
<td>70.75 ± 1.07<sup>c</sup></td>
</tr>
</tbody>
</table>

หมายเหตุ:
- **a** อัตราการกักกันที่มีความแตกต่างกันในแนวตั้งแสดงว่าความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- **b** อัตราการกักกันที่มีความแตกต่างกันในแนวตั้งแสดงว่าความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- **c** อัตราการกักกันที่มีความแตกต่างกันในแนวตั้งแสดงว่าความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 18 การเปลี่ยนแปลงค่าความเป็นเลิศของเชื้อรา (๔) ของกิ่งต้นเดินปลูกที่ผ่านวิธีการควบคุมโคลอโรฟิลล์ที่ระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลารักษาเก็บรักษาต่างๆ

<table>
<thead>
<tr>
<th>ทรีทเมนต์ *</th>
<th>อุณหภูมิ</th>
<th>ระยะเวลารักษาเก็บรักษา (วัน)</th>
<th>ผลของทรีทเมนต์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.39 ± 0.99</td>
<td>2.26 ± 1.44</td>
<td>1.80 ± 0.32</td>
</tr>
<tr>
<td>25</td>
<td>1.38 ± 1.29</td>
<td>1.58 ± 1.74</td>
<td>1.06 ± 0.21</td>
</tr>
<tr>
<td>35</td>
<td>0.66 ± 0.37</td>
<td>1.72 ± 2.10</td>
<td>1.09 ± 0.40</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>1.14 ± 0.91</td>
<td>1.85 ± 1.57</td>
<td>1.32 ± 0.45</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.60 ± 0.11</td>
<td>1.73 ± 1.88</td>
<td>1.61 ± 0.51</td>
</tr>
<tr>
<td>25</td>
<td>1.68 ± 1.50</td>
<td>1.58 ± 1.73</td>
<td>1.21 ± 0.46</td>
</tr>
<tr>
<td>35</td>
<td>1.15 ± 0.38</td>
<td>1.67 ± 1.38</td>
<td>0.77 ± 0.32</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>1.14 ± 0.90</td>
<td>1.66 ± 1.45</td>
<td>1.20 ± 0.53</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.67 ± 0.33</td>
<td>1.86 ± 1.37</td>
<td>2.11 ± 0.48</td>
</tr>
<tr>
<td>25</td>
<td>1.38 ± 0.87</td>
<td>1.49 ± 1.45</td>
<td>1.31 ± 0.57</td>
</tr>
<tr>
<td>35</td>
<td>0.74 ± 0.95</td>
<td>2.27 ± 1.31</td>
<td>0.81 ± 0.42</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>0.93 ± 0.74</td>
<td>1.54 ± 1.22</td>
<td>1.41 ± 0.71</td>
</tr>
</tbody>
</table>
ตาราง 18 (ต่อ)

<table>
<thead>
<tr>
<th>ทรีมมังส์</th>
<th>ดุหนูมี</th>
<th>ระดับความคลุมบังคับ (รับมือ)</th>
<th>ผลของทรีมมังส์</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผสมป่า</td>
<td>15</td>
<td>0.89 ± 0.65</td>
<td>1.95 ± 1.39</td>
</tr>
<tr>
<td>ระดับมวล</td>
<td>25</td>
<td>1.48 ± 1.09</td>
<td>1.55 ± 1.43</td>
</tr>
<tr>
<td>การเจ็บป่วย</td>
<td>35</td>
<td>0.85 ± 0.59</td>
<td>1.55 ± 1.43</td>
</tr>
<tr>
<td>รักษาโรค</td>
<td>คะแนนแตกต่าง</td>
<td>1.07 ± 0.83</td>
<td>1.68 ± 1.37</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- * ** อัตราการก้าวที่มีความแตกต่างกันในแนวตั้งแต่ละระดับต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ** ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี้ยเบนมาตรฐาน (n=3)
ตาราง 19 การเปลี่ยนแปลงค่าความเป็นสีเขียว-น้ำเงิน (IV) ของตัวอย่างเส้นเกษตรในรังสีอัลตราไวโอเลตที่ระดับความเข้มและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลายกเก็บรักษาต่างๆ

<table>
<thead>
<tr>
<th>ทรีทเมนท์</th>
<th>อุณหภูมิ</th>
<th>ระยะเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทรีทเมนท์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>-4.38 ± 0.12</td>
<td>-4.35 ± 0.61</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-5.90 ± 3.40</td>
<td>-4.91 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-4.50 ± 0.05</td>
<td>-4.35 ± 0.10</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>-4.93 ± 1.85</td>
<td>-4.54 ± 0.47</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>-4.58 ± 0.18</td>
<td>-4.93 ± 1.26</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-5.29 ± 2.34</td>
<td>-5.03 ± 1.76</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-4.70 ± 0.68</td>
<td>-4.88 ± 0.95</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>-4.85 ± 1.27</td>
<td>-4.95 ± 0.98</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>-4.53 ± 0.11</td>
<td>-4.59 ± 1.65</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-5.11 ± 2.29</td>
<td>-4.69 ± 0.87</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-4.53 ± 0.27</td>
<td>-4.77 ± 1.03</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>-4.72 ± 1.19</td>
<td>-4.68 ± 1.07</td>
</tr>
</tbody>
</table>
ตาราง 19 (ต่อ)

<table>
<thead>
<tr>
<th>ทริทิมันด์สีมุ</th>
<th>ยุคทางวูน</th>
<th>ระดับการค่ำแหน่งรั้วหน้าน้ำ (วัน)</th>
<th>ผลของการทริทิมันด์สีมุ</th>
<th>โคเนสต์ปลุ่ง</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>แพลงซ์</td>
<td>15</td>
<td>-4.50 ± 0.15</td>
<td>-4.62 ± 1.11</td>
<td>-3.62 ± 0.54</td>
</tr>
<tr>
<td>ระยะลาสเวกัส</td>
<td>25</td>
<td>-5.43 ± 2.39</td>
<td>-4.87 ± 0.77</td>
<td>-4.08 ± 0.37</td>
</tr>
<tr>
<td>การเก็บ</td>
<td>35</td>
<td>-4.57 ± 0.38</td>
<td>-4.67 ± 0.74</td>
<td>-4.06 ± 0.50</td>
</tr>
<tr>
<td>รั้วหน้าน้ำ</td>
<td>ค่าเฉลี่ย</td>
<td>-4.83 ± 1.41</td>
<td>-4.72 ± 0.86</td>
<td>-3.92 ± 0.51</td>
</tr>
<tr>
<td>โคเนสต์ปลุ่ง</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

หมายเหตุ - "" ที่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "" ที่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
สำหรับการเปลี่ยนแปลงทางจุลชีวิตจากการทดลองพบว่า ปริมาณแบคทีเรียทั้งหมดของกลุ่มดีที่เก็บเกี่ยวในช่วง 2.4-3.49 x 10^7 CFU/g ปริมาณแบคทีเรียและของกลุ่มดีที่เก็บเกี่ยวเฉลี่ย 2.85-3.60 x 10^7 CFU/g

Ghaffar et al. (2009) และ Lacroix et al. (2004) ได้พิจารณาการเปลี่ยนแปลงของ กิจกรรมยั้มสัตว์โดยหาจุดเริ่มต้นของการเปลี่ยนแปลง คือปริมาณจุลชีวบั่วที่ระดับ 10^7 CFU/g

Lopez-Rubira et al. (2003) กล่าวว่าจุลชีบั่วสำหรับการเปลี่ยนแปลงของจุลชีบั่ว คือ 10^9 CFU/g สำหรับ mesophilic count และ 10^5 CFU/g สำหรับ mesophilic

ปริมาณแบคทีเรียที่เริ่มต้นใน ปริมาณยั้มสัตว์และมีค่าเพิ่มขึ้น เมื่อระยะเวลาการเก็บเกี่ยวผ่านมากขึ้น ชุดควบคุมมีการเปลี่ยนแปลงอย่างรวดเร็ว เมื่อทำการเก็บเกี่ยวที่ทุ่งหญ้า 35 องศา เซนติเมตร ซึ่งปริมาณแบคทีเรียทั้งหมดจะสูงขึ้นหลังจากเก็บเกี่ยววันที่ 2 (ตาราง 20 และ 21) การวิเคราะห์ตัวอย่างจะสูญหายซึ่งการเก็บเกี่ยวที่ทุ่งหญ้ามีจุลชีบั่วทั้งหมดที่สูงกว่า 10^9 CFU/g ซึ่งแสดงถึงการเริ่มต้นและและการระบาดของจุลชีบั่วที่พยาบาล จุลชีบั่วในสัตว์มีลักษณะที่ไม่สามารถตรวจจับได้ ปรากฏป่าป่าร้างที่ผ่านการเก็บเกี่ยวเพื่อสัตว์ กลับเห็นเปรี้ยว หรือ ลักษณะเส้นเล็กที่บิน และ

ทั้งนี้เห็นการเก็บเกี่ยวที่มีความเป็นป่าป่าร้างและผิดความเข้าใจผิด การจุกของเชื้อจุลชีบั่ว ซึ่งควบคุมที่ไม่สามารถยั้มสัตว์ได้ เพื่อการเปลี่ยนแปลงระหว่างชุดควบคุม ที่ผ่านน้ำร้อนและเวลาเก็บเกี่ยว (p<0.05) ขนาดคลองป่าป่าร้างของ Gomez et al. (2010) ทำให้ข้อมูลของระดับการรับสัมผัสชุดควบคุม (UVC) ที่มีต่อคุณภาพของแบคทีเรียดีแล้ว เผื่อนแบคทีเรียดีแล้วที่ไม่ผ่านน้ำร้อนมีการเปลี่ยนแปลงปริมาณจุลชีบั่วสูงกว่าแบคทีเรียดีแล้วที่ผ่านการร้อนสัมผัสชุดควบคุม (11.2 kJ/m²) โดยปริมาณ aerobic mesophilic ของแบคทีเรียดีแล้วที่ไม่ผ่านน้ำและ ผ่านการระดับสัมผัสร้อน 57 และ 0.3 CFU/g ตามลำดับ ปริมาณยั้มสัตว์และของแบคทีเรียดีแล้วที่ไม่ผ่านน้ำและผ่านการระดับสัมผัสร้อน 315 และ 5 CFU/g ตามลำดับ เมื่อทำการเก็บเกี่ยวที่ทุ่งหญ้า 5 องศา เซนติเมตรเป็นระยะเวลา 7 วัน ปริมาณ aerobic mesophilic ของแบคทีเรียดีแล้วที่ไม่ผ่านน้ำและผ่านการร้อนสัมผัส 1073 และ 72 CFU/g ตามลำดับ ปริมาณแบคทีเรียดีแล้วของแบคทีเรียดีแล้วที่ไม่ผ่านน้ำและผ่าน การร้อนสัมผัส 14,738 และ 407 CFU/g ตามลำดับ Guan et al. (2012) รายงานว่า UVC-C สามารถลด ปริมาณแบคทีเรียที่ร่างของ 0.63-0.89 log CFU/g ในที่ที่มีการกระทำสัมผัสชุดควบคุมที่ระดับ ความเข้ม 0.45-3.15 kJ/m² เมื่อทำการเก็บเกี่ยวที่ 4 องศาเซลเซียส เป็นเวลา 7 วัน

อย่างไรก็ตามการเก็บเกี่ยวที่ยะสั้นที่ทำให้เกิดปุ๋ยได้เผลอเปรียบเทียบกับการเก็บเกี่ยวที่ทุ่งหญ้า 25 และ 35 องศา
ผลของการประยุกต์ใช้รังสีอินเทร้าไวโอเลตสามารถลดปริมาณเชื้อจุลินทรีย์ในกัวตี้ข้าวสับ
สดได้อย่างมีนัยสำคัญ (p<0.05) Xu et al. (2008) รายงานว่า ถ้าเพิ่มขึ้นสับสดมีน้ำเป็นองค์ประกอบ
ส่วนใหญ่โดยรวม ซึ่งจะส่งผลให้เกิดการเปลี่ยนแปลงทางจุลินทรีย์ในกลุ่มแบคทีเรีย อิสระ
d้วยเช่น ทำให้ไม่ได้ทำการเก็บรักษาได้ตลอดการแช่เย็น ดังนั้นในการเก็บรักษาด้วยวิธีสับสด
ให้มีความปลอดภัยในการบริโภคด้วยการปรุงรักษาที่จุนเจือขึ้น และจะปลอดภัยมากยิ่งขึ้นหากมีการ
ใช้รังสีอินเทร้าไวโอเลตในการลดปริมาณเชื้อจุลินทรีย์ไว้ในกัวตี้ข้าวสับสด
โดยสามารถอาศัยข้อมูลเก็บข้อมูลกัวตี้ข้าวสับสดได้นานขึ้น 1-2 วัน
ตาราง 20 ปริมาณแบคทีเรีย E. coli ในน้ำชีวิตสัตว์เลี้ยงลูกด้วยนมที่ผ่านการกระดาษใบโคนโดยลดระดับความแข็งและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ

<table>
<thead>
<tr>
<th>รหัสทรัพยากร</th>
<th>อุณหภูมิ (°C)</th>
<th>ระยะเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทรัพยากร</th>
<th>โคเอฟฟิค์</th>
<th>โคเอฟฟิค์</th>
<th>โคเอฟฟิค์</th>
<th>โคเอฟฟิค์</th>
<th>โคเอฟฟิค์</th>
<th>โคเอฟฟิค์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>2.88 ± 0.30</td>
<td>4.15 ± 1.41</td>
<td>4.48 ± 1.07</td>
<td>4.52 ± 2.13</td>
<td>4.92 ± 1.55</td>
<td>5.63 ± 1.21</td>
<td>7.10 ± 0.56</td>
<td>6.72 ± 0.57</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.49 ± 0.32</td>
<td>4.52 ± 0.40</td>
<td>5.63 ± 0.55</td>
<td>4.17 ± 0.97</td>
<td>6.39 ± 1.32</td>
<td></td>
<td>5.04 ± 1.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>2.69 ± 0.59</td>
<td>4.53 ± 0.58</td>
<td>5.91 ± 0.61</td>
<td>6.55 ± 0.48</td>
<td></td>
<td></td>
<td>4.92 ± 1.62</td>
<td></td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>3.02 ± 0.52</td>
<td>4.40 ± 0.81</td>
<td>5.34 ± 0.94</td>
<td>5.42 ± 1.49</td>
<td>5.66 ± 1.32</td>
<td>5.63 ± 1.21</td>
<td>7.10 ± 0.56</td>
<td>6.72 ± 0.57</td>
<td>5.02 ± 1.50</td>
</tr>
<tr>
<td>BN ระดับต่ำ</td>
<td>15</td>
<td>2.87 ± 0.81</td>
<td>3.79 ± 0.82</td>
<td>4.68 ± 0.68</td>
<td>4.13 ± 1.94</td>
<td>4.60 ± 1.84</td>
<td>5.88 ± 0.21</td>
<td>6.38 ± 0.21</td>
<td>5.87 ± 1.23</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.79 ± 0.15</td>
<td>3.92 ± 1.00</td>
<td>4.72 ± 0.64</td>
<td>4.70 ± 0.77</td>
<td>5.54 ± 0.99</td>
<td>6.03 ± 0.76</td>
<td></td>
<td>4.62 ± 1.27</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>2.40 ± 0.36</td>
<td>3.88 ± 0.53</td>
<td>4.84 ± 0.83</td>
<td>5.50 ± 0.88</td>
<td>6.82 ± 0.30</td>
<td></td>
<td>4.69 ± 1.63</td>
<td></td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>2.69 ± 0.50</td>
<td>3.86 ± 0.70</td>
<td>4.75 ± 0.63</td>
<td>4.78 ± 1.28</td>
<td>5.66 ± 1.43</td>
<td>5.95 ± 0.59</td>
<td>6.38 ± 0.21</td>
<td>5.87 ± 1.23</td>
<td>4.70 ± 1.43</td>
</tr>
<tr>
<td>BN ระดับสูง</td>
<td>15</td>
<td>2.82 ± 0.75</td>
<td>3.50 ± 0.26</td>
<td>4.56 ± 0.69</td>
<td>4.12 ± 2.07</td>
<td>4.42 ± 1.59</td>
<td>5.88 ± 0.66</td>
<td>5.60 ± 0.31</td>
<td>5.50 ± 0.66</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.70 ± 0.17</td>
<td>3.68 ± 0.27</td>
<td>4.61 ± 0.59</td>
<td>4.53 ± 0.64</td>
<td>5.86 ± 0.82</td>
<td>4.92 ± 0.78</td>
<td>5.54 ± 1.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>2.67 ± 0.14</td>
<td>3.10 ± 1.03</td>
<td>4.84 ± 0.69</td>
<td>5.25 ± 1.00</td>
<td>6.24 ± 0.30</td>
<td>5.92 ± 1.00</td>
<td></td>
<td>4.67 ± 1.53</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>2.73 ± 0.40</td>
<td>3.43 ± 0.60</td>
<td>4.67 ± 0.58</td>
<td>4.63 ± 1.29</td>
<td>5.51 ± 1.23</td>
<td>5.57 ± 0.87</td>
<td>5.57 ± 0.70</td>
<td>5.50 ± 0.66</td>
<td>4.58 ± 1.33</td>
</tr>
</tbody>
</table>
ตาราง 20 (ต่อ)

<table>
<thead>
<tr>
<th>ทริกแมมมี่ ยูเนียนจีน</th>
<th>ระยะเวลาการเคลื่อนทริกแมมมี่ (วัน)</th>
<th>ผลของทริกแมมมี่</th>
<th>โคเอิ้ลลิ้ง</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผลของ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.86 ± 0.58</td>
<td>3.82 ± 0.87</td>
<td>4.57 ± 0.73</td>
</tr>
<tr>
<td>25</td>
<td>2.99 ± 0.42</td>
<td>4.04 ± 0.67</td>
<td>4.98 ± 0.71</td>
</tr>
<tr>
<td>35</td>
<td>2.59 ± 0.38</td>
<td>3.84 ± 0.69</td>
<td>5.20 ± 0.82</td>
</tr>
<tr>
<td>รักษา</td>
<td>ค่าเฉลี่ย</td>
<td>3.90 ± 0.79</td>
<td>4.92 ± 0.77</td>
</tr>
<tr>
<td>โรคเนื้อ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

หมายเหตุ
- **" อธิบายถึงผู้ที่มีความแตกต่างเกินในแนวทิศที่แสดงอยู่ตามค่าเกินกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "" อธิบายถึงผู้ที่มีความแตกต่างกันในแนวทิศที่แสดงอยู่ตามค่าเกินกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "" ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี้ยเบนมาตรฐาน (n=3)
ตาราง 21 ปริมาณยีสต์และสารที่พบในกล่าวเด็กส่วนนิสิตที่ผ่านรังสีอินทราไวโอลที่ระดับความแข็งและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ

| ทริแทนต์ | อุณหภูมิ | ระยะเวลาการเก็บรักษา (วัน) | ผลของทริแทนต์ | โคเนลที่ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----------|----------|-----------------------------|----------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ชุดควบคุม | 15 | 2.99 ± 0.44 | 4.57 ± 1.28 | 4.19 ± 1.14 | 4.60 ± 0.69 | 5.50 ± 0.60 | 5.62 ± 0.22 | 5.84 ± 0.43 | 6.01 ± 0.52 | 4.91 ± 1.16 |
| | 25 | 3.87 ± 0.07 | 4.62 ± 1.05 | 5.35 ± 0.98 | 5.21 ± 0.81 | 5.43 ± 0.22 | | | | 4.9 ± 0.87 |
| | 35 | 3.31 ± 0.48 | 5.12 ± 0.15 | 5.43 ± 0.83 | 6.24 ± 0.15 | | | | | 5.02 ± 1.19 |
| หัวเลี้ยว | | 3.39 ± 0.51 | 4.77 ± 0.87 | 4.99 ± 1.05 | 5.35 ± 0.90 | 5.47 ± 0.41 | 5.62 ± 0.22 | 5.84 ± 0.43 | 6.01 ± 0.52 | 4.93 ± 1.07 |
| UV ระดับต่ำ | 15 | 3.15 ± 0.23 | 3.85 ± 0.59 | 3.69 ± 0.85 | 4.09 ± 0.95 | 4.75 ± 0.50 | 5.16 ± 0.29 | 5.33 ± 0.65 | 5.58 ± 0.55 | 4.45 ± 0.99 |
| | 25 | 3.51 ± 0.37 | 4.05 ± 0.98 | 4.30 ± 1.05 | 4.85 ± 0.77 | 5.00 ± 0.32 | 5.93 ± 0.39 | | | 4.61 ± 0.99 |
| | 35 | 2.85 ± 0.17 | 4.55 ± 0.62 | 5.16 ± 0.92 | 5.86 ± 0.33 | 6.17 ± 0.24 | | | | 4.92 ± 1.30 |
| หัวเลี้ยว | | 3.17 ± 0.37 | 4.15 ± 0.72 | 4.38 ± 1.04 | 4.93 ± 0.99 | 5.31 ± 0.73 | 5.54 ± 0.52 | 5.33 ± 0.65 | 5.58 ± 0.55 | 4.62 ± 1.08 |
| UV ระดับสูง | 15 | 3.60 ± 0.45 | 3.39 ± 0.86 | 3.42 ± 0.93 | 4.13 ± 0.44 | 4.80 ± 0.45 | 4.96 ± 0.54 | 4.95 ± 0.85 | 5.14 ± 0.81 | 4.30 ± 0.92 |
| | 25 | 3.06 ± 0.62 | 4.18 ± 0.13 | 4.41 ± 1.17 | 4.60 ± 0.58 | 5.33 ± 0.50 | 5.47 ± 0.66 | 5.42 ± 0.84 | | 4.64 ± 1.02 |
| | 35 | 2.95 ± 0.81 | 4.62 ± 0.73 | 5.04 ± 0.90 | 5.53 ± 0.11 | 6.17 ± 0.33 | 6.00 ± 0.40 | | | 5.05 ± 1.23 |
| หัวเลี้ยว | | 3.20 ± 0.64 | 4.06 ± 0.78 | 4.29 ± 1.13 | 4.75 ± 0.72 | 5.43 ± 0.71 | 5.48 ± 0.66 | 5.19 ± 0.80 | 5.14 ± 0.81 | 4.63 ± 1.07 |
ตาราง 21 (ต่อ)

<table>
<thead>
<tr>
<th>ทรีมนิศค์</th>
<th>ถูกลหุนี</th>
<th>ระดับการเก็บรักษา (วัน)</th>
<th>ผลของทรีมนิศค์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ผลข้าง</td>
<td>15</td>
<td>3.25 ± 0.43</td>
<td>3.94 ± 0.97</td>
</tr>
<tr>
<td>ระยะยาว</td>
<td>25</td>
<td>3.48 ± 0.51</td>
<td>4.28 ± 0.77</td>
</tr>
<tr>
<td>การที่มา</td>
<td>35</td>
<td>3.04 ± 0.52</td>
<td>4.76 ± 0.56</td>
</tr>
<tr>
<td>รักษา</td>
<td>ไบโอนิศค์</td>
<td>3.25 ± 0.51</td>
<td>4.33 ± 0.83</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- " อัตราการเก็บที่มีความแตกต่างกันในแนวตั้งแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "" อัตราการเก็บที่มีความแตกต่างกันในแนวตั้งแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- """ อัตราการเก็บที่มีความแตกต่างกันในแนวนอนแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- """" ไม่ได้ความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
การศึกษาคุณภาพของก้านเหลี่ยมัสผลโดยการทดสอบทางประสบย์มัณฑา

และเครื่องมือคนทับและเกลือย์มัณฑา

จากการปริมาณที่อยู่บนผนังระหว่างประสบย์มัณฑาของก้านเหลี่ยมัสผล โดย
ผู้ประกอบการ พบว่าก้านเหลี่ยมัสผลที่เก็บเกี่ยมได้รับในโมลโคซีนระหว่างประสบย์มัณฑาและ
การยอมรับไม่แตกต่างจากรูปทรงทางพื้นฐาน (p>0.05) และพบว่าก้านเหลี่ยมัสผลในการเก็บเกี่ยมจะมีผลต่อ
ลักษณะทางประสบย์มัณฑาของก้านเหลี่ยมัสผล 3 อย่างคือ เส้น, เนื้อมันบนผนังผ่านที่ถูกต้อง
gวดเดี๋ยวนี้ผลิตที่ทำก้านอันก้านที่อุดภูมิ 15 องศาเซลเซียส จะมีเครื่องมือที่ถูกต้องและผลิตได้ผลดี แต่การ
เก็บเกี่ยมที่อุดภูมิ 35 องศาเซลเซียส จะมีความมุ่งมั่นมาก และเป็นอุปชุน ขณะที่การเก็บเกี่ยมที่
อุดภูมิ 25 องศาเซลเซียส จะมีความมุ่งมั่นมากที่สุด และมีเกลือย์มัณฑาที่ฟื้นฟูให้กับ
ผู้ประกอบการมากที่สุด

Yadav et al. (2011) พบว่าก้านเหลี่ยมัสผลที่เปลี่ยนจากสาระชั่วคราวจะมีครอบ
สาระชั่วคราวในอัตราด่วน 70:30 ทำให้ได้ผลิตภัณฑ์ที่มีคุณภาพที่ดี โดยมีความคงที่, ความ
สัน, ความสม่ำเสมอของความตั้งแต่ และผลการยอมรับได้ว่าการเก็บเกี่ยมที่ส่วนที่ติดต่อกับสาระชั่ว
นี้ที่ทำให้เกิดผลิตภัณฑ์

จากการทดลองในงานกระทำที่มีผลต่อสภาวะของก้านเหลี่ยมัสผลที่ไม่ผ่านการล้าง และส่วน
การล้างในน้ำคือ เป็นเวลา 7 วันที่ ด้วยเครื่องทดสอบเกลือย์มัณฑาเครื่องมือ (texture profile analyzer) พบว่าผลภูมิการเก็บเกี่ยมมีผลต่อการเปลี่ยนแปลงค่าแรงตัดของก้านเหลี่ยมัสผลที่ไม่
ผ่านการล้าง (ตาราง 22) อย่างมีนัยสำคัญทางสถิติ (p<0.05) ดังกล่าวเก็บเกี่ยมส่วนที่ผ่านการล้าง
รังสีต่อสาระโลต์มีค่าแรงตัด (cutting force) ที่สูงกว่าด้วยอย่างชัดเจนที่สูงกว่าของส่วนที่ไม่ผ่านการ
ล้างรังสีต่อสาระโลต์มากกว่า จากตาราง 24 พบว่าผลภูมิการเก็บเกี่ยมมีผลต่อการเปลี่ยนแปลงค่า
ความแข็ง (hardness) ของก้านเหลี่ยมัสผลที่ถูกน้ำที่ไม่ผ่านการล้างอย่างมีนัยสำคัญทางสถิติ (p<0.05)
และพบว่าก้านเหลี่ยมัสผลที่ถูกน้ำที่ไม่ผ่านการล้าง และเก็บเกี่ยมที่อุดภูมิต่าง 15 องศาเซลเซียส
มี
ค่าแรงตัดและค่าความแข็งที่สูงกว่าก้านเหลี่ยมัสผลที่เก็บเกี่ยมที่อุดภูมิต่าง 25 และ 35 องศาเซลเซียส
ตามลำดับ ที่ทำให้ความแข็งของก้านเหลี่ยมัสผลที่ไม่ผ่านการล้างจะมีค่าเพิ่มขึ้นเมื่อระยะเวลา
การเก็บเกี่ยมผ่านไป อย่างไรก็ตามระดับการให้รังสีต่อสาระโลต์และจุลินทรีย์ในการเก็บเกี่ยม
ไม่ส่งผลกระทบต่อการแข็งและค่าความแข็งของก้านเหลี่ยมัสผลที่ผ่านการล้างส่วน (p<0.05)
(ตาราง 23 และ 25) ซึ่งสอดคล้องกับงานวิจัยของ Huang and Lai (2010) ที่พบว่าเมื่อทำการเก็บ
รังสีต่อสาระเหลี่ยมัสผลเป็นระยะเวลายาว 5 วัน ค่าแรงตัดของก้านเหลี่ยมัสผลที่ทำจากแห้ง สาระชั่วมีค่าเท่ามี
สูตรนี้ เนื่องจากการเกิดรูปแบบการซ้อนของสารหรือผลิตภัณฑ์ภายในเชิงลึก และเมื่อ
ระบบการเก็บรักษาอยู่ต่อสินทางการเกิดรูปแบบการซ้อนของสารหรือผลิตภัณฑ์ยิ่ง
มาก มีผลสูตรเสถียรภาพในการเก็บเกี่ยว และสัดตัดเป็นโครงสร้างแบบคล้าย ซึ่งมีผลทำให้ความ
แน่นแข็ง (firmness) หรือความแข็ง (rigidity) เพิ่มขึ้น
ตาราง 22 ค่าแรงตัด (cutting) ของกั้นเดี่ยวแนบเดิมที่พ่นเรซิ่งไดคว้าไวนิโลคลอสที่ระดับความแข็งและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ ก่อนล่าสุด

<table>
<thead>
<tr>
<th>พรีเวตาล์</th>
<th>อุณหภูมิ</th>
<th>ระยะเวลาก่อนเก็บรักษา (วัน)</th>
<th>ผลของการพรีเวตาล์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>โค้ดของผล</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>6.55 ± 0.28</td>
<td>6.08 ± 1.30</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.39 ± 0.62</td>
<td>6.37 ± 0.87</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>6.23 ± 0.10</td>
<td>5.80 ± 1.03</td>
</tr>
<tr>
<td>槎เล็กชี้</td>
<td>15</td>
<td>6.39 ± 0.37</td>
<td>6.09 ± 0.97</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.18 ± 0.29</td>
<td>6.29 ± 0.84</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>6.24 ± 0.21</td>
<td>6.10 ± 0.65</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>6.43 ± 0.22</td>
<td>6.03 ± 1.19</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.18 ± 0.29</td>
<td>6.29 ± 0.84</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>6.24 ± 0.21</td>
<td>6.10 ± 0.65</td>
</tr>
<tr>
<td>槎เล็กชี้</td>
<td>15</td>
<td>6.28 ± 0.24</td>
<td>6.14 ± 0.81</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.24 ± 0.08</td>
<td>6.32 ± 0.92</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>6.14 ± 0.24</td>
<td>6.05 ± 0.72</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>6.26 ± 0.54</td>
<td>6.24 ± 1.59</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.24 ± 0.08</td>
<td>6.32 ± 0.92</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>6.14 ± 0.24</td>
<td>6.05 ± 0.72</td>
</tr>
<tr>
<td>槎เล็กชี้</td>
<td>15</td>
<td>6.21 ± 0.30</td>
<td>6.20 ± 0.99</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.24 ± 0.08</td>
<td>6.32 ± 0.92</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>6.14 ± 0.24</td>
<td>6.05 ± 0.72</td>
</tr>
</tbody>
</table>
ตาราง 22 (ต่อ)

<table>
<thead>
<tr>
<th>ทรัพยากรดี</th>
<th>ยุคทุ่มยุค</th>
<th>ระยะเวลาการเกิดร่างกาย (วัน)</th>
<th>ผลของการฟื้นตัวดี</th>
<th>โค้ดเฉลี่ย</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ผลของการฟื้นตัวดี</td>
<td>15</td>
<td>6.41 ± 0.35</td>
<td>6.12 ± 1.19</td>
<td>6.37 ± 0.94</td>
</tr>
<tr>
<td>ระยะเวลาการเกิดร่างกาย</td>
<td>25</td>
<td>6.27 ± 0.36</td>
<td>6.33 ± 0.76</td>
<td>5.97 ± 0.53</td>
</tr>
<tr>
<td>การเกิดร่างกาย</td>
<td>35</td>
<td>6.20 ± 0.17</td>
<td>5.98 ± 0.72</td>
<td>5.81 ± 1.01</td>
</tr>
<tr>
<td>โดยเฉลี่ย</td>
<td>ค่าเฉลี่ย</td>
<td>6.30 ± 0.31†</td>
<td>6.14 ± 0.89†</td>
<td>6.05 ± 0.85†</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- "*" อัคสรกึ่งก็มีความแตกต่างกันในแนวค้นยังคงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "**" อัคสรกึ่งก็มีความแตกต่างกันในแนวค้นยังคงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "***" อัคสรกึ่งก็มีความแตกต่างกันในแนวค้นยังคงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี้ยเบนมาตรฐาน (n=3)
ตาราง 23 ค่าแรงติด (cutting) ของกลุ่มตัวอย่างสั่งผลที่ผ่านการบีบกระดาษไบโอเกทที่ระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส
ที่ระยะเวลาเก็บรักษาต่างๆ หลังจาก

<table>
<thead>
<tr>
<th>ทรัพยากรณ์</th>
<th>อุณหภูมิที่</th>
<th>ระยะเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทรัพยากรณ์</th>
<th>โคเอฟฟิเวอร์</th>
<th>ค่าเฉลี่ย ± ตัวอย่าง</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>คุณภาพกุ่ม</td>
<td></td>
<td>15</td>
<td>2.90 ± 0.48</td>
<td>3.07 ± 0.71</td>
<td>2.41 ± 0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2.66 ± 0.77</td>
<td>2.70 ± 0.69</td>
<td>2.53 ± 0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>2.63 ± 0.73</td>
<td>2.84 ± 0.96</td>
<td>2.61 ± 0.51</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>15</td>
<td>2.53 ± 0.07</td>
<td>2.58 ± 0.85</td>
<td>2.49 ± 0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2.48 ± 0.22</td>
<td>2.91 ± 0.81</td>
<td>2.34 ± 0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>2.47 ± 0.26</td>
<td>2.48 ± 0.48</td>
<td>2.46 ± 0.29</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>15</td>
<td>2.49 ± 0.18</td>
<td>2.66 ± 0.66</td>
<td>2.43 ± 0.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2.66 ± 0.34</td>
<td>2.59 ± 0.37</td>
<td>2.38 ± 0.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>2.52 ± 0.29</td>
<td>2.64 ± 0.46</td>
<td>2.33 ± 0.28</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>15</td>
<td>2.50 ± 0.33</td>
<td>2.68 ± 0.53</td>
<td>2.58 ± 0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2.56 ± 0.29</td>
<td>2.64 ± 0.40</td>
<td>2.43 ± 0.34</td>
</tr>
</tbody>
</table>
ตาราง 23 (ต่อ)

<table>
<thead>
<tr>
<th>ผลของทริทเมแส์</th>
<th>ยู�คูภุ่มม</th>
<th>ระยะเวลานานเก็บรักษา (วัน)</th>
<th>ผลของทริทเมแส์</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผลของ</td>
<td>15</td>
<td>1</td>
<td>1.11 ± 0.38</td>
</tr>
<tr>
<td>ระยะเวลานาน</td>
<td>25</td>
<td>2</td>
<td>2.75 ± 0.59</td>
</tr>
<tr>
<td>การเก็บ</td>
<td>35</td>
<td>3</td>
<td>2.37 ± 0.32</td>
</tr>
<tr>
<td>รักษา</td>
<td>คำเฉลี่ย</td>
<td>4</td>
<td>2.46 ± 0.39</td>
</tr>
<tr>
<td>ผลของ</td>
<td>5</td>
<td>5</td>
<td>2.23 ± 0.35</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>2.33 ± 0.55</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>2.33 ± 0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.33 ± 0.55</td>
</tr>
</tbody>
</table>

หมายเหตุ
- "**" ถ้ามีความแตกต่างที่มีความแตกต่างกันในแนวตระแนงของความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "**" ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 24 ค่าความแข็ง (hardness) ของวัสดุกิจ และสารที่ผ่านวิธีการปลีกและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระดับวิธีการเก็บรักษาต่างๆ กันมาก

<table>
<thead>
<tr>
<th>ทรัพยากรดี</th>
<th>อุณหภูมิ</th>
<th>ระยะทางการเก็บรักษา (วัน)</th>
<th>ผลของการทรัพยากรดี</th>
<th>โลหะเย็น</th>
</tr>
</thead>
<tbody>
<tr>
<td>ชุดเก็บมุก</td>
<td>0</td>
<td>187.63 ± 48.47</td>
<td>251.19 ± 45.16</td>
<td>297.27 ± 31.05</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>116.55 ± 16.82</td>
<td>152.08 ± 16.56</td>
<td>178.56 ± 13.45</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>93.09 ± 4.88</td>
<td>104.11 ± 20.57</td>
<td>109.07 ± 14.89</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>88.20 ± 13.71</td>
<td>122.42 ± 49.82</td>
<td>168.62 ± 66.90</td>
<td>174.27 ± 56.09</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>155.87 ± 56.20</td>
<td>242.56 ± 32.36</td>
<td>255.69 ± 8.10</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>113.04 ± 10.02</td>
<td>144.74 ± 22.52</td>
<td>178.47 ± 14.59</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>90.57 ± 2.53</td>
<td>108.18 ± 6.02</td>
<td>107.34 ± 13.71</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>76.91 ± 10.47</td>
<td>119.83 ± 40.52</td>
<td>165.16 ± 63.39</td>
<td>180.50 ± 51.37</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>170.36 ± 49.57</td>
<td>238.39 ± 15.77</td>
<td>250.44 ± 16.78</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>110.99 ± 9.98</td>
<td>148.60 ± 6.34</td>
<td>164.91 ± 13.72</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>95.74 ± 3.17</td>
<td>108.55 ± 4.53</td>
<td>111.49 ± 10.14</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>83.44 ± 11.26</td>
<td>125.70 ± 42.52</td>
<td>165.18 ± 58.25</td>
<td>175.61 ± 61.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125.70 ± 42.52</td>
<td>165.18 ± 58.25</td>
<td>175.61 ± 61.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>204.64 ± 57.77</td>
<td>204.64 ± 57.77</td>
<td>204.64 ± 57.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>280.73 ± 40.70</td>
<td>280.73 ± 40.70</td>
<td>280.73 ± 40.70</td>
</tr>
</tbody>
</table>
ตาราง 24 (ต่อ)

<table>
<thead>
<tr>
<th>รหัส</th>
<th>อุณหภูมิ</th>
<th>ระยะเวลายากับกรด</th>
<th>ระยะเวลาการเสียรักษา (ชม.)</th>
<th>ผลของรหัสแทนค่า</th>
<th>ค่าเฉลี่ย</th>
<th>ตัวเลือก</th>
<th>ยอดสะสม</th>
<th>คะแนน</th>
<th>ค่าเฉลี่ย</th>
<th>ตัวเลือก</th>
<th>ยอดรวม</th>
<th>ค่าเฉลี่ย</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผลของการ</td>
<td>15</td>
<td>85.02 ± 14.47</td>
<td>171.29 ± 46.70</td>
<td>243.54 ± 22.87</td>
<td>247.11 ± 14.99</td>
<td>252.20 ± 34.44</td>
<td>274.71 ± 15.17</td>
<td>303.94 ± 31.44</td>
<td>288.59 ± 33.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ระยะวเวลา</td>
<td>25</td>
<td>82.54 ± 11.07</td>
<td>113.53 ± 11.25</td>
<td>148.47 ± 14.68</td>
<td>173.98 ± 13.85</td>
<td>188.52 ± 19.08</td>
<td>204.15 ± 9.33</td>
<td>217.40 ± 1.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>การเสีย</td>
<td>35</td>
<td>80.99 ± 12.46</td>
<td>93.13 ± 3.88</td>
<td>106.95 ± 11.16</td>
<td>109.30 ± 11.46</td>
<td>125.79 ± 8.97</td>
<td>139.03 ± 12.88</td>
<td>152.35 ± 45.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>รักษา</td>
<td>45</td>
<td>82.85 ± 12.36</td>
<td>125.98 ± 43.34</td>
<td>166.32 ± 60.50</td>
<td>176.80 ± 58.82</td>
<td>186.93 ± 55.39</td>
<td>228.58 ± 53.90</td>
<td>288.59 ± 33.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>คะแนน</td>
<td>55</td>
<td>173.78 ± 76.44</td>
<td>222.30 ± 47.63</td>
<td>288.59 ± 33.32</td>
<td>173.78 ± 76.44</td>
<td>288.59 ± 33.32</td>
<td>288.59 ± 33.32</td>
<td>173.78 ± 76.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

หมายเหตุ:
- "p<0.05" คือมีความแตกต่างกันในระดับ 5% แสดงถึงความแตกต่างกันอย่างมีนัยสําคัญทางสถิติของค่าเฉลี่ย
- "p=0.05" คือมีความแตกต่างกันในระดับ 5% แต่ไม่แสดงถึงความแตกต่างกันอย่างมีนัยสําคัญทางสถิติของค่าเฉลี่ย
- "p>0.05" ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสําคัญทางสถิติ
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 25 ค่าความแข็ง (hardness) ของคุณค่าเกณฑ์เหลี่ยมที่ผ่านวัดอัตติการสูงกว่าโพลิไวนิลที่ระดับความแข็งและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระยะเวลารับประทานต่างๆ หลังจาก

<table>
<thead>
<tr>
<th>ทรัพย์สมบัติ</th>
<th>อุณหภูมิ (องศาเซลเซียส)</th>
<th>ระยะเวลารับประทาน (วัน)</th>
<th>ผลของทรัพย์สมบัติ</th>
<th>โคเอลโลย์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>49.45 ± 15.88</td>
<td>63.78 ± 1.93</td>
<td>54.52 ± 6.82</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>46.10 ± 15.30</td>
<td>56.57 ± 2.97</td>
<td>54.56 ± 7.21</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>44.82 ± 9.30</td>
<td>62.44 ± 6.37</td>
<td>50.17 ± 4.86</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>15</td>
<td>46.79 ± 12.12</td>
<td>60.93 ± 4.93</td>
<td>53.08 ± 5.94</td>
</tr>
<tr>
<td>UV ระดับค่า</td>
<td>15</td>
<td>47.07 ± 13.11</td>
<td>54.35 ± 5.07</td>
<td>53.54 ± 4.81</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>46.95 ± 16.71</td>
<td>56.95 ± 3.18</td>
<td>54.91 ± 7.90</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>46.82 ± 14.90</td>
<td>56.86 ± 3.15</td>
<td>53.94 ± 6.90</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>15</td>
<td>46.95 ± 12.97</td>
<td>56.12 ± 3.56</td>
<td>54.13 ± 5.80</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>47.44 ± 13.14</td>
<td>61.44 ± 4.42</td>
<td>53.27 ± 4.54</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>46.12 ± 12.89</td>
<td>60.67 ± 3.72</td>
<td>50.76 ± 3.94</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>45.82 ± 11.36</td>
<td>52.29 ± 6.81</td>
<td>60.27 ± 9.74</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>46.46 ± 10.84</td>
<td>58.13 ± 6.27</td>
<td>54.77 ± 7.14</td>
<td>55.78 ± 7.13</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ตาราง 25 (ต่อ)

<table>
<thead>
<tr>
<th>ทรีโมโมดิ</th>
<th>อุณหภูมิ</th>
<th>ระยะยาวการเก็บรักษา (วัน)</th>
<th>ผลของทรีโมโมดิ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผลของ</td>
<td>15</td>
<td>47.98 ± 12.24</td>
<td>59.92 ± 5.43</td>
</tr>
<tr>
<td>ระยะยาว</td>
<td>25</td>
<td>46.39 ± 10.94</td>
<td>58.06 ± 3.47</td>
</tr>
<tr>
<td>การเก็บ</td>
<td>35</td>
<td>45.82 ± 10.49</td>
<td>57.20 ± 6.61</td>
</tr>
<tr>
<td>รักษา</td>
<td>ค่าเฉลี่ย</td>
<td>46.73 ± 11.54</td>
<td>58.39 ± 5.25</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- "" อธิบายว่ามีความแตกต่างกันในแบบแบบเก็บรักษาในค่าเฉลี่ยของผลของทรีโมโมดิของค่าเฉลี่ย (p<0.05)
- "" ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสําคัญทางสถิติ (p>0.05)
- ค่าของกิจวัตถุสังเกตค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
จุดใหญ่ในการเก็บรักษาฝุ่นออกจากเปลือกต่อความเหนียวติดกัน (stickiness) (ภาค 26) และความสามารถในการเกาะติดตัวผึ้ง (adhesiveness) (ภาค 28) ของกาวที่วางหลาย ที่ไม่ผ่านการสูญออกอย่างมีนัยสำคัญทางสถิติ (p<0.05) และพบว่ากาวตื่นคนสั้นสุดที่ไม่ผ่านการสูญออก และเก็บรักษาที่จุดใหญ่ 25 องศาเซลเซียส มีค่าความเหนียวติดกันสูงกว่ากาวตื่นคนสั้นสุดที่เก็บ รักษาที่จุดใหญ่ 15 และ 35 องศาเซลเซียสตามลำดับ ซึ่งคล้ายกับผลการทดลองของ Cal (1998) ที่พบว่า ผิวที่ตื่นคนสั้นในระดับต่า รักษาที่ต่ำที่ทำเก็บรักษาที่จุดใหญ่ 37 องศา เซลเซียส จะมีลักษณะนั้น เหนียวติดกัน ในช่วงปลายของอายุการเก็บรักษาเป็นผลเนื่องมาจากการ เสื่อมเสียของจุลินทรีย์ อย่างไรก็ตามระดับการจัดการที่ถอดความไปออกและจุดใหญ่ในการเก็บ รักษาไม่ส่งผลต่อกำลังเหนียวติดกัน และความสามารถในการเกาะติดตัวผึ้งของกาวตื่นคนสั้น ที่ไม่ผ่านการสูญออกไม่แตกต่างกัน (p>0.05) (ตาราง 27 และ 29)
ตาราง 26 ค่าความเหนียวตลาด (stickiness) ของกลุ่มตัวอย่างเส้นที่ผ่านรังสีอินfrared วิทยาศาสตร์ระดับความเข้มแสงกับรังสีในกลุ่มอายุ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาก่อนเริ่มกินอาหารต่างๆ ก่อนเวลา

<table>
<thead>
<tr>
<th>ทรัพยากรดีม์</th>
<th>อายุกลุ่ม</th>
<th>ระดับความเข้มแสง (วัน)</th>
<th>ผลของทรัพยากรดีม์</th>
</tr>
</thead>
<tbody>
<tr>
<td>ชุดควบคุม</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-4.63 ± 1.61</td>
<td>-5.44 ± 0.89</td>
<td>-6.34 ± 1.61</td>
</tr>
<tr>
<td>25</td>
<td>-4.61 ± 2.25</td>
<td>-4.92 ± 0.80</td>
<td>-6.30 ± 1.27</td>
</tr>
<tr>
<td>35</td>
<td>-3.76 ± 1.01</td>
<td>-4.88 ± 0.26</td>
<td>-4.33 ± 0.56</td>
</tr>
<tr>
<td>คำแนะนำ</td>
<td>-4.34 ± 1.53</td>
<td>-5.10 ± 0.70</td>
<td>-5.66 ± 1.45</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-4.78 ± 0.78</td>
<td>-5.33 ± 0.21</td>
<td>-5.81 ± 2.49</td>
</tr>
<tr>
<td>25</td>
<td>-4.78 ± 1.14</td>
<td>-4.40 ± 0.32</td>
<td>-6.10 ± 0.67</td>
</tr>
<tr>
<td>35</td>
<td>-4.81 ± 0.57</td>
<td>-3.90 ± 0.30</td>
<td>-4.28 ± 0.57</td>
</tr>
<tr>
<td>คำแนะนำ</td>
<td>-4.79 ± 0.75</td>
<td>-4.45 ± 0.64</td>
<td>-5.34 ± 1.38</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-4.70 ± 0.66</td>
<td>-5.66 ± 0.91</td>
<td>-6.77 ± 0.89</td>
</tr>
<tr>
<td>25</td>
<td>-4.66 ± 0.86</td>
<td>-4.67 ± 0.07</td>
<td>-5.46 ± 0.54</td>
</tr>
<tr>
<td>35</td>
<td>-4.49 ± 1.36</td>
<td>-4.98 ± 0.43</td>
<td>-4.37 ± 0.26</td>
</tr>
<tr>
<td>คำแนะนำ</td>
<td>-5.62 ± 0.86</td>
<td>-5.16 ± 0.69</td>
<td>-5.53 ± 1.17</td>
</tr>
</tbody>
</table>
ตาราง 26 (ต่อ)

<table>
<thead>
<tr>
<th>ทรีทเมนต์</th>
<th>อุณหภูมิ</th>
<th>ระยะเวลาการเก็บรักษา (วัน)</th>
<th>ผลกระทบพรีโมแนล</th>
<th>โดยเฉลี่ย</th>
</tr>
</thead>
<tbody>
<tr>
<td>พลาง</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-4.70 ± 0.94</td>
<td>-5.49 ± 0.70</td>
<td>-6.37 ± 1.42</td>
<td>-5.39 ± 1.01</td>
<td>-6.55 ± 1.31</td>
</tr>
<tr>
<td>0.68 ± 1.33</td>
<td>-4.67 ± 0.52</td>
<td>-5.95 ± 0.85</td>
<td>-6.55 ± 0.95</td>
<td>-7.86 ± 1.79</td>
</tr>
<tr>
<td>0.35 ± 1.01</td>
<td>-4.55 ± 0.61</td>
<td>-4.33 ± 0.42</td>
<td>-4.94 ± 0.94</td>
<td>-6.86 ± 1.69</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>-4.58 ± 1.08</td>
<td>-4.90 ± 0.73</td>
<td>-5.52 ± 1.29</td>
<td>-5.57 ± 1.15</td>
</tr>
</tbody>
</table>

หมายเหตุ
- ** อักษรกลับกันที่มีความแตกต่างกันในแนวตั้งแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ** อักษรกลับกันที่มีความแตกต่างกันในแนวตั้งแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ** ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
ตาราง 27 ค่าความเหนียวข้นตัก (stickiness) ของกาวเพลิงเส้นสกัดที่มีรังสีหลอกดาไวโอเลตที่ระดับความเข้มและอุณหภูมิในอุณหภูมิ 15, 25 และ 35 องศา

<table>
<thead>
<tr>
<th>ทรัพย์สินนั้น</th>
<th>อุณหภูมิ (°C)</th>
<th>ระยะเวลาการถูกรักษา (วัน)</th>
<th>ผลของทรัพย์สินนั้น</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-1.64 ± 0.26</td>
<td>-2.36 ± 0.61</td>
<td>-1.98 ± 0.60</td>
</tr>
<tr>
<td>25</td>
<td>-1.88 ± 0.83</td>
<td>-1.68 ± 0.08</td>
<td>-1.72 ± 0.30</td>
</tr>
<tr>
<td>35</td>
<td>-1.56 ± 0.71</td>
<td>-1.88 ± 0.49</td>
<td>-1.54 ± 0.21</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>-1.69 ± 0.49</td>
<td>-1.97 ± 0.50</td>
<td>-1.75 ± 0.40</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-1.40 ± 0.21</td>
<td>-1.72 ± 0.25</td>
<td>-1.90 ± 0.47</td>
</tr>
<tr>
<td>25</td>
<td>-1.63 ± 0.56</td>
<td>-1.82 ± 0.33</td>
<td>-2.05 ± 0.47</td>
</tr>
<tr>
<td>35</td>
<td>-1.60 ± 0.46</td>
<td>-1.53 ± 0.38</td>
<td>-1.78 ± 0.21</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>-1.54 ± 0.39</td>
<td>-1.69 ± 0.31</td>
<td>-1.91 ± 0.37</td>
</tr>
<tr>
<td>UV ระดับปานกลาง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-1.73 ± 0.39</td>
<td>-2.22 ± 3.52</td>
<td>-1.65 ± 0.36</td>
</tr>
<tr>
<td>25</td>
<td>-1.89 ± 0.18</td>
<td>-1.54 ± 0.50</td>
<td>-1.67 ± 0.34</td>
</tr>
<tr>
<td>35</td>
<td>-1.60 ± 0.54</td>
<td>-1.78 ± 0.40</td>
<td>-1.67 ± 0.26</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td>-1.72 ± 0.38</td>
<td>-1.85 ± 0.51</td>
<td>-1.66 ± 0.28</td>
</tr>
</tbody>
</table>
ตาราง 27 (ต่อ)

<table>
<thead>
<tr>
<th>รหัสเวทมนตร์</th>
<th>ข้อมูลหมุน</th>
<th>ระยะเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทำนองเวทมนตร์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ผลงาน</td>
<td>15</td>
<td>-1.59 ± 0.30</td>
<td>-2.10 ± 0.51</td>
</tr>
<tr>
<td>ระยะเวลา</td>
<td>25</td>
<td>-1.77 ± 0.49</td>
<td>-1.68 ± 0.33</td>
</tr>
<tr>
<td>การเสริม</td>
<td>35</td>
<td>-1.59 ± 0.46</td>
<td>-1.73 ± 0.40</td>
</tr>
<tr>
<td>รักษารักษา</td>
<td>โกยเขาเกี่ยง</td>
<td>-1.64 ± 0.41<sup>x</sup></td>
<td>-1.84 ± 0.44<sup>y</sup></td>
</tr>
</tbody>
</table>

หมายเหตุ:
- ^x ถ้ามีการก้าวขึ้นในแนวโน้มแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ^y ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 28 ค่าความสามารถในการเกาะติดดีวัสดุ (Adhesiveness) ของกัลวาติ่งกันและที่ผนังเร่งดีคลายไวโอลติ่งที่ระดับความเข้มแ undergone ผ่านวิกฤติกันในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส ที่ระยะเวลาการเก็บรักษาต่างๆ ต่อไปนี้

<table>
<thead>
<tr>
<th>กรณีแพร่ระบาด</th>
<th>อุณหภูมิ (องศาเซลเซียส)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>-0.99 ± 0.36</td>
<td>-0.70 ± 0.23</td>
<td>-0.57 ± 0.16</td>
<td>-0.43 ± 0.12</td>
<td>-0.37 ± 0.32</td>
<td>-0.40 ± 0.14</td>
<td>-0.42 ± 0.10</td>
<td>-0.38 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-0.95 ± 0.45</td>
<td>-0.77 ± 0.12</td>
<td>-0.67 ± 0.26</td>
<td>-1.08 ± 0.59</td>
<td>-1.11 ± 0.47</td>
<td>-0.40 ± 0.14</td>
<td>-0.42 ± 0.10</td>
<td>-0.38 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-0.71 ± 0.37</td>
<td>-0.81 ± 0.28</td>
<td>-0.79 ± 0.11</td>
<td>-0.10 ± 0.34</td>
<td>-0.83 ± 0.27</td>
<td>-0.40 ± 0.14</td>
<td>-0.42 ± 0.10</td>
<td>-0.38 ± 0.21</td>
</tr>
<tr>
<td>เปาะเมล็ด</td>
<td>15</td>
<td>-0.88 ± 0.36</td>
<td>-0.76 ± 0.20</td>
<td>-0.74 ± 0.21</td>
<td>-0.83 ± 0.46</td>
<td>-0.74 ± 0.54</td>
<td>-0.40 ± 0.14</td>
<td>-0.42 ± 0.10</td>
<td>-0.38 ± 0.21</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>-0.97 ± 0.30</td>
<td>-0.57 ± 0.26</td>
<td>-0.52 ± 0.22</td>
<td>-0.41 ± 0.32</td>
<td>-0.34 ± 0.18</td>
<td>-0.56 ± 0.07</td>
<td>-0.54 ± 0.24</td>
<td>-0.19 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-0.90 ± 0.32</td>
<td>-0.73 ± 0.11</td>
<td>0.81 ± 0.21</td>
<td>-0.74 ± 0.20</td>
<td>-1.01 ± 0.37</td>
<td>-1.10 ± 0.66</td>
<td>-0.87 ± 0.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-0.97 ± 0.12</td>
<td>-0.84 ± 0.06</td>
<td>-0.84 ± 0.16</td>
<td>-1.02 ± 0.36</td>
<td>-1.22 ± 0.00</td>
<td>-0.94 ± 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>เผาะเมล็ด</td>
<td>15</td>
<td>-0.95 ± 0.21</td>
<td>-0.71 ± 0.18</td>
<td>-0.72 ± 0.23</td>
<td>-0.72 ± 0.37</td>
<td>-0.75 ± 0.46</td>
<td>-0.78 ± 0.44</td>
<td>-0.54 ± 0.24</td>
<td>-0.19 ± 0.07</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>-0.81 ± 0.31</td>
<td>-0.63 ± 0.36</td>
<td>-0.62 ± 0.04</td>
<td>-0.46 ± 0.10</td>
<td>-0.60 ± 0.07</td>
<td>-0.33 ± 0.18</td>
<td>-0.35 ± 0.22</td>
<td>-0.39 ± 0.34</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-0.87 ± 0.29</td>
<td>-0.60 ± 0.24</td>
<td>-0.77 ± 0.09</td>
<td>-0.95 ± 0.23</td>
<td>-1.03 ± 0.19</td>
<td>-0.84 ± 0.98</td>
<td>-1.19 ± 0.79</td>
<td>-0.89 ± 0.46</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-0.85 ± 0.34</td>
<td>-0.96 ± 0.01</td>
<td>-0.79 ± 0.06</td>
<td>-1.05 ± 0.39</td>
<td>-1.11 ± 0.22</td>
<td>-1.21 ± 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>เผาะเมล็ด</td>
<td>15</td>
<td>-0.85 ± 0.27</td>
<td>-0.73 ± 0.28</td>
<td>-0.73 ± 0.10</td>
<td>-0.82 ± 0.36</td>
<td>-0.89 ± 0.27</td>
<td>-0.74 ± 0.65</td>
<td>-0.77 ± 0.69</td>
<td>-0.39 ± 0.34</td>
</tr>
</tbody>
</table>

หมายเหตุ: ผลของการเปาะเมล็ด หมายถึงค่าเฉลี่ยของผลการวิเคราะห์.
ตาราง 28 (ต่อ)

| ทรีมานส์ส์ | ฮุล下载 | ระยะเวลาการเก็บรักษา (วัน) | ผลของทรีมานส์ส์ | ไซส์เอฟ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ผลของ</td>
<td>15</td>
<td>-0.92 ± 0.29</td>
<td>-0.63 ± 0.26</td>
<td>-0.57 ± 0.14</td>
</tr>
<tr>
<td>ระยะเวลา</td>
<td>25</td>
<td>-0.91 ± 0.31</td>
<td>-0.70 ± 0.16</td>
<td>-0.82 ± 0.18</td>
</tr>
<tr>
<td>การเก็บ</td>
<td>35</td>
<td>-0.84 ± 0.28</td>
<td>-0.87 ± 0.16</td>
<td>-0.81 ± 0.10</td>
</tr>
<tr>
<td>รักษา</td>
<td>โคเอนซิม沉淀</td>
<td>-0.89 ± 0.29</td>
<td>-0.73 ± 0.22</td>
<td>-0.73 ± 0.18</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- * ตัวแปรที่มีความแตกต่างกันในแนวตั้งแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ** ตัวแปรที่มีความแตกต่างกันในแนวนอนแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- *** ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลเฉลี่ยค่าเฉลี่ย ± ค่าเบี้ยเบนมาตรฐาน (n=3)

หมายเหตุ:
- * ตัวแปรที่มีความแตกต่างกันในแนวตั้งแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ** ตัวแปรที่มีความแตกต่างกันในแนวนอนแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- *** ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลเฉลี่ยค่าเฉลี่ย ± ค่าเบี้ยเบนมาตรฐาน (n=3)
ตาราง 29 ค่าความสามารถในการทำให้ติดตัวไวรัส (adhesiveness) ของกิ่งเส้นและกิ่งชั้นต้นที่ผนวกไวรัสเข็มไวรัสโรคอิเล็กทรอนิกส์และเก็บรักษาในยุคหลุด 15, 25 และ 35 องศาเซลเซียสที่ระบายความเย็นทางตาข่าย และผลลัพธ์

<table>
<thead>
<tr>
<th>ทรีทเมนต์มลนิ่ง</th>
<th>อุณหภูมิ°C</th>
<th>ระบายความเย็นทางตาข่าย (วัน)</th>
<th>ผลถาวรที่รีปิโรมเนท์</th>
<th>ไอโอเลียม</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td></td>
<td>-0.22±0.02</td>
<td>-0.42±0.20</td>
<td>-0.41±0.23</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-0.19±0.03</td>
<td>-0.32±0.06</td>
<td>-0.31±0.11</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-0.22±0.04</td>
<td>-0.38±0.12</td>
<td>-0.26±0.60</td>
</tr>
<tr>
<td>คำเตือน</td>
<td>-0.21±0.03</td>
<td>-0.37±0.13</td>
<td>-0.31±0.14</td>
<td>-0.32±0.08</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>-0.26±0.09</td>
<td>-0.28±0.10</td>
<td>-0.33±0.17</td>
<td>-0.31±0.12</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-0.27±0.16</td>
<td>-0.35±0.10</td>
<td>-0.39±0.18</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-0.27±0.03</td>
<td>-0.32±0.10</td>
<td>-0.31±0.06</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-0.26±0.10</td>
<td>-0.32±0.09</td>
<td>-0.34±0.13</td>
</tr>
<tr>
<td>คำเตือน</td>
<td>-0.26±0.10</td>
<td>-0.32±0.09</td>
<td>-0.34±0.13</td>
<td>-0.34±0.19</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>-0.22±0.13</td>
<td>-0.44±0.14</td>
<td>-0.29±0.14</td>
<td>-0.35±0.10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-0.32±0.09</td>
<td>-0.30±0.03</td>
<td>-0.30±0.19</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-0.19±0.08</td>
<td>-0.31±0.17</td>
<td>-0.31±0.11</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>-0.21±0.08</td>
<td>-0.35±0.13</td>
<td>-0.30±0.13</td>
</tr>
</tbody>
</table>
ตาราง 29 (ต่อ)

<table>
<thead>
<tr>
<th>ช่วงเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทริปแม่[^]</th>
<th>ผลของทริปพ่อ[^]</th>
<th>ผลของทริปพันธุ์[^]</th>
<th>โค้งเสถียร</th>
<th>โค้งเสถียร</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ผลของ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-0.23 ± 0.07</td>
<td>-0.38 ± 0.15</td>
<td>-0.34 ± 0.17</td>
<td>-0.34 ± 0.10</td>
<td>-0.28 ± 0.09</td>
</tr>
<tr>
<td>ปะเวล</td>
<td>-0.22 ± 0.10</td>
<td>-0.32 ± 0.06</td>
<td>-0.33 ± 0.15</td>
<td>-0.35 ± 0.16</td>
<td>-0.26 ± 0.09</td>
</tr>
<tr>
<td>ภูมิภูมิ</td>
<td>-0.22 ± 0.06</td>
<td>-0.34 ± 0.12</td>
<td>-0.29 ± 0.07</td>
<td>-0.31 ± 0.11</td>
<td>-0.27 ± 0.08</td>
</tr>
<tr>
<td>ระบาย</td>
<td>-0.29 ± 0.09</td>
<td>-0.36 ± 0.17</td>
<td>-0.29 ± 0.09</td>
<td>-0.36 ± 0.17</td>
<td>-0.29 ± 0.09</td>
</tr>
<tr>
<td>วิธีการ</td>
<td>-0.29 ± 0.09</td>
<td>-0.36 ± 0.17</td>
<td>-0.29 ± 0.09</td>
<td>-0.36 ± 0.17</td>
<td>-0.29 ± 0.09</td>
</tr>
<tr>
<td>โค้งเสถียร</td>
<td>-0.29 ± 0.09</td>
<td>-0.36 ± 0.17</td>
<td>-0.29 ± 0.09</td>
<td>-0.36 ± 0.17</td>
<td>-0.29 ± 0.09</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- "^" ถ้าการเทียบข้อมูลความแตกต่างกันในแนวทางแอนตร์ก็เป็นการแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "" ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
จากการทดลองพบว่า อุณหภูมิการเก็บรักษาผลิตภัณฑ์เปรี้ยวแปร่งค่าความ
ความสามารถการรวมตัวกัน (cohesiveness) (ตาราง 30) ค่าความยืดหยุ่น (springiness) (ตาราง 32)
ค่าความเหนียวเป็นยาง (gumminess) (ตาราง 34) และค่าการทนต่อการเหยื่อ (chewiness) (ตาราง
36) ของก๋วยเตี๋ยวสีน้ำตาลที่ไม่เก็บรักษาไทยมีอัตราส่วนสูงกว่าในทุกส่วนที่เปลี่ยนแปลงอุณหภูมิ (p<0.05)
โดยพบว่าก๋วยเตี๋ยวสีน้ำตาลที่ไม่เก็บรักษาไทยมีอัตราส่วนสูงกว่าก๋วยเตี๋ยวสีน้ำตาลที่เก็บรักษาไทยที่อุณหภูมิ 15 องศาเซลเซียส และยังไม่แตกต่างกันสาระไม่
ความสามารถการรวมตัวกัน ค่าความเหนียวเป็นยาง ค่าการทนต่อการเหยื่อ และค่าความยืดหยุ่นสูง
กว่าก๋วยเตี๋ยวสีน้ำตาลที่เก็บรักษาไทยที่อุณหภูมิ 25 และ 35 องศาเซลเซียส ตามลำดับ ระดับการระงับ
อัตราการไหลผลิตและอุณหภูมิในการเก็บรักษาไม่ส่งผลต่อความสามารถในการรวมตัวกัน ค่า
ความเหนียวเป็นยาง และค่าการทนต่อการเหยื่อ ของก๋วยเตี๋ยวสีน้ำตาลที่ไม่เก็บรักษาไทย (p>0.05)

อุณหภูมิในการเก็บรักษาผลิตภัณฑ์เปรี้ยวแปร่งสีน้ำตาลที่เก็บรักษาไทย
แล้ว ยังมีอัตราส่วนสูงกว่าในทุกส่วนที่เก็บรักษาไทยที่อุณหภูมิ 35 องศาเซลเซียส มีค่าความ
ยืดหยุ่นสูงกว่าในทุกส่วนที่เก็บรักษาไทยที่อุณหภูมิ 25 และ 35 องศาเซลเซียส

Sandhu et al. (2010) ได้ทำการศึกษาอุณหภูมิของก๋วยเตี๋ยวที่จัดทำจากถั่วลิสงแปร่ง
และถั่วลิสงแปร่งขาวพบว่า ค่าความสามารถการรวมตัวกันของสารละลายจากถั่วลิสงแปร่งขาว ค่า
กว่าการเกิดผลของสารละลายแปร่ง ซึ่งมีค่าเท่ากับ 0.471 และ 0.724 ตามลำดับ ถั่วลิสงแปร่ง
แปร่งขาวมีค่าการทนต่อการเหยื่อ (7.89) สูงกว่าถั่วลิสงแปร่งแปร่งขาว (2.55) เนื่องจากถั่วลิสง
แปร่งขาวมีระดับการเกิดผลต่ำกว่าของสีดำแปร่งแปร่งขาว ส่งผลให้ถั่วลิสงแปร่งแปร่งขาว
ถั่วแปร่งดำมีอิทธิพลในร่างกาย (gumminy) และสารติด (cohesive side)
ตาราง 30 ค่าความสามรถการรวมตัวกัน (coesiveness) ของกิจวัตรสมบัติที่ผ่านการสลับตัวไวโอลเอกซ์ทระดับความเข้มและเก็บรักษาในจุลเหนือ 15, 25 และ 35 องศาของขึ้น จากระยะเวลาการเก็บรักษาต่างๆ ก่อนล่า

<table>
<thead>
<tr>
<th>ทริมเม็ด</th>
<th>จุลเหนือ</th>
<th>ระยะเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทริมเม็ด</th>
<th>อย่างละเลี่ยม</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>0.94 ± 0.03</td>
<td>0.94 ± 0.01</td>
<td>0.95 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.94 ± 0.03</td>
<td>0.93 ± 0.02</td>
<td>0.93 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.94 ± 0.03</td>
<td>0.93 ± 0.02</td>
<td>0.91 ± 0.01</td>
</tr>
<tr>
<td>คำเฉลี่ย</td>
<td></td>
<td>0.94 ± 0.02</td>
<td>0.93 ± 0.01</td>
<td>0.93 ± 0.02</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>0.94 ± 0.01</td>
<td>0.94 ± 0.02</td>
<td>0.95 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.93 ± 0.01</td>
<td>0.92 ± 0.01</td>
<td>0.93 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.94 ± 0.01</td>
<td>0.94 ± 0.01</td>
<td>0.93 ± 0.01</td>
</tr>
<tr>
<td>คำเฉลี่ย</td>
<td></td>
<td>0.94 ± 0.01</td>
<td>0.93 ± 0.01</td>
<td>0.94 ± 0.01</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>0.94 ± 0.03</td>
<td>0.94 ± 0.01</td>
<td>0.95 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.94 ± 0.01</td>
<td>0.93 ± 0.02</td>
<td>0.93 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.94 ± 0.02</td>
<td>0.94 ± 0.00</td>
<td>0.92 ± 0.01</td>
</tr>
<tr>
<td>คำเฉลี่ย</td>
<td></td>
<td>0.94 ± 0.02</td>
<td>0.94 ± 0.01</td>
<td>0.93 ± 0.02</td>
</tr>
</tbody>
</table>
ตาราง 30 (ต่อ)

<table>
<thead>
<tr>
<th>ทรีทเมนต์*</th>
<th>ยูแมสุกิ</th>
<th>ระยะเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทรีทเมนต์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ผลข้าง</td>
<td>15</td>
<td>0.94±0.02</td>
<td>0.94±0.01</td>
</tr>
<tr>
<td>ระยะเวลา</td>
<td>25</td>
<td>0.94±0.02</td>
<td>0.93±0.02</td>
</tr>
<tr>
<td>การเก็บ</td>
<td>35</td>
<td>0.94±0.02</td>
<td>0.94±0.01</td>
</tr>
<tr>
<td>รักษา</td>
<td>โค้งเรียก</td>
<td>ค่าเฉลี่ย</td>
<td>0.94±0.02</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- **: ตัวแปรที่มีความแตกต่างกันในแนวตั้งแต่ละมุมความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- ***: ตัวแปรที่มีความแตกต่างกันในแนวแนวนอนแต่ละมุมความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "": ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของเขยiturค่าเฉลี่ย±ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 31 ค่าความสามารถในการรวมตัวกัน (cohesiveness) ของกิจวัตรส่วนที่ผ่านวิธีการทดสอบกิจวัตรที่ระดับความเข้มข้นและเก็บรักษาในอายุหนูน
15, 25 และ 35 องศาเซลเซียสที่ระยะเวลาการเก็บรักษาต่างๆ หลังจาก

<table>
<thead>
<tr>
<th>ทรัพยากรที่</th>
<th>อายุหนูน</th>
<th>ระดับเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทรัพยากร</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.91 ± 0.01</td>
<td>0.90 ± 0.02</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td>25</td>
<td>0.91 ± 0.00</td>
<td>0.90 ± 0.03</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td>35</td>
<td>0.90 ± 0.01</td>
<td>0.88 ± 0.01</td>
<td>0.88 ± 0.01</td>
</tr>
<tr>
<td>คำอธิบาย</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.90 ± 0.02</td>
<td>0.90 ± 0.03</td>
<td>0.90 ± 0.01</td>
</tr>
<tr>
<td>25</td>
<td>0.91 ± 0.01</td>
<td>0.88 ± 0.02</td>
<td>0.91 ± 0.01</td>
</tr>
<tr>
<td>35</td>
<td>0.91 ± 0.03</td>
<td>0.89 ± 0.03</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td>คำอธิบาย</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.91 ± 0.01</td>
<td>0.90 ± 0.03</td>
<td>0.90 ± 0.01</td>
</tr>
<tr>
<td>25</td>
<td>0.91 ± 0.01</td>
<td>0.89 ± 0.02</td>
<td>0.90 ± 0.01</td>
</tr>
<tr>
<td>35</td>
<td>0.89 ± 0.03</td>
<td>0.90 ± 0.01</td>
<td>0.87 ± 0.02</td>
</tr>
<tr>
<td>คำอธิบาย</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ตาราง 31 (ต่อ)

<table>
<thead>
<tr>
<th>หมวดหมู่**</th>
<th>ระดับอาการกับร่างกาย (วัน)</th>
<th>ผลของระดับมันสี</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ผลของ</td>
<td>15</td>
<td>0.91 ± 0.01</td>
<td>0.90 ± 0.02</td>
</tr>
<tr>
<td>ระดับเวลา</td>
<td>25</td>
<td>0.91 ± 0.01</td>
<td>0.89 ± 0.02</td>
</tr>
<tr>
<td>การท้อง</td>
<td>35</td>
<td>0.90 ± 0.02</td>
<td>0.89 ± 0.02</td>
</tr>
<tr>
<td>ร่างกาย</td>
<td>ได้ผลจริง</td>
<td>ค่าเฉลี่ย</td>
<td>0.90 ± 0.01</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- ** ยังไม่สามารถประมวลผลค่าเฉลี่ยในแบบบูรณาการถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- *** ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p<0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าปีจงเบนมาตรฐาน (n=3)
ตาราง 32 ค่าความยืดหยุ่น (Springiness) ของหัวต่อข้อมูลเส้นตัดที่ผ่านรังสีอินfrared ที่ระดับความเย็นและเก็บรักษาในอุณหภูมิ 15 25 และ 35 องศาเซลเซียส ที่ระดับเวลาเก็บรักษาต่างๆ ก่อนแรก

<table>
<thead>
<tr>
<th>ทรัพยากรiders</th>
<th>อุณหภูมิ</th>
<th>ระดับเวลาการเก็บรักษา (วัน)</th>
<th>ผลของทรัพยากรiders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>0.92 ± 0.06</td>
<td>0.96 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.91 ± 0.08</td>
<td>0.93 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.92 ± 0.07</td>
<td>0.91 ± 0.01</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>0.90 ± 0.06</td>
<td>0.93 ± 0.04</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>0.94 ± 0.06</td>
<td>0.99 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.96 ± 0.06</td>
<td>0.97 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.96 ± 0.05</td>
<td>0.92 ± 0.07</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>0.95 ± 0.06</td>
<td>0.96 ± 0.07</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>0.93 ± 0.06</td>
<td>0.99 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.85 ± 0.06</td>
<td>0.95 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.94 ± 0.06</td>
<td>0.96 ± 0.06</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>0.91 ± 0.07</td>
<td>0.97 ± 0.06</td>
</tr>
</tbody>
</table>
ตาราง 32 (ต่อ)

<table>
<thead>
<tr>
<th>ทรีบีมแคล**</th>
<th>จุดศูนย์</th>
<th>ระยะทางการเปรียบเทียบ (วิม)</th>
<th>ผลของทางสถิติ</th>
<th>โดย์สั่ง</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผลข้าง</td>
<td>15</td>
<td>0.93 ± 0.05</td>
<td>0.98 ± 0.04</td>
<td>0.97 ± 0.02</td>
<td>1.00 ± 0.03</td>
<td>0.99 ± 0.06</td>
<td>1.00 ± 0.03</td>
<td>0.99 ± 0.05</td>
<td>0.99 ± 0.03</td>
<td>0.98 ± 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ระยะทาง</td>
<td>25</td>
<td>0.90 ± 0.07</td>
<td>0.95 ± 0.07</td>
<td>0.96 ± 0.03</td>
<td>1.00 ± 0.04</td>
<td>0.97 ± 0.04</td>
<td>1.01 ± 0.05</td>
<td>0.99 ± 0.01</td>
<td>0.97 ± 0.06</td>
<td>0.97 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>การเก็บ</td>
<td>35</td>
<td>0.94 ± 0.06</td>
<td>0.93 ± 0.05</td>
<td>0.91 ± 0.04</td>
<td>0.93 ± 0.05</td>
<td>0.94 ± 0.05</td>
<td>0.92 ± 0.04</td>
<td>0.93 ± 0.05</td>
<td>0.93 ± 0.05</td>
<td>0.93 ± 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>วัสดุ</td>
<td></td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>0.92 ± 0.06</td>
<td>0.95 ± 0.06**</td>
<td>0.95 ± 0.04**</td>
<td>0.98 ± 0.03**</td>
<td>0.97 ± 0.05**</td>
<td>0.99 ± 0.05**</td>
<td>0.99 ± 0.04**</td>
<td>0.99 ± 0.03**</td>
<td>0.99 ± 0.04**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ** การจำลองที่ค่าความแตกต่างกันในแนวตั้งแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
| *** การจำลองที่ค่าความแตกต่างกันในแนวหน้าแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
| ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 33 ค่าความยืดหยุ่น (springiness) ของกระเพาะสัตว์พันธุ์ด้วงเวอร์ชั่นตะวันออกที่ระดับความเย็นและเก็บรักษาในชุดอายุ 15, 25 และ 35 องศาเซลเซียสที่ระยะเวลาเก็บรักษาต่าง ๆ หลังจากเก็บรักษา

<table>
<thead>
<tr>
<th>ทริวแนล์</th>
<th>อายุหนุ่ม</th>
<th>ระยะเวลาเก็บรักษา (วัน)</th>
<th>ผลของทริวแนล์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ชุดอายุคุม</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.93 ± 0.01</td>
<td>0.93 ± 0.01</td>
<td>0.92 ± 0.03</td>
</tr>
<tr>
<td>25</td>
<td>0.91 ± 0.00</td>
<td>0.93 ± 0.01</td>
<td>0.92 ± 0.01</td>
</tr>
<tr>
<td>35</td>
<td>0.95 ± 0.04</td>
<td>0.92 ± 0.02</td>
<td>0.92 ± 0.01</td>
</tr>
<tr>
<td>คำเฉลี่ย</td>
<td>0.93 ± 0.03</td>
<td>0.93 ± 0.01</td>
<td>0.92 ± 0.01</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.93 ± 0.01</td>
<td>0.95 ± 0.03</td>
<td>0.94 ± 0.02</td>
</tr>
<tr>
<td>25</td>
<td>0.94 ± 0.02</td>
<td>0.91 ± 0.01</td>
<td>0.94 ± 0.02</td>
</tr>
<tr>
<td>35</td>
<td>0.93 ± 0.00</td>
<td>0.93 ± 0.03</td>
<td>0.93 ± 0.02</td>
</tr>
<tr>
<td>คำเฉลี่ย</td>
<td>0.93 ± 0.01</td>
<td>0.93 ± 0.03</td>
<td>0.94 ± 0.02</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.93 ± 0.02</td>
<td>0.92 ± 0.01</td>
<td>0.92 ± 0.02</td>
</tr>
<tr>
<td>25</td>
<td>0.93 ± 0.01</td>
<td>0.93 ± 0.01</td>
<td>0.92 ± 0.03</td>
</tr>
<tr>
<td>35</td>
<td>0.96 ± 0.04</td>
<td>0.94 ± 0.02</td>
<td>0.92 ± 0.01</td>
</tr>
<tr>
<td>คำเฉลี่ย</td>
<td>0.94 ± 0.02</td>
<td>0.93 ± 0.02</td>
<td>0.92 ± 0.02</td>
</tr>
</tbody>
</table>
ตาราง 33 (ต่อ)

<table>
<thead>
<tr>
<th>ทริแทนด์</th>
<th>อุณหภูมิ</th>
<th>ระดับการเกิดริ🥳랗ามา (เวร)</th>
<th>ผลของทริแทนด์</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผลของ</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ผลของ</td>
<td>15</td>
<td>0.93±0.01</td>
<td>0.93±0.02</td>
</tr>
<tr>
<td>ระดับเวลา</td>
<td>25</td>
<td>0.93±0.02</td>
<td>0.92±0.01</td>
</tr>
<tr>
<td>การเก็บ</td>
<td>35</td>
<td>0.95±0.03</td>
<td>0.93±0.02</td>
</tr>
<tr>
<td>รักษา</td>
<td></td>
<td>0.94±0.02a</td>
<td>0.93±0.02a</td>
</tr>
<tr>
<td>โดยเฉลี่ย</td>
<td></td>
<td>0.94±0.02a</td>
<td>0.93±0.02a</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- "a" ถ้าร่างกายนิก็ไม่สามารถแตกงอกในแนวเหตุผลและเด็กความแตกงอกถึงอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p≤0.05)
- "b" ถ้าร่างกายนิก็ไม่สามารถแตกงอกในแนวเหตุผลและเด็กความแตกงอกถึงอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p>0.05)
- "c" ไม่มีความแตกงอกของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย = ค่าเฉลี่ยแบบมุ่งหมาย (n=3)
ตาราง 34 ค่าความเหนียวเป็นยาง (gumminess) ของวัสดุต่าง ๆ ที่นำมาบดผงสีสันต่าง ๆ ที่ใช้ในผงสีสันกีฬาร่ะก็กีฬาเรือใบวิทยุ ที่ระดับความแข็งและกีฬารายในชุดที่ 15-25 และ 35 องศา เชลซีฟุตที่ระดับการเก็บรักษาร่างกายต่าง ๆ ก่อนหลากหลาย

<table>
<thead>
<tr>
<th>ทริมเมตซ์</th>
<th>อุณหภูมิ</th>
<th>ระดับการเก็บรักษา (วัน)</th>
<th>ผลของทริมเมตซ์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>85.88 ± 19.90</td>
<td>176.02 ± 43.88</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>83.86 ± 13.58</td>
<td>108.33 ± 14.21</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>80.06 ± 13.96</td>
<td>86.35 ± 6.12</td>
</tr>
<tr>
<td>ชุดเสื้อ</td>
<td>15</td>
<td>74.92 ± 12.66</td>
<td>145.76 ± 50.95</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>70.47 ± 8.32</td>
<td>103.79 ± 8.23</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>71.17 ± 12.84</td>
<td>85.25 ± 2.35</td>
</tr>
<tr>
<td>ชุดเสื้อ</td>
<td>15</td>
<td>72.19 ± 10.14</td>
<td>111.60 ± 37.26</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>79.90 ± 13.97</td>
<td>159.55 ± 45.48</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>77.11 ± 11.36</td>
<td>103.15 ± 7.64</td>
</tr>
<tr>
<td>ชุดเสื้อ</td>
<td>15</td>
<td>78.05 ± 12.81</td>
<td>89.89 ± 2.85</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>78.64 ± 11.75</td>
<td>117.53 ± 39.50</td>
</tr>
</tbody>
</table>
ตาราง 34 (ต่อ)

<table>
<thead>
<tr>
<th>ทรั่วเอกสาร</th>
<th>ลักษณะการเก็บรักษา (วัน)</th>
<th>ผลของทรั่วเอกสาร</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ผลของ</td>
<td>15</td>
<td>80.25 ± 15.01</td>
</tr>
<tr>
<td>การเก็บ</td>
<td>45</td>
<td>76.43 ± 12.13</td>
</tr>
<tr>
<td>รักษา</td>
<td>60</td>
<td>78.03 ± 12.34</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- "" ถ้านั้นปรากฏว่ามีความแตกต่างกันในแบบค้นแสดงว่าความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "" ถ้านั้นปรากฏว่ามีความแตกต่างกันในแบบค้นแสดงว่าความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "" ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 35 ค่าความเหนียวเป็นยาง (gumminess) ของกุ้งเตี้ยบน鲜杉ุ้งในวันคงเก็บไว้โดยในระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียส

<table>
<thead>
<tr>
<th>ที่มันดํา</th>
<th>อุณหภูมิ</th>
<th>ระดับการเก็บรักษา(วัน)</th>
<th>ผลของที่มันดํา</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>44.95 ± 14.07</td>
<td>57.61 ± 2.35</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>41.87 ± 13.83</td>
<td>50.71 ± 2.54</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>40.26 ± 8.47</td>
<td>54.86 ± 5.67</td>
</tr>
<tr>
<td>ที่มันดี</td>
<td>15</td>
<td>42.36 ± 10.93</td>
<td>54.39 ± 4.48</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>42.05 ± 11.05</td>
<td>49.04 ± 2.96</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>42.52 ± 15.17</td>
<td>50.40 ± 2.23</td>
</tr>
<tr>
<td>ที่มันดี</td>
<td>15</td>
<td>42.79 ± 14.68</td>
<td>50.75 ± 1.11</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>42.45 ± 11.92</td>
<td>50.06 ± 2.09</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>43.16 ± 11.57</td>
<td>55.08 ± 2.44</td>
</tr>
<tr>
<td>ที่มันดี</td>
<td>15</td>
<td>41.84 ± 11.57</td>
<td>54.22 ± 4.35</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>40.86 ± 9.88</td>
<td>46.80 ± 5.91</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>41.95 ± 9.61</td>
<td>52.03 ± 5.52</td>
</tr>
</tbody>
</table>
ตาราง 35 (ต่อ)

<table>
<thead>
<tr>
<th>หลักของทรัพยากรที่ดี</th>
<th>ระดับการก้าวหน้า (วัน)</th>
<th>ผลของทรัพยากร</th>
<th>รายละเอียด</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>0 1 2 3 4 5 6 7</td>
<td>43.39 ± 10.73</td>
<td>43.39 ± 10.73</td>
</tr>
<tr>
<td>140</td>
<td>0 1 2 3 4 5 6 7</td>
<td>42.08 ± 11.78</td>
<td>42.08 ± 11.78</td>
</tr>
<tr>
<td>160</td>
<td>0 1 2 3 4 5 6 7</td>
<td>41.30 ± 9.87</td>
<td>41.30 ± 9.87</td>
</tr>
<tr>
<td>180</td>
<td>0 1 2 3 4 5 6 7</td>
<td>40.63 ± 7.95</td>
<td>40.63 ± 7.95</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- **"** ถ้ามีความแตกต่างกันในแนวทางแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- "" ถ้าไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี้ยเบนมาตรฐาน (n=3)
ตาราง 36 ค่าการทดสอบการเติบโต (chewiness) ของกล้วยเผือกส่วนผสมที่ค่าน้ำสีอ่อนกว่าโอเวทที่ระดับความเข้มและเก็บรักษาในอุณหภูมิ 15, 25 และ 35 องศาเซลเซียสที่ระยะเวลาเก็บรักษาต่าง ๆ ถึงเวลา 8

<table>
<thead>
<tr>
<th>ทรัพย์สมบัติ</th>
<th>อุณหภูมิ</th>
<th>ระยะเวลาเก็บรักษา (วัน)</th>
<th>ค่าเฉลี่ย</th>
<th>ค่าส่วนตัว</th>
<th>ค่าทางสถิติ</th>
<th>ผลของทรัพย์สมบัติ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>ชุดควบคุม</td>
<td>15</td>
<td>41.91 ± 12.60</td>
<td>53.60 ± 1.70</td>
<td>44.55 ± 6.02</td>
<td>49.29 ± 5.45</td>
<td>43.72 ± 7.24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>38.12 ± 12.62</td>
<td>46.97 ± 2.63</td>
<td>44.76 ± 5.56</td>
<td>44.23 ± 5.98</td>
<td>39.27 ± 3.88</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>38.07 ± 6.75</td>
<td>50.48 ± 4.89</td>
<td>40.66 ± 4.06</td>
<td>41.57 ± 3.14</td>
<td>44.02 ± 6.77</td>
</tr>
<tr>
<td>หัวเฉลี่ย</td>
<td>15</td>
<td>39.37 ± 9.72</td>
<td>53.35 ± 4.00</td>
<td>43.32 ± 4.99</td>
<td>45.03 ± 5.61</td>
<td>41.50 ± 5.74</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>39.24 ± 10.17</td>
<td>46.39 ± 1.90</td>
<td>45.44 ± 3.97</td>
<td>45.17 ± 7.49</td>
<td>45.71 ± 5.99</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>39.73 ± 13.94</td>
<td>46.08 ± 1.48</td>
<td>46.57 ± 7.89</td>
<td>44.05 ± 10.68</td>
<td>42.03 ± 6.12</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>39.75 ± 13.71</td>
<td>47.00 ± 2.45</td>
<td>44.95 ± 6.80</td>
<td>42.58 ± 0.74</td>
<td>40.48 ± 4.06</td>
</tr>
<tr>
<td>หัวเฉลี่ย</td>
<td>15</td>
<td>39.57 ± 11.02</td>
<td>46.49 ± 1.76</td>
<td>45.65 ± 5.62</td>
<td>43.93 ± 6.63</td>
<td>42.74 ± 5.28</td>
</tr>
<tr>
<td>UV ระดับสูง</td>
<td>15</td>
<td>40.12 ± 10.57</td>
<td>50.59 ± 2.62</td>
<td>43.96 ± 3.38</td>
<td>47.69 ± 7.00</td>
<td>42.72 ± 4.68</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>39.06 ± 10.80</td>
<td>50.13 ± 4.13</td>
<td>41.70 ± 3.33</td>
<td>42.17 ± 2.22</td>
<td>40.60 ± 6.64</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>39.11 ± 8.67</td>
<td>44.26 ± 6.49</td>
<td>48.22 ± 6.78</td>
<td>44.54 ± 0.82</td>
<td>43.39 ± 3.27</td>
</tr>
<tr>
<td>หัวเฉลี่ย</td>
<td>39.43 ± 8.73</td>
<td>48.33 ± 5.08</td>
<td>44.63 ± 5.03</td>
<td>44.80 ± 4.41</td>
<td>42.24 ± 4.56</td>
<td>44.67 ± 5.50</td>
</tr>
</tbody>
</table>
ตาราง 36 (ต่อ)

<table>
<thead>
<tr>
<th>ทรีมานด์</th>
<th>คุณภาพมี</th>
<th>ระยะเวลาการเกิดรักษา (วัน)</th>
<th>ผลของทรีมานด์</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ผลของ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>40.43 ± 9.74</td>
<td>50.19 ± 3.63</td>
</tr>
<tr>
<td>ระยะเวลা</td>
<td></td>
<td>38.97 ± 10.86</td>
<td>47.72 ± 3.15</td>
</tr>
<tr>
<td>การเก็บ</td>
<td></td>
<td>38.98 ± 8.82</td>
<td>47.25 ± 5.03</td>
</tr>
<tr>
<td>รักษา</td>
<td></td>
<td>39.46 ± 5.48</td>
<td>48.39 ± 4.08</td>
</tr>
</tbody>
</table>

หมายเหตุ:
- **" ถ้ามีความแตกต่างกันในแนวนั้นแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- " ถ้ามีความแตกต่างกันในแนวนั้นแสดงถึงความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- " ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
ตาราง 37 ค่าการแทนค่าการลื่น (chewiness) ของกลิ่นตัวย่อยสำลักที่ต่ำกว่าที่ระดับความที่และเก็บรักษาในขุนยุทธิ์ 15, 25 และ 35 องศา ขณะเชื้อที่ระดับการเก็บรักษาต่าง ๆ หลังจาก

<table>
<thead>
<tr>
<th>ทรัพมันดิน</th>
<th>ขุนยุทธิ์</th>
<th>ระยะการเก็บรักษา (วัน)</th>
<th>ผลของทรัพมันดิน</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ขุนข้าวบุญ</td>
<td>15</td>
<td>41.91 ± 12.60</td>
<td>53.60 ± 1.70</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>38.12 ± 12.62</td>
<td>46.97 ± 2.67</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>38.07 ± 6.75</td>
<td>50.48 ± 4.89</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>39.37 ± 9.72</td>
<td>50.35 ± 4.09</td>
</tr>
<tr>
<td>UV ระดับต่ำ</td>
<td>15</td>
<td>39.24 ± 10.17</td>
<td>46.39 ± 1.90</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>39.73 ± 13.94</td>
<td>46.08 ± 1.48</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>39.75 ± 13.71</td>
<td>47.00 ± 2.45</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>39.57 ± 11.02</td>
<td>46.49 ± 1.76</td>
</tr>
<tr>
<td>UV ระดับรอง</td>
<td>15</td>
<td>40.12 ± 10.57</td>
<td>50.59 ± 2.62</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>39.06 ± 10.80</td>
<td>50.13 ± 4.13</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>39.11 ± 8.67</td>
<td>44.26 ± 6.49</td>
</tr>
<tr>
<td>ค่าเฉลี่ย</td>
<td></td>
<td>39.43 ± 8.73</td>
<td>48.33 ± 5.08</td>
</tr>
</tbody>
</table>
ตาราง 37 (ต่อ)

<table>
<thead>
<tr>
<th>ช่วงอายุผู้ป่วย</th>
<th>ระดับการเก็บรักษา (วัน)</th>
<th>ผลของการวิน contempl</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ผลของผู้ป่วย</td>
<td>15</td>
<td>40.43 ± 9.74</td>
<td>50.19 ± 3.63</td>
</tr>
<tr>
<td>ระยะเวลาการเก็บรักษา</td>
<td>25</td>
<td>38.97 ± 10.86</td>
<td>47.72 ± 3.15</td>
</tr>
<tr>
<td>การแก้ปัญหา</td>
<td>35</td>
<td>38.98 ± 8.82</td>
<td>47.25 ± 5.03</td>
</tr>
<tr>
<td>รักษาโรค</td>
<td>ผลการผลิต ค่าเฉลี่ย</td>
<td>39.46 ± 9.48</td>
<td>48.39 ± 4.08</td>
</tr>
</tbody>
</table>

หมายเหตุ - " mayores" ค่าที่ไม่แตกต่างกันในแนวนอนแต่แสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติของค่าเฉลี่ย (p<0.05)
- " minors" ไม่มีความแตกต่างของค่าเฉลี่ยอย่างมีนัยสำคัญทางสถิติ (p>0.05)
- ค่าของข้อมูลแสดงค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน (n=3)
บทที่ 5
สรุปผลการวิจัย

สรุปผลการทดลอง

1. ความเข้มของรังสีอักราคาเรียกตามปริมาณการชั่วคราว 64.22 ปริมาณน้ำหนัก 0.15 ปริมาณไขมันน้ำหนัก 0.16 ปริมาณไขมันน้ำหนัก 0.82 และปริมาณการไขมันน้ำหนัก 34.32

2. ความเข้มของรังสีอักราคาเรียกตามปริมาณ 4 และ 8 หลอด ระยะเวลา 10 และ 15 uhanide) และระยะเวลาในการชั่วคราว 4 และ 8 (0-120 วินาที) มีผลต่อการเปลี่ยนแปลงของปริมาณน้ำหนักอิสลระ ปริมาณการไขมันน้ำหนักอิสลระ ปริมาณน้ำหนักและระยะเวลาอย่างมีความสำคัญทางสถิติ (p<0.05) โดยมีการใช้เวลา ความเข้มของรังสีอักราคาเรียกและระยะเวลาการใช้เรียงซึ่งส่งผลให้ประสิทธิภาพในการย้อมชื้อภูมิคุ้มกันเป็นไปได้ดีขึ้น

3. จากการศึกษาพฤติการเกี่ยวกับการคัดเลือกเข้า ได้ใช้ระดับความเข้มรังสีอักราคาเรียกตามปริมาณ 4 และ 8 หลอด ระยะเวลา 10 และ 15 uhanide) และระยะเวลา 120 วินาที) ผ่านการเก็บปริมาณน้ำหนัก 15, 25 และ 35 อย่าง พบว่า ระยะเวลาและระยะเวลาอย่างมีความสำคัญ 36-64 มีความสัมพันธ์ ปริมาณน้ำหนักอิสลระ (p) ที่ระดับการเก็บปริมาณน้ำหนักที่ค่าคำนวณ 0.99 ตลอดทุกการระบุการ เก็บปริมาณ โดยดูเหมือนว่าการเก็บปริมาณน้ำหนักที่ค่าคำนวณ 36-64 มีความสัมพันธ์ทางสถิติ ปริมาณน้ำหนักอิสลระ (p) ที่ระดับการเก็บปริมาณน้ำหนักที่ค่าคำนวณ 69.22-73.32 เมื่อ ระยะเวลาการเก็บปริมาณน้ำหนัก นอกเหนือจากปริมาณน้ำหนักอิสลระ ได้มีการเปลี่ยนแปลงของปริมาณน้ำหนักอิสลระ (p) ของค่าคำนวณ 36-64 และกระตุ้นการเก็บปริมาณน้ำหนักอิสลระ (p) ได้ชัดเจน (p<0.05) เมื่อปริมาณการเก็บปริมาณน้ำหนักอิสลระ

4. ปริมาณน้ำหนักกับการเก็บปริมาณน้ำหนัก โดยผ่านการเก็บปริมาณน้ำหนักอิสลระ และดูเหมือนกันในการเก็บปริมาณน้ำหนัก อย่างไรก็ตามการใช้รังสี
อัตราไข้ولدรวมกับการเก็บรักษาที่กุชภูมิได้สามารถลดอายุการเก็บรักษาคลิกแล้วทำให้เพิ่มขึ้น
1-2 วัน เมื่อเปรียบเทียบกับขั้นตอนเดิม

5. จากการทดสอบทางประสาทสัมผัสของก้นท้ายเส้นตาย พบว่าก้นท้ายที่ได้รับ
รังสีก้อนวาดรายละเอียดมีลักษณะทางประสาทสัมผัสและการตอบรับไม่แตกต่างจากขั้นตอนเดิม
(p<0.05) ทำให้เราสามารถวิจัยว่าขั้นตอนในการเก็บรักษาสัมผัสคลิกแล้วทางประสาทสัมผัสของ
ก้นท้ายเส้นตาย ไออาชูมุหิภ์ที่บริเวณที่ 25 องศาของเข็มนาฬิกาที่มีความ
นุ่มนวลที่สูง และมีการเปลี่ยนแปลงที่สร้างความรู้สึกให้กับผู้ป่วยในระดับที่สูง จากการทดสอบลักษณะ
เนื้อสัมผัสของก้นท้ายเส้นตายค่อนข้างต่ำ (p<0.05) ที่ไม่พบความแตกต่างในลักษณะสัมผัสของก้นท้ายเส้นตาย
ที่ไม่ผ่านการรักษาที่กุชภูมิ

ข้อแนะนำ

ผู้ประกอบการควรควบคุมขั้นตอนการคลิกและให้ความรู้เกี่ยวกับการท่าทางที่
ถูกต้องแก่ผู้ป่วย เนื่องจากการให้ความรู้เกี่ยวกับการจัดการอาหาร การดูแลลักษณะส่วนบุคคล เพื่อลด
การเกิดขึ้นของเชื้อจุลินทรีย์ในอาหาร และแนะนำให้ผู้จัดหน่วยรายย่อยเก็บรักษาถังที่มีสิ่งเสีย
ของข้างจานน้ำชีที่กุชภูมิให้เพียงพอการเก็บรักษาถังที่มีสิ่งเสียเพียงพอ

MAEJO UNIVERSITY
บรรณาธิการ

กฤษณี ศรีประเสริฐวงศ์ น.ป.ป. ควบคุมรู้ความต้องการ รุ่งฤทธิ์: สำนักงานคณะกรรมการอาหารและยา กระทรวงสาธารณสุข สร้างใหญ่ ศรีรัตน์ จำนวน 2551. ผลของวัคซีนเพื่อ เวช และชุดฉุกเฉินการเตรียมป้องกันที่มีคุณภาพการผลิตนักเรียนกู้ภัยทางวิทยาการปุริณยวิทยา ประจำปี. มหาวิทยาลัยแม่โจ้. 124 หน.

กฤษณี ศรีประเสริฐวงศ์ และ เด็กถัง ปิยะฉิมราชวิทยา. 2550. ไกลไก่ไข่ของเป็น. ทิมคริสต์ที่ 4.

รุ่งฤทธิ์: สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์. 303 หน.

รุ่งฤทธิ์: สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์.

2541. ข่าวที่ทำนองสำรับกรรมปรุงปรุงกู้ภัยและภาวะตรวจสอบคุณภาพ.

ปุริณยวิทยา. ปุริณยวิทยา: ศูนย์วิจัยชำระราคาปุริณยวิทยา. 19 หน.

ชัยศรี คำเรือง และ ศรีรัตน์ ชุ่มครี. 2546. การพัฒนาผลิตภัณฑ์สำหรับกู้ภัยข้าวของผลิตภัณฑ์. ปุริณยวิทยา ปุริณยวิทยา. สถาบันวิจัยเศรษฐกิจ. 39 หน.

ทรงผา นันทวิทยา. 2538. ขั้นตอนพิธีพิมพ์. รุ่งฤทธิ์: สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์.

235 หน.

ครูณี บุญคงชนะ น.ป.ป.ป.ป. สำนักชื่นชมและ สมภู เลย์ผล. 2551. ผลของกรรมการผลิตภัณฑ์ที่มีคุณภาพ การเก็บรักษาด่วน. จุฬาภรณ์: มหาวิทยาลัยราชภัฏจุฬาภรณ์. สร้างใหญ่ ศรีรัตน์ จำนวน 2551. ผลของวัคซีนเพื่อ เวช และชุดฉุกเฉินการเตรียมป้องกันที่มีคุณภาพการผลิตนักเรียนกู้ภัยทางวิทยาการปุริณยวิทยา. มหาวิทยาลัยแม่โจ้. ประจำปี. มหาวิทยาลัยแม่โจ้. 124 หน.

ขั้นตอนพิธีพิมพ์. 2550. การประชุมนักเขียนและกลุ่มสัตว์ในอาหาร. วารสารเทคโนโลยีอาหาร.

2548. อธิรักษ์ขอห้ามใช้และควบคุมการใช้สารเคมีทางอาหารและเครื่องของกัญชลเวชภัณฑ์ในบรรจุภัณฑ์มิฉะนั้นอันตราย. กรุงเทพฯ: มหาวิทยาลัยเกษตรศาสตร์. 684 น.
2536. เอกสารประกอบการสอน วิชากิจ. 475 เทคโนโลยีผลิตภัณฑ์อุตสาหกรรม. เชียงใหม่: มหาวิทยาลัยเกษตรศาสตร์ คณะช่างอุตสาหกรรม สถาบันเทคโนโลยีการเกษตร แผ่นพื้น. 331 น.
2549. เคมีอาหาร. เชียงใหม่: มหาวิทยาลัยเทคโนโลยีการอาหาร คณะวิศวกรรมและอุตสาหกรรมเกษตร มหาวิทยาลัยแม่โจ้. 271 น.
มหาวิทยาลัยเกษตรศาสตร์ คณะอุตสาหกรรมเกษตร มหาวิทยาลัยเกษตรศาสตร์และเทคโนโลยีการอาหาร. 2546. วิทยาศาสตร์และเทคโนโลยีอาหาร. ฟิปท่องร์ที่ 4. กรุงเทพฯ: สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์. 528 น.
วิทยาการและเทคโนโลยี. 2541. คุณสมบัติของข้าวและการเปลี่ยนแปลงระหว่างกระบวนการผลิตก้าวที่ 1 และ 2. กรุงเทพฯ: สถาบันคุณภาพและพัฒนาผลิตภัณฑ์อาหาร มหาวิทยาลัยเกษตรศาสตร์. 189 น.
ศรีวัฒนกษี ช้านุศิลป์. 2551. ผลของวัดอุณทริมและอุณทรุปภูมิการเตรียมน้ำปิ่นังที่มีต่อคุณภาพผลิตภัณฑ์อาหาร. วิทยานิพนธ์ปริญญาโท. มหาวิทยาลัยแม่โจ้. 124 น.
สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม. 2529. มาตรฐานผลิตภัณฑ์อุตสาหกรรมเบื้องต้นลำดับที่ 6. มาตรฐาน 638-2529.
2533. มาตรฐานผลิตภัณฑ์อุตสาหกรรมที่เที่ยว. คณะ. 959-2533.
2545. ข้าวไรซ์วิทยาการอาหาร. กรุงเทพฯ: โรงพิมพ์มหาวิทยาลัยเกษตรศาสตร์. 454 น.

ภาพหน้ากาก

วัคคูดีบและเกรงเมืองที่เป็นการทดลง
ภาพแนว 1 กล่องเสื้อหูเสียง

ภาพแนว 2 หูเสื้อเด็กโรมันนิต ภายใต้บริการทดสอบด้วยวิทยาศาสตร์ (Ultraviolet Chamber)
ภาพหมายเลข 3 หลอดวัชเชียร์ติดไวโอลัต (Sylvania, 254 nm, 15 วัตต์)
ภาคผนวก ข

มาตรฐานผลิตภัณฑ์อุตสาหกรรมกัญชลาใช้เพื่อว
มาตรฐานผลิตภัณฑ์อุตสาหกรรมกวางเต๋า (บอ. 959-2533)

1. ขอบเขต

1.1 มาตรฐานผลิตภัณฑ์อุตสาหกรรมกำหนดคุณลักษณะที่ต้องการ วัสดุที่ใช้ในการผลิต จุลินทรีย์และบรรจุภัณฑ์ การควบคุมคุณภาพและมาตรฐานการผลิตสิน และการทดสอบ กวางเต๋า

2. บทนิยาม

2.1 กวางเต๋า หมายถึง ผลิตภัณฑ์ที่ท้าวจากข้าวบ้านที่นำมาไม่พร้อมแห้งข้าวบ้าน ซึ่งอาจมีเป็น ชนิดอื่นเหมือนกับตัวกลอกได้ ทำให้เป็นแม่เบี้ย นั้งให้สุก ทำให้แห้ง

3. คุณลักษณะที่ต้องการ

3.1 ลักษณะทั่วไป

กวางเต๋าในภาชนะบรรจุข้าวบ้านต้องมีขนาดเส้นผิดยาวกัน การทดสอบให้ทำโดยการตรวจสอบ

3.2 ความหนา

ต้องมีความหนาไม่ต่ำกว่า 0.7 มิลลิเมตร และความหนาที่วัดได้จากแต่ละด้านหนึ่งจะต้องจากความหนาเฉลี่ยไม่ต่ำกว่า 0.2 มิลลิเมตร

การทดสอบให้ปฏิบัติตามข้อ 9.1

3.3 สี กลิ่น และลักษณะเนื้อ

ผลิตภัณฑ์ที่ต้องมีข้อ 9.2.2 แล้วต้องเป็นต้อง

3.3.1 สี

ต้องมีสีจากสีเนื้อ

3.3.2 กลิ่น

ต้องมีกลิ่นตามธรรมชาติ ไม่มีกลิ่นหน้า หรือกลิ่นที่ไม่พึงประสงค์อื่น

3.3.3 ลักษณะเนื้อ

เนื้อเป็นหนังสี ไม่มีลักษณะ

เมื่อตรวจสอบโดยวิธีใช้ที่แน่นตามข้อ 9.2.3 แล้ว ต้องได้คะแนนเฉลี่ยของแต่ละลักษณะ จากผู้ตรวจสอบทุกคนไม่น้อยกว่า 3 คะแนน และต้องไม่มีลักษณะใดให้ 1 คะแนน จากผู้ตรวจสอบคนใดคนหนึ่ง
3.4 ข้อบกพร่องที่ยอมให้มีได้
ก้าวต่อไปในกระบวนการจึงต้องกันที่ขั้นต่ำอย่างใกล้เคียงที่ท่าน จะมีเส้นทิศไปไม่เกิน
รอยละ 5 ของน้ำหนักสุทธิ การทดสอบให้ปฏิบัติตามข้อ 9.3
3.5 ความชื้น
ต้องไม่เกินร้อยละ 12 การทดสอบให้ปฏิบัติตาม AOAC (1984) ข้อ 14.004
3.6 ดอกพยาธิกลิ่น (aflatoxin)
ต้องไม่เกิน 20 ในโครงรับต่อโยกรับ การทดสอบให้ปฏิบัติตาม AOAC (1984) ข้อ
26.032 หรือข้อ 26.036
4. วัสดุเสื่อมสภาพ
วัสดุเสื่อมสภาพให้ใช้ได้ตามชนิดและปริมาณที่กำหนดต้องต่ำไปนี้
4.1 โซเดียม หรือโซเดียมซัลเฟต โซเดียมซัลเฟท หรือโซเดียม หรือโพแทสเซียม
ข้อ 20.125 หรือข้อ 20.125
5. สุขลักษณะ
5.1 สุขลักษณะให้เป็นไปตามมาตรฐานผลิตภัณฑ์สุราครัม กำหนดสุขลักษณะของ
อาหารในมาตรฐานที่ ย่อท. 34
5.2 จุลินทรีย์ที่อาจเป็นในเกณฑ์ต่ำ ต้องไม่เกินเกณฑ์ที่กำหนดดังนี้
5.2.1 จำนวนจุลินทรีย์ที่ทรงหนวด ไม่เกิน 1x10^7 ไบโอนิคต่อกรัมของตัวอย่าง การ
ทดสอบให้ปฏิบัติตาม AOAC (1984) ข้อ 46.015
5.2.2 ว่า ไม่เกิน 10 ไบโอนิคต่อกรัมของตัวอย่าง การทดสอบให้ปฏิบัติตาม AOAC
(1984) ข้อ 46.011
5.2.3 โคลีฟรอน (coliiform) ไบโอจีนีเปอร์ฟิวเซส (MNP) น้อยกว่า 3 ตัวอย่างของ
ตัวอย่าง 1 กรัม การทดสอบให้ปฏิบัติตาม AOAC (1984) ข้อ 46.016
5.2.4 คอสเตรดิเนีย เฟอร์ริงเนส (Clostridium perfringens) ต้องไม่พบใน
ตัวอย่าง 0.01 กรัม การทดสอบให้ปฏิบัติตาม AOAC (1984) ข้อ 46.092 หรือข้อ 46.097
6. การบรรจุ
6.1 ให้บรรจุต่อย่อยในภาชนะที่สะอาด แห้ง ปิดกั้นเรียบร้อย และสามารถป้องกันการ
เปลี่ยนแปลงให้
6.2 นำหนักสุทธิของแต่ละต้องไม่น้อยกว่าที่ระบุไว้ในกล่อง
7. สรุปความและแผนที่

7.1 ที่มาของบรรณานุกรมวิเคราะห์ทุกภาษาบรรณารูป อย่างน้อยต้องมีที่มา ถ้าถ้า หรือเครื่องหมายแจ้งรายละเอียดต่อไปนี้ ให้เห็นได้ง่าย ข้อเพิ่มเติม

7.1.1 คำว่า “ที่มาที่มา”

7.1.2 หน้าปกสุดท้าย เป็นกรอบหรือที่ยอม

7.1.3 เลือกปีที่ที่มา

7.1.4 ซื้อผู้ที่มาหรือวางนั้นที่ที่มา พร้อมสถานที่ตั้ง หรือเครื่องหมายการที่ที่จัดท้าย

7.1.5 ประเภทที่มา

ในการที่ใช้ภาษาแต่ละประเทศ ต้องมีความหมายตรงกับภาษาไทยที่กำหนดไว้ข้างต้น

7.2 ผู้นำกลุ่มของข้อมูลการวิจัยที่เป็นไปตามมาตรฐานนี้ จะแสดงเครื่องหมายมาตรฐานกลุ่มของข้อมูลการวิจัยตามมาตรฐานกลุ่มของข้อมูลการวิจัยตามมาตรฐานกลุ่มของข้อมูลการวิจัย
ภาษาบาลี

วิธีการวิเคราะห์สมบัติทางกายภาพและเคมี
วิธีการวัดสารประกอบภูมิภาคและแบท

การวัดสารประกอบภูมิภาค (AOAC, 1995)

น้ำหนักแห้งนักหนักตัวอย่างประมาณ 2-5 กรัม ใส่ในจานสะบัดมีเนื้อที่
ผ่าลบอย่างหนึ่งแล้ว ฉีกนักหนักตัวอย่างในซุ้มขอบเริ่มที่อุณหภูมิ 100-105 องศาเซลเซียส จน
น้ำหนักคงที่ คำนวณวิธีค่าความชื้นจากค่าความคงตัวของน้ำหนักตัวอย่างก่อนอบและหลังอบ
และดีกรีเพื่อหาวันน้ำหนักตัวอย่าง 100 กรัม

ปริมาณความชื้น (ร้อยละ) = ผลต่างของน้ำหนักตัวอย่างก่อนอบและหลังอบ x 100
น้ำหนักตัวอย่างก่อนอบ

การวัดสารประกอบไฟไหม้ (AOAC, 1995)

ชิ้นน้ำหนักตัวอย่างประมาณ 5 กรัม ใส่ในถ้วยเปรี้ยวที่ผ่าลบอย่างหนึ่งแล้ว ฉีกน้ำหนัก
ผ่าลบเปรี้ยวด้วยเครื่องทำให้ความร้อนจนหมดครัวคน ฉีกน้ำหนักผ่าลบในถ้วยเปรี้ยวที่อุณหภูมิ 525 องศาเซลเซียส เป็นเวลาอย่างน้อย 12 ชั่วโมง หรือพักฐานพืชจนได้ถ้ามีสีขาว และทำให้เข้มใน
สีสุกความชื้น แล้วชิ้นน้ำหนักค้นวัดผลกับน้ำหนักตัวอย่าง 100 กรัม

ปริมาณไฟ (ร้อยละ) = น้ำหนักเปลี่ยนหลั่ง x 100
น้ำหนักตัวอย่างก่อนชื้น

การวัดสารประกอบไฟไหม้ที่ (AOAC, 1995)

ชิ้นน้ำหนักอย่างที่ค้นวัดฐานแล้วประมาณ 1-3 กรัม ผสมสารประกอบกิ่งเสียดกันให้มีขนาด ใส่ลง
ในถังเบล และเติมป์ปุ่มเปรี้ยวไปด้วยซึ่งใส่เปรี้ยวที่ทำลายไม่ยั้งนักที่มีภูมิภาค 50
มิลลิลิตร แล้วนำเข้าที่มันด้วยเครื่อง Soxtech System HT (Tecator, Sweden) จากนั้นน้ำหนัก
สารประกอบที่ใส่ไปอยู่ในอุณหภูมิ 100-105 องศาเซลเซียส เป็นเวลา 1
ชั่วโมง ทำให้เปลี่ยนใน
สีสุกความชื้น แล้วชิ้นน้ำหนัก
ปรีดามณีนว (ร้อยละ) = น้ำหนักไข่มันหลังอบ x 100
น้ำหนักดั่วอย่างเริ่มต้น

การวิเคราะห์ปรีดามณีฟอสฟออยด์ (AOAC, 1995)

ชั่งดั่วอย่างอาหารประมาณ 1 กรัม ในภาชนะที่เป็นดั่วอย่างอาหารเปียก อีกเป็นดั่วอย่างอาหารแห้งจะใช้ดั่วอย่างประมาณ 0.3 กรัม ใส่ลงไปในหลอดอย่าง และใส่ด้วยปรีดามณีฟอสฟออยด์ Kjeldahl catalyst ลงไป 1 มิลลิลิตร เดิมกรดซิลิคิทริคซ์เข้า นำไป 5 มิลลิลิตร เ竦ยด้วยดั่วอย่างที่สุญญากาศ 420 องศาเซลเซียส จนให้สาระละลายขาว จากนั้นนำกลับในเครื่อง Kjeltec System รุ่น 1026 (Tecator, Sweden) โดยใช้ระบบอัตโนมัติ (น้ำยาละ 25 มิลลิลิตร และต่าง 20 มิลลิลิตร) ซึ่งใช้สารละลายกรดเจลิฟเจะเข้าเร็วละ 4 จานวน 25 มิลลิลิตร เพื่อคัดจับกั้นลมในเม็ดที่เกิดขึ้น แล้วนำได้ผลตัดสารละลายความร้อนกรดเจลิฟเจะเข้าขั้น 0.1 นอร์ทอส จนเป็นสารละลายสีม่วงจากนั้น

ปรีดามณีในไวกิ้ง (ร้อยละ) = (a-b) x N x 14.007
W x 10

ปรีดามณีฟอสฟออยด์ (ร้อยละ) = ปรีดามณีในไวกิ้ง (ร้อยละ) x 5.95

โดยที่:

a = ปรีดามณีของสารละลายกรดเจลิฟเจะที่ใช้กับดั่วอย่างเป็นฟอสฟออยด์
b = ปรีดามณีของสารละลายกรดเจลิฟเจะกับ blank เป็นมิลลิลิตร
N = ความเข้มข้นของสารละลายกรดเจลิฟเจะเป็นนอร์ทอส
W = น้ำหนักดั่วอย่างเป็นกรัม
10 = ค่าคงที่ที่เปลี่ยนจากนวัตกรรมเป็นเริ่มต้น
14.007 = น้ำหนักมวลโมเลกุลของไวกิ้ง
5.95 = ค่าคงที่สำหรับการเปลี่ยนปรีดามณีไวกิ้งเป็นปรีดามณีไวกิ้ง สำหรับมวลเล็กซั่ว
6.25 = ค่าคงที่สำหรับการเปลี่ยนปรีดามณีไวกิ้งเป็นปรีดามณีไวกิ้ง สำหรับดั่วอย่างอาหาร หรือดั่วอย่างอื่นๆ ที่ไม่ระบุพูดเฉพาะ
การวัดปริมาณน้ำอิสระ (a_c)

การวัดปริมาณน้ำอิสระ (a_c) คือเครื่องวัดปริมาณน้ำอิสระ (Aqualab 3TE, U.S.A.) ทำการย้อมเป็นเวลา 30 นาที และ calibrate เครื่องก่อนใช้งาน นำตัวอย่างสั่นก่อนเติมวัสดุคัดลอกมีขนาดเล็กที่ก้านที่ใส่ตัวอย่าง หลังจากนั้นนำใส่เครื่องวัดปริมาณน้ำอิสระ หมวดปุ่มไปที่ load รอจนการที่เครื่องย้อมตัวอย่าง

การวัดค่าความเป็นกรด-เบส (AOAC, 1995)

ตัวอย่างสั่นก่อนเติมวัสดุคัดลอกมีขนาดเล็กที่ก้านที่ใส่ตัวอย่าง 10 กรัม เติมน้ำเกลือ 100 มิลลิลิตร ปิดให้กระปุกน้ำเกลือสูง เครื่องปรับเปลี่ยนเป็นปัจจัยสั่น 2-3 รอบ และทำการไลทำครั้งละยาว

ปริมาตรการย้อมสีกีฟหรือการย้อมสีกีฟ (AOAC, 1995)

ขั้นตอนก่อนเริ่มมือ 10 กรัม เติมน้ำเกลือ 100 มิลลิลิตร ผสมให้เข้ากัน ปิดให้กระปุกน้ำเกลือสูง เครื่องปรับเปลี่ยนเป็นปัจจัยสั่น 2-3 รอบ และทำการไลทำครั้งละยาว

การวัดค่าสี

ก่อนการวัดค่าสีศึกษ์ลุ่มเครื่องวัดสี (Tri-stimulus colorimeter รุ่น JC801) ประมาณ 100 นาที หลังจากนั้นชั่วขณะหนึ่งถึงสองชั่วขณะที่วางน้ำเกลือสีขาว แล้ววัดปริมาณการย้อมสีกีฟด้วย standard white plate ก่อนการวัดค่าสีของตัวอย่าง ซึ่งการวัดค่าสีระบบ CIE ประกอบด้วยค่าสีของตัวอย่าง 3 ค่าที่
1. ค่าที่ L* หมายถึง ค่าความสว่างของสี ซึ่งมีค่าจาก 0 ถึง 100 คือสีขาว
2. ค่าที่ a* หมายถึง ค่าความเป็นสีเขียวและสีแดง เมื่อ a* มีค่าบวก จะแสดงถึงความเป็นสีแดง และเมื่อ a* มีค่าลบ จะแสดงถึงสีเขียว
3. ค่าที่ b* หมายถึง ค่าความเป็นสีน้ำเงินและสีเหลือง เมื่อ b* มีค่าบวก จะแสดงถึงความเป็นสีเหลือง และเมื่อ b* มีค่าลบ จะแสดงถึงความเป็นสีน้ำเงิน

ปริมาณเกลือที่ตั้งหนัด

การหาปริมาณเกลือปกติในทางหนัด (total plate count) ทำโดยการสูบน้ำเกลือคลีตัวละ 25 กรัม ทำกราฟเจาะด้วยตัวอย่างบนกรอบ ตั้ง peptone water 225 มิลลิลิตร หลังจากนั้นทำกรอบ pour plate โดยใช้อาหารเหลืองเขียว PCA ปั๊มน้ำสีทรายที่ผุ้เหยื่อที่ 35 องศาเซลเซียส เป็นเวลา 48 ชั่วโมง รายงานผลเป็นจำนวนไคลโนนิตุตัวอย่างอาหาร 1 กรัม

ปริมาณสิ่งทราย

การหาปริมาณสิ่งทราย (yeast and mold) ทำโดยการสูบน้ำเกลือคลีตัวละ 25 กรัม ทำกราฟเจาะ ตั้งในตัวอย่างบนกรอบ ตั้ง peptone water 225 มิลลิลิตร หลังจากนั้นทำกรอบ spread plate โดยใช้อาหารเหลืองเขียว PDA ปั๊มน้ำสีทรายที่ผุ้เหยื่อที่ 25 องศาเซลเซียส เป็นเวลา 5 วัน รายงานผลเป็นจำนวนไคลโนนิตุตัวอย่างอาหาร 1 กรัม
ภาคผนวก บ

การทดสอบพื้นฐานของเครื่องมือTexture profile analyzer
การเตรียมตัวอย่าง

tัดส่วนกิ่งเกียวที่ละขนาดกว้าง 1.5 นิ้ว ยาว 3 นิ้ว สำหรับการวัดค่าแรงตัด และตัดส่วนกิ่งเกียวที่ละขนาดกว้างโดยรวมกว้างขนาดต่ำกว่านานาถเกิน 2 นิ้ว สำหรับการวัดค่า Texture profile analysis

ส่วนการวิเคราะห์เนื้อสัมพันธ์กล้าถั่วทำโดยนำตัวอย่างส่วนกิ่งเกียวที่ละมากกว่ายื่นในน้ำให้คิดเป็นระยะเวลานาน 8 วันที่ โดยการเจริญเติบโตกล้าถั่วที่ละมากว่ายื่นในน้ำ 70องศาเซลเซียสเป็นระยะเวลานาน 2 นาที ทำให้กระดาษน้ำและพืชตัวอย่าง 30 วันที่ จึงนำตัวอย่างที่ผ่านการล้างน้ำวัดค่าแรงตัด และวัดค่า Texture profile analysis

การวิเคราะห์เนื้อสัมพันธ์กล้าถั่วของเครื่อง Texture profile analyzer

ก่อนการวิเคราะห์ควรปรับเทียบเครื่องวัดค่าน้ำหนักของเครื่อง (T.A.XT plus texture analyzer: Stable Micro system Ltd., UK) ด้วยน้ำหนัก 2000 กรัม และทำการปรับเทียบความสูงหลังจากนั้นจึงวัดค่าแรงตัดของตัวอย่าง

ตารางกำหนดผลิตภัณฑ์สำหรับการวัดค่า Texture profile analysis:

<table>
<thead>
<tr>
<th>Probe</th>
<th>P/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test mode</td>
<td>compression</td>
</tr>
<tr>
<td>Pre-Test speed</td>
<td>2 mm/sec</td>
</tr>
<tr>
<td>Test speed</td>
<td>2 mm/sec</td>
</tr>
<tr>
<td>Post-Test speed</td>
<td>2 mm/sec</td>
</tr>
<tr>
<td>Target mode</td>
<td>1 = strain</td>
</tr>
<tr>
<td>Strain</td>
<td>50%</td>
</tr>
<tr>
<td>Count</td>
<td>2</td>
</tr>
<tr>
<td>Trigger type</td>
<td>0 = auto (Force)</td>
</tr>
<tr>
<td>Trigger force</td>
<td>5 g</td>
</tr>
<tr>
<td>Advances option</td>
<td>0 = on</td>
</tr>
<tr>
<td>Parameter</td>
<td>Setting</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Probe</td>
<td>HDP/BSK</td>
</tr>
<tr>
<td>Test mode</td>
<td>compression</td>
</tr>
<tr>
<td>Pre-Test speed</td>
<td>2 mm/sec</td>
</tr>
<tr>
<td>Test speed</td>
<td>2 mm/sec</td>
</tr>
<tr>
<td>Post-Test speed</td>
<td>2 mm/sec</td>
</tr>
<tr>
<td>Target mode</td>
<td>0 = distance</td>
</tr>
<tr>
<td>Distance</td>
<td>10 mm</td>
</tr>
<tr>
<td>Count</td>
<td>1</td>
</tr>
<tr>
<td>Trigger type</td>
<td>0 = auto (Force)</td>
</tr>
<tr>
<td>Trigger force</td>
<td>5 g</td>
</tr>
<tr>
<td>Break mode</td>
<td>0 = off</td>
</tr>
<tr>
<td>Stop plot at</td>
<td>2 = start position</td>
</tr>
<tr>
<td>Tare mode</td>
<td>0 = auto</td>
</tr>
<tr>
<td>Advances option</td>
<td>0 = on</td>
</tr>
<tr>
<td>Control oven</td>
<td>0 = disable</td>
</tr>
</tbody>
</table>
ภาคผนวก ๖

แบบทดสอบทางประชากรสัมพันธ์
ภาพหมวด 4 แบบฟอร์มการประเมินลักษณะทางประสาทสัมพัทธ์ของคำศัพท์ที่ผ่านสัดส่วนที่ผ่านและการนำไปนิยามในเนื้อสัมพัทธ์
ประวัติภูมิลำเนา

ชื่อ-สกุล นางสาวศศินรีย์ ภูมิลำเนา
วันเดือนปีเกิด 11 พฤษภาคม 2528
ภูมิลำเนา จังหวัดราชบุรี
ประวัติการศึกษา พ.ศ. 2545 มัธยมศึกษาตอนปลาย โรงเรียนบางเขนวิทยา
 จังหวัดราชบุรี
 พ.ศ. 2550 วท.บ. (วิทยาศาสตร์และเทคโนโลยีการอาหาร)
 มหาวิทยาลัยเกษตรศาสตร์