วิทยานิพนธ์นี้เป็นส่วนหนึ่งของความสมบูรณ์ของการศึกษาตามหลักสูตร
ปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ
บัณฑิตวิทยาลัย มหาวิทยาลัยแม่โจ้
พ.ศ. 2556

ลิขสิทธิ์มหาวิทยาลัยแม่โจ้
ในรัฐวิทยาลัย
วัสดุศิลปะ มทร.มะขามเจริญ
ปริญญาโทสาขาการออกแบบ
สาขาวิชาเทคโนโลยี

ชื่อเรื่อง
การศึกษาพืชสมุนไพรไทยด้วยการศึกษาสมุนไพรแบบการแพทย์แผนไทยของฝ่ายเครื่องมือของเรื่อง
ของฝ่ายรัตนิสทร์ รัฐบาลไทย มหาวิทยาลัย

โดย
วิชาเอก ดร.สมชาย

พิจารณาที่ปรึกษา

ประธานกรรมการที่ปรึกษา

กรรมการที่ปรึกษา

กรรมการที่ปรึกษา

ประธานกรรมการประจำหลักสูตร

บัณฑิตวิทยาลัยวัสดุศิลปะ
การศึกษานี้เพื่อศึกษาตัวอย่างของสารสกัดสมุนไพรไทย 3 ชนิด ได้แก่ พุทรา พญาย ยะ และ ทองพันธุ์ในการยับยั้งการเจาะสู่เซลล์และการแบ่งตัวของไวรัสหัวรังสีสุกรในเซลล์ เพราะเจาะจากไส้กรอง (SK-6) ทำการสกัดสมุนไพรด้วยวิธี percolation โดยใช้ออกภอกละที่ความ เข้มข้น 95% 70% 50% เป็นตัวทำละลายและสกัดด้วยวิธี spray dry โดยใช้น้ำเป็นตัวทำละลาย น้ำ สารสกัดสมุนไพรที่ได้ไปทดสอบหาความเป็นพิษต่อเซลล์ หลังจากนั้นน้ำมันที่เหมาะสมไม่เป็น พิษต่อเซลล์ไปทดสอบยับยั้งการเจาะสู่เซลล์และการแบ่งตัวของไวรัสหัวรังสีสุกร สารพืชที่มี ประสิทธิภาพมากที่สุดในการยับยั้งการเจาะสู่เซลล์ของไวรัสหัวรังสีสุกรคือ สมุนไพรพุทรา ที่สกัด ด้วยน้ำ โดยใช้สมุนไพรที่ความเข้มข้น 1.57 มิลลิกรัม/มิลลิลิตรโดยมีค่า TCID₅₀ ที่ 2x10⁴ TCID₅₀/มิลลิลิตร มีประสิทธิภาพพุทราที่สูงในกรณียับยั้งไวรัสไม่ให้เจาะสู่เซลล์ ในการศึกษาเกี่ยวกับการ แบ่งตัวของไวรัสหัวรังสีสุกรโดยทำการสกัดเซลล์ร่วมกันซึ่งไวรัสเป็นเวลา 6 ชั่วโมง สมุนไพรที่มี ประสิทธิภาพที่สูงในการยับยั้งการแบ่งตัวของไวรัสคือ สารสกัดสมุนไพรพญาย ที่สกัดจากอาย ยอด 50% และ 95% ที่ความเข้มข้น 6.25 มิลลิกรัม/มิลลิลิตร ที่สกัดชนิดที่มีค่า TCID₅₀ ที่ 2x10⁴ TCID₅₀/มิลลิลิตร ที่สกัดชนิด ที่สกัดชนิดในการศึกษาพุทราการยับยั้งการแบ่งตัวของไวรัสหัวรังสีสุกร โดยทำการสกัดเซลล์ร่วมกับสมุนไพรเป็นเวลา 4 ชั่วโมง สารสกัดสมุนไพรที่มีประสิทธิภาพที่สูง ในการยับยั้งการแบ่งตัวของไวรัสคือ สารสกัดสมุนไพรพญายที่ใช้อายที่ 95% โดยใช้ที่ความ เข้มข้น 6.25 มิลลิกรัม/มิลลิลิตร (ความเข้มข้นที่ 1) และมีค่า TCID₅₀ ที่ 2x10⁴ TCID₅₀/มิลลิลิตร

ผลจากการศึกษาสรุปว่า สมุนไพร พุทรา พญาย ยะ และทองพันธุ์ มีฤทธิ์ในการ ยับยั้งการเจาะสู่เซลล์ของเชื้อไวรัส CSFV ได้อย่างมีประสิทธิภาพ โดยเฉพาะพุทรา และทองพันธุ์ ในปริมาณความเข้มข้นที่เหมาะสมและฤทธิ์ในการยับยั้งการแบ่งตัวของไวรัสกับ สมุนไพรที่ 3 ชนิดมีประสิทธิภาพในการยับยั้งการแบ่งตัวของไวรัสได้เพียงเล็กน้อยเท่านั้น
ABSTRACT

In this study to investigate the effect of 3 types Thai medicinal plant extract, namely; *Houttuynia cordata*, *Clinacanthus nutans* and *Rhinacanthus nasutus* in the inhibition of cell penetration and replication of the Classical Swine Fever Virus (CSFV) in swine kidney cell line (SK-6), extraction was done using herbal percolation method with different ethanol solvent concentration (95%, 70% and 50%) and spray dry extraction method with water as solvent. Herbal extracts were then tested for cytotoxicity to the cells, after which values for non-toxic cell penetration and inhibition of the proliferation of CSFV were then determined. *Houttuynia cordata* extracted with water at herbal concentration of 1.57 mg/ml by TCID$_{50}$ the $2 \times 10^{5.24}$ TCID$_{50}$/ml was highly effective in inhibiting the virus from entering cells. To study the inhibition of viral replication, cells were incubated with virus for 6 hours herb and was most effective in suppressing viral replication. Herbal extraction of *Clinacanthus nutans* ethanol at 50% and 95% with 6.25 mg/ml concentration, showed similar TCID$_{50}$ 2x$10^{4.48}$ TCID$_{50}$/ml for both species. The most effective extract that inhibited replication of virus was show by *Clinacanthus nutans* that was extracted with 95% ethanol at 6.25 mg/ml (as concentration 1) and TCID$_{50}$ value is $2 \times 10^{4.75}$ TCID$_{50}$/ml.

The result of this study indicated that *Houttuynia cordata*, *Clinacanthus nutans* and *Rhinacanthus nasutus* are were found to be effective inhibiting virus infect to cell especially *Houttuynia cordata* and *Rhinacanthus nasutus* in appropriate concentrations. All 3 types of herb were slightly effective in the inhibition of viral replication.
กิติกรรมประกาศ

ข้าพเจ้าขอขอบพระคุณจักรารóng คุณวัน เวียร์ตันธนันท์ ประภานกิจการที่ปรึกษา ผู้ช่วยศาสตราจารย์ ดร.นทิต วัชรินทร์ คุณวัน เวียร์ตันธนันท์ ประภานกิจการที่ปรึกษา รศ.ดร.นทิต วัชรินทร์ ประภานกิจการที่ปรึกษา ที่ได้ให้ความรู้และให้คำปรึกษาและสนับสนุนในเรื่องของงานวิจัย ทางวิทยาศาสตร์ ในการทำงานที่มีคุณค่า ตลอดจนให้คำแนะนำในการดำเนินงานของวิทยานิพนธ์ให้ถูกต้องและสามารถยิ่งขึ้น

ขอขอบคุณเจ้าหน้าที่และพี่ๆ นักวิจัยทุกท่านของฝ่ายเกดขั้น และผู้ผลิตการเรียนการสอน ของสถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย ที่ได้ให้คำแนะนำและสนับสนุนในการทำงานที่มีคุณค่า

ขอขอบคุณจากใจทุกท่านของฝ่ายวิทยาศาสตร์ ของสถาบันสุขภาพสัตว์แห่งชาติ ที่ได้ให้คำแนะนำและสนับสนุนในการทำวิจัย

ขอขอบพระคุณ คุณอาจาร้์ เจ้าหน้าที่และผู้ปฏิบัติการ คณะวิทยาศาสตร์มหาวิทยาลัยแม่โจ้ ที่ช่วยให้ความสะดวกให้กับการดำเนินงานที่ต้องการได้ก่อนทำการวิจัยในกรั้น เจ้านายนี้ ตลอดจนพี่ๆ เจ้าหน้าที่ที่คอยให้ความสำคัญและแนะนำในการทำวิทยานิพนธ์ร่วมกันให้ก้าวไปได้ด้วยดี

ขอขอบพระคุณ คุณเทวัสสี นิคมรัมย์ และจอมพล ที่คอยให้การสนับสนุนทุกทางส้านทุนการศึกษา ตลอดจนกำลังใจในการศึกษาและการทำวิทยานิพนธ์ตลอดมา

ได้รับปุญญุภูมิการวิจัยจากสำนักงานคณะกรรมการวิจัยแห่งชาติประจำปี 2555

ข้าพเจ้า วรรณภูชปรีชา ประกาศ 2556
ตารางวิธีการศึกษา

<table>
<thead>
<tr>
<th>บทที่</th>
<th>หัวข้อ</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>บทที่ 1</td>
<td>บทที่ 1 บทที่</td>
<td>1</td>
</tr>
<tr>
<td>บทที่ 2</td>
<td>บทที่ 2 บทที่</td>
<td>3</td>
</tr>
<tr>
<td>บทที่ 3</td>
<td>บทที่ 3 บทที่</td>
<td>14</td>
</tr>
<tr>
<td>บทที่ 4</td>
<td>บทที่ 4 บทที่</td>
<td>23</td>
</tr>
</tbody>
</table>
บทที่ ๕ สรุปผลการวิจัยและข้อเสนอแนะ

<table>
<thead>
<tr>
<th>สาระเนื้อหา</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>สรุปผลการวิจัย</td>
<td>64</td>
</tr>
<tr>
<td>ข้อเสนอแนะ</td>
<td>65</td>
</tr>
</tbody>
</table>

บรรณานุกรม

ภาคผนวก

ภาคผนวกก การเตรียมสาระเพื่อสำหรับการข้อมูล

ภาคผนวก จ ประวัติผู้วิจัย

หน้า 81
ตาราง

<table>
<thead>
<tr>
<th>หมายเหตุ</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ปริมาณที่ย้อมถักและที่สาคูของวัสดุนำไปสู่การแบ่งตามความรุนแรงของโรค</td>
<td>13</td>
</tr>
<tr>
<td>2 รายละเอียดผลทดลองของสารกั้นภูมิคุ้มกันที่ถูกคัดลอกจากยาและน้ำ</td>
<td>30</td>
</tr>
<tr>
<td>3 การทดลองครั้งสุดท้าย SK-6ที่ได้รับสารกั้นภูมิคุ้มกัน</td>
<td>31</td>
</tr>
<tr>
<td>ค่าบริการที่สะอาดค่อนข้าง 95%, 70%, 50% และน้ำที่ความเข้มข้นต่างๆ</td>
<td></td>
</tr>
<tr>
<td>4 การทดลองครั้งสุดท้าย SK-6ที่ได้รับสารกั้นภูมิคุ้มกัน</td>
<td>33</td>
</tr>
<tr>
<td>ค่าปริมาณที่สะอาดค่อนข้าง 95%, 70%, 50% และน้ำที่ความเข้มข้นต่างๆ</td>
<td></td>
</tr>
<tr>
<td>5 การทดลองครั้งสุดท้าย SK-6ที่ได้รับสารกั้นภูมิคุ้มกันของพื้นฐาน</td>
<td>35</td>
</tr>
<tr>
<td>ค่าบริการที่สะอาดค่อนข้าง 95%, 70%, 50% และน้ำที่ความเข้มข้นต่างๆ</td>
<td></td>
</tr>
<tr>
<td>6 ฤทธิ์ด้านไวรัสของสารกั้นภูมิคุ้มกันที่ของพื้นฐาน</td>
<td>37</td>
</tr>
</tbody>
</table>
ตารางผังภาพ

<table>
<thead>
<tr>
<th>ภาพ</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ลักษณะโครงสร้างทางพันธุกรรมของ CSFV</td>
</tr>
<tr>
<td>2</td>
<td>ลักษณะอนุภาคของไวรัส genus Pestivirus</td>
</tr>
<tr>
<td>3</td>
<td>รายละเอียด</td>
</tr>
<tr>
<td>4</td>
<td>Houttuyniaceae Thunb.</td>
</tr>
<tr>
<td>5</td>
<td>Clinacanthus mutans (Burm. f.) Lindau</td>
</tr>
<tr>
<td>6</td>
<td>Rhinacanthus nasutus (Linn.) Kurz</td>
</tr>
<tr>
<td>7</td>
<td>แผนผังการสังเกตสารอุตสาหกรรมกีทัศน์ของสารสนุนفورมูลา</td>
</tr>
<tr>
<td>8</td>
<td>อัตราการเจริญเติบโตความเข้มข้นของสารละลายที่ใช้ในการกักสุญไหมพัดคำว่า ในการกักสุญไหมพัดคำว่า ได้จากการ SK-6 ที่ถูกถ่านหินด้วย crysta violet ปรับเทียบกับกลุ่มควบคุม</td>
</tr>
<tr>
<td>9</td>
<td>อัตราการเจริญเติบโตความเข้มข้นของสารละลายที่ใช้ในการกักสุญไหมพัดคำว่าได้จากการ SK-6 ที่ถูกถ่านหินด้วย crysta violet ปรับเทียบกับกลุ่มควบคุม</td>
</tr>
<tr>
<td>10</td>
<td>อัตราการเจริญเติบโตความเข้มข้นของสารละลายที่ใช้ในการกักสุญไหมพัดคำว่าได้จากการ SK-6 ที่ถูกถ่านหินด้วย crysta violet ปรับเทียบกับกลุ่มควบคุม</td>
</tr>
<tr>
<td>11</td>
<td>ผลสังเคราะห์วิเคราะห์ตามสารสกัดกับมันไฟฟ้าฟิล์ม ฟิล์ม.description พอช่อง พบสิ่งช่อง</td>
</tr>
<tr>
<td>12</td>
<td>ผลที่ได้จากการย้อมสีเชื้อสติกของไวรัส CSFV ด้วยสารสกัดกับมันไฟฟ้าฟิล์ม.description พบสิ่งช่องที่ระลึกความเสื่อม</td>
</tr>
<tr>
<td>13</td>
<td>ผลที่ได้จากการย้อมสีเชื้อสติกของไวรัส CSFV ด้วยสารสกัดกับมันไฟฟ้าฟิล์ม.description พบสิ่งช่องที่ระลึกความเสื่อม</td>
</tr>
<tr>
<td>14</td>
<td>ผลที่ได้จากการย้อมสีเชื้อสติกของไวรัส CSFV ด้วยสารสกัดกับมันไฟฟ้าฟิล์ม.description พบสิ่งช่องที่ระลึกความเสื่อม</td>
</tr>
<tr>
<td>15</td>
<td>ผลที่ได้จากการย้อมสีเชื้อสติกของไวรัส CSFV ด้วยสารสกัดกับมันไฟฟ้าฟิล์ม.description พบสิ่งช่องที่ระลึกความเสื่อม</td>
</tr>
<tr>
<td>16</td>
<td>ผลที่ได้จากการย้อมสีเชื้อสติกของไวรัส CSFV ด้วยสารสกัดกับมันไฟฟ้าฟิล์ม.description พบสิ่งช่องที่ระลึกความเสื่อม</td>
</tr>
</tbody>
</table>
ภาค

17 ฤทธิ์ในการเรียบยั้งการแบ่งตัวของไวรัส CSFV ด้วยสารกั้นสมุนไพร พญานาคท่าภายในต่างๆ ที่ระดับความเข้มข้นที่ 10^3 หน้า 52

18 ฤทธิ์ในการรับยั้งการแบ่งตัวของไวรัส CSFV ด้วยสารกั้นสมุนไพร ทองพันธุ์ช้างด้วดท่าภายในต่างๆ ที่ระดับความเข้มข้นที่ 10^3 หน้า 54

19 ฤทธิ์ในการรับยั้งการแบ่งตัวของไวรัส CSFV ด้วยสารกั้นสมุนไพร ทองพันธุ์ช้างด้วดท่าภายในต่างๆ ที่ระดับความเข้มข้นที่ 10^3 หน้า 56

20 ฤทธิ์ในการรับยั้งการแบ่งตัวของไวรัส CSFV ด้วยสารกั้นสมุนไพร ทองพันธุ์ช้างด้วดท่าภายในต่างๆ ที่ระดับความเข้มข้นที่ 10^3 หน้า 58
บทที่ 1

ความเป็นมาและความสำคัญของภาษาไทย

โรคหัวใจสุกเป็นอันตรายมากในระยะย่อยเริ่มต้นโรค ประมาณ 6 ตัวอย่าง (Sunadhat and Damrongwatanapokin, 2003) จากฐานข้อมูลสุขภาพ สมัครไวท์องค์การสาธารณสุข 16 ตัวอย่าง (Sunadhat and Damrongwatanapokin, 2003) จากฐานข้อมูลสุขภาพ สมัครไวท์องค์การynchronous
ประเทศที่ปล่อยจากโรคพยาธิตับสุกริจึงไม่มีเจ้าสุกริจึงไม่ได้รับการคัดค้านป้องกันโรคพยาธิตับสุกร
ดังนั้นจึงจำเป็นอย่างยิ่งที่จะต้องมีการป้องกันและควบคุมโรคพยาธิตับสุกร ร่วมกับการใช้
วัคซีน หรือ ลดการใช้วัคซีนป้องกันโรคพยาธิตับสุกร

ในปัจจุบันยังไม่มีการนำยาให้เพื่อรักษาหรือป้องกันโรคพยาธิตับสุกร สาร
สกัดจากพิษพยาธิโรคไทยอ่านเนื่อง 3 ชนิดที่มีจุดใช้ในการยับยั้งการเคลื่อนผู้สุกรโดยมีเชื้อไวรัสและ
การแบ่งตัวของไวรัสกล่าวโดยในเนื้อมันอ่อนลายชนิด คือ ปุยสุกร พญายอม และ ทองพันธุ์สุกร ของ 3
ชนิดเป็นที่พิษพื้นบ้านมีการเจริญเติบโตอย่างรวดเร็วสามารถเป็นทางเดินให้กับแก่กรมการรักษา
เลย เพื่อใช้ทดแทนยา วัคซีน และลดพันธุ์ของยาที่ได้แก่

วัสดุประสงค์ของงานวิจัย

เพื่อศึกษาดูถึงของสารสกัดพยาธิโรคไทย 3 ชนิด ได้แก่ พญายอม พญายอม และ
ทองพันธุ์ในการยับยั้งการเคลื่อนผู้สุกรและร่างเปลี่ยนของไวรัสพยาธิตับสุกรในเซลโลโฟนเจลจากไก่
สุกร (SK-6)

ประโยชน์ที่คาดว่าจะได้รับ

1. สร้างองค์ความรู้ใหม่เรื่องแสงของสารสกัดจากพิษพยาธิไทยที่สามารถ
ยับยั้งการเคลื่อนผู้สุกรหรือการแบ่งตัวของไวรัสพยาธิตับสุกร

2. ถ้าทบทวนองค์ความรู้นี้ที่ได้ให้กับเกษตรกรผู้เลี้ยงสุกรรายย่อยและในระบบ
ชุมชนการ>F เพื่อให้เกษตรกรมีทางเลือกในการใช้ยาในการป้องกันและรักษาโรคพยาธิตับ
สุกร

ขอบเขตของการวิจัย

โครงการวิจัยนี้ทำการศึกษาดูถึงของสารสกัดจากพิษพยาธิไทย 3 ชนิด ได้แก่
พญายอม พญายอม และทองพันธุ์ ที่สกัดด้วยการหุงมะลง 4 ชนิด คือ Hơnร้อยถึง 95% 70% 50% และน้ำ
ตาลสุกร คู่การแลกผู้สุกรและการแบ่งตัวของไวรัสพยาธิตับสุกร
บทที่ 2
การตรวจเอกสาร

ประวัติและความเป็นมาของโรคห้าวสุกร

หัวหวั่นสุกร (classical swine fever) เป็นโรคระบาดที่มีเหตุจากเชื้อไวรัส และเป็นโรคระบาดที่พบในสุกร สามารถเกิดขึ้นได้ในทุกถูกลุกล่าซึ่งถือว่าเป็นสูญเสียทางเศรษฐกิจ ต่อสุขนาทกรรมการเลี้ยงสุกรทั่วโลก (Paton and Greiser-Wilke, 2003) พบการระบาดครั้งแรกเมื่อปี พ.ศ. 2353 ในมอร์กันแนวซึ่งประเทศสวิตเซอร์แลนด์ ในประเทศไทยพบรายงานการระบาดครั้งแรกในปี พ.ศ. 2493 และรัฐอยู่ในประเทศบัญญัติโรคระบาดสูงสุดและอันตรายที่สุดในปี พ.ศ. 2497 มีการระบาดอย่างรุนแรงและเป็นพื้นที่สาหรับป่าปี พ.ศ. 2527 ออกไปให้ความเสียหายอย่างมากในฟาร์มเลี้ยงสุกรทั้งสุกรพันธุ์และสุกรพันธุ์อื่น ๆ (สุธีรกิจ, 2543) จากรายงานในครั้งแรกของการระบาดที่ฟาร์มเลี้ยงสุกรบริเวณฟาร์มสุกรเกษตรบางแสน กรมพัฒนาการในระยะแรกการแพร่ระบาดอยู่ในวงจำกัด และต่อมาการแพร่ระบาดกระจายไปทั่วพื้นที่เกษตร นโยบายการควบคุมและแผนที่สำรองสำหรับการจัดการเรียกขึ้นโดยใช้ที่ลานกัก ควบคุมการสุกรกระจายไปในพื้นที่ต่าง ๆ ของประเทศไทย และเริ่มมีการแยกเรียกได้จากสุกรป่วยจึงทำให้โรคหัวหวั่นสุกรได้รับความสนใจมากขึ้น (สุธีรกิจ และคณะ, 2547) โรคหัวหวั่นสุกรก่อให้เกิดปัญหาสุกรป่วยและตายเป็นจำนวนมาก เนื่องจากสุกรเป็นสัตว์ที่สัมผัสได้ง่ายตามธรรมชาติ ทั้งจากธรรมชาติกับสุกรของสุกรที่จากการไปสัมผัสที่ไม่ได้คิดเห็น การเกิด การหายใจ ในกรณีที่สุกรเกิดการคัดเชื้ออย่างรุนแรงจะสามารถเพาะเชื้อได้ในบริเวณมากและต่างของสุกรที่มีการคัดเชื้อแบบเรียกจะมีการเจริญเติบโตอย่างรวดเร็วจะลดความต้องการโดยสูงอาจจะมีการเสื่อมการป้องกัน เพื่อสูญเสียออกหรือไม่เสื่อมการป้องกันมาก จึงเป็นสาเหตุให้เกิดการมีไข้ในโรคซึ่งเป็นปัญหาสำคัญที่ต้องการกำจัดโรคให้หมดไปอย่างไม่ประสบความยุ่งยาก อุณหภูมิต่ำจากโรคนี้อาจมีเพิ่มเติมอยู่ ไปจนถึงร้อยละ 100 ขึ้นอยู่กับความรุนแรงของโรค (Paton and Greiser-Wilke, 2003) ลักษณะของโรคที่พิจารณาจากอาการเปลี่ยนแปลงในระบบเซลล์เยื่อบุหลอดเลือด (endothelial cell) หมายถึงการคัดเชื้อไวรัส ทำให้เกิดการบานน้ำ (hydropic degeneration) และเกิดมีเลือดออกภายในหลอดเลือด มีผลทำให้เกิดการเสื่อมระดับการอุดความเนื้องจากการขาดเลือด (Matha et al., 1996)
โครงการสังเคราะห์พันธุกรรมของไวรัสหื่อฟุ้ง

ไวรัสหื่อฟุ้ง (classical swine fever virus; CSFV) จัดอยู่ใน family Flaviviridae genus Pestivirus เชื้อ CSFV เป็นอาร์เอ็นเอ ไวรัสชนิดเดียวแบบบัลป (positive-sense single-strand RNA virus; +sRNA) ลักษณะของอนุภาคไวรัสเป็นรูปทรงกลมถักกลม (hexagonally-shaped core) และมีเปลือกขุ่นอยู่ภายนอก (envelope) (van Regenmortel et al., 2000) มีขนาดของพันธุ์กึ่งกลาง-40-60 นาโนเมตร สายถักอนิเกิดของไวรัสมีความยาว 12.3 กิโลเมตร มีกรดอะมิโนในประมาณ 3,900 กรดอะมิโน ผลผลิตของเชื้อไวรัสมีจำนวนสายพันธุ์ที่สามารถมองเห็นเป็นที่ทราบเป็นกรดอะมิโนในเฟิร์นฟิลเมอร์ (open reading frame; ORF) ที่ควบคุมการสร้างโปรตีนสาย โค (Ophuis et al., 2006) จากการตรวจสอบสังเกต (transcription) โปรตีนสายจะถูกตัดออกไปเป็นส่วน ๆ ด้วย酵มิคโปรตีเนส ที่สร้างจากโปรตีนชุด และจากพันธุกรรมของไวรัสทำให้ได้โปรตีนออกมา 12 ชนิด ซึ่งโปรตีนโครงสร้างของไวรัสจะอยู่ในชุดด้าน 5′ ของรหัสพันธุกรรมของไวรัสและโปรตีนที่ไม่ใช่โปรตีนโครงสร้างจะอยู่ในชุดด้าน 3′ ของรหัสพันธุกรรมโลก 5′ เรียกว่า 5′ noncoding region (5′NCR) มีขนาด 400 นิคลีโอไทด์ และชุดด้านปลาย 3′ เรียกว่า 3′ noncoding region (3′NCR) มีขนาด 200 นิคลีโอไทด์ (Meyer and Thiel, 1996; Wu et al., 2001)โปรตีนทั้ง 12 ชนิดประกอบไปด้วย N²⁰, C, E²⁰, E¹, E2, p7, NS2, NS3, NS4A, NS4B, NS5A และ NS5B และมี precursor 2 ชนิดที่พบในจำนวนน้อย E2-p7 และ NS2-3 (Tang et al., 2011)

N²⁰ เป็นโปรตีนชนิดแรกเริ่มในสายโปรตีนของไวรัส แต่ไม่ได้เป็นโปรตีนที่สำคัญที่ใช้ในการเพิ่มจำนวนไวรัส (Tratschin et al., 1998) และมีหน้าที่ในการหลอมเซลล์ระบบ cellular antiviral defense และเป็นจุดแรกจากการ apoptosis ซึ่งถูกกระตุ้นโดยอาร์เอ็นเอนอกเส้น (Ruggli et al., 2005) นอกจากนี้ยังทำหน้าที่ในการยับยั้งยั้ง.street defence (IFN-β) ในเซลล์ที่ติดเชื้อ โปรตีนโครงสร้าง (structural protein) ของไวรัสได้แก่โปรตีน C (nucleocapsid protein C) ไกลโคโปรตีน (glycoprotein, GP) E0 (Ems, gp44/48), GP E1 (gp33), และ GP E2 (gp55) โดย GP E0 และ GP E2 เชื่อมถูกลูกก่อกิจของไวรัสด้วยทางไกลด้านคาร์บอนิลซิลิค โดย GP E0 ขึ้นบันทึกของไวรัส GP E0 มีฟังก์ชันเป็นribonuclease ที่เป็นส่วนสำคัญในการควบคุมการเปลี่ยนของไวรัส (Thiel et al., 1991; Windisch et al., 1996) และจากการทำศึกษาของแต่ละตัวแอนของเยื่อพิษพบว่า CSFV มีสารพันธุกรรมที่ควบคุมการสร้างโปรตีนที่สำคัญ 2 ชนิดคือโปรตีน C และโปรตีนทั้ง 3 ตัวแอน คือ GP E0, GP E1, GP E2 (Rumenapf et al., 1993) จากการศึกษาความล่าช้าของเชื้อ และความรุนแรงของเชื้อพบว่าเชื้อควบคุมการสร้าง GP E0 โปรตีน C และ GP E2 มีความสำคัญต่ำความรุนแรงของเชื้อ CSFV (Meyer et al., 2004; Risatti et al., 2005) GP E2
มีคุณสมบัติในการสร้างอนุมัยภูมิให้ได้ที่สูง สามารถกระตุ้นให้ร่างกายของสุนัขสร้าง neutralizing antibody ได้ซึ่งเป็นส่วนสำคัญในการป้องกันการเกิดโรคที่มีทัศนคติของสุนัข (Weiland et al., 1999) NS2 ทำให้ endoplasmic reticulum เพิ่มความเร็วและยั่งยืนสามารถกระตุ้น nuclear transcription factor kappa B NS3 ทำให้เกิด serine protease คัดบันไดตำแหน่งของ cleavage site (Tautz et al., 1997; Tautz et al., 2000)

![CSFV genome diagram]

ภาพ 1 ลักษณะโครงสร้างทางพันธุกรรมของ CSFV

![Genomic RNA and T=3-like organization of surface dimers]

ภาพ 2 ลักษณะอนุภาคของไวรัส genus Pestivirus

นอกจากนี้ยังเข้ามายังกระบวนการ helicase และกระบวนการ NTPase ซึ่งเป็นกระบวนการที่สำคัญในการเพิ่มจำนวนอาร์จีเอ็นของไวรัส (Gu et al., 2000; Moulin et al., 2007) NSSA ยังไม่ทราบหน้าที่ที่แน่นอนแต่พบว่ามี NSSA ปริมาณน้อยจะกระตุ้นกระบวนการการสร้าง...
อาร์เรียมและสารเสียจากไวรัส แต่ยังไม่รู้ถึงการดำเนินการดังกล่าวใน NSSB ทำหน้าที่เป็น RNA-dependent RNA polymerase ในการสร้างอาร์เรียมของไวรัส (Zhang et al., 2005)

ระบบภูมิ

โรคภัยการแพร่กระจายทั่วโลกและเป็นปัญญามนุษย์ได้ถูกกำจัดให้หมดไปในหลายประเทศ โดยไม่มีรายงานการเกิดโรคในหลายประเทศเช่น ฮังกง, เมียนมา, เนปาล, ฮังการี และ ญีปุ่น (Edward, 2000) การติดต่อของโรคส่วนใหญ่จะเกิดจากการสัมผัสโดยตรง ระหว่างสุนัข ดิฉันและสูบม้าที่ใกล้เคียง เช่น จุดที่สัตว์เป็น البع่ยราวกับคนที่สัมผัสกันมากกว่า 2 ชั่วโมง และมีการสัมผัสต่ำเข้า เช่น จุดที่เป็นไขมันแท่ง máuหรือจมูกและเนื้อเยื่อต่าง ๆ ซึ่งจะได้รับเข้าไวรัสที่ทำการสูบหรือทำาทางบุคคลและยุคเกินหลัก (Ophuis et al., 2006) และสามารถได้รับเชี่ยวชาญในหลายทีมของระบบภูมิพันธุ์หุ่นทางแต่ละกลุ่มมีเซลล์ที่หมายหลักของเชื้อไวรัส คือโมนีโค (Monocyte) _MACROPHAGE (Macrophage) รองลงมาคือกลุ่มของแกรนูลีไซต์ (Granulocytes) ที่ทำางานดีที่สุด (Summerfield et al., 2001) รวมถึงเซลล์ยึดกลุ่มเซลล์และ เคนรีดีเซลล์ (Dendritic cell) (Ganges et al., 2008) เมื่อสุนัขได้รับเชื้อไวรัสจะเข้า GP Ems จับกับ membrane-associated glycosaminoglycan heparin sulfate (HS) ของเซลล์ยึด และ E2 จะขับกลับเซลล์ที่ใกล้กันได้ 2 วันหลังการให้ทางบุคคลและยุค กำหนดเวลานานเจ็ด微软雅黑ในเชื้อไวรัส (Lymphocyte) (Biront et al., 1987) และ לראותเพียงเม็ดเลือดขาวเลือดเข้มแดง และทำาระบบการจำเรียบไวรัส กำหนดเวลานานจากไปยังกระแสเลือด ยังไม่ชัดเจนเนื่องจากข้อมูลที่จำกัดเพื่อการสร้างตัวอย่างน้ำหนักที่ได้กลับส่วนแบบและเจ้าฝูง วัยรุ่น ๆ ในระยะที่สูงของการติดเชื้อ (van Oirschot, 1999) ไวรัสที่พิษสุนัขสามารถทำให้ B-cells และ T-cells เกิดการตายใน germinat center ของเนื้อเยื่อต่าง ๆ เช่น หัวเนื้อทำให้เกิดการสร้างภูมิภูมิคุ้มกันที่ดี (Sussa et al., 1992) образомของ B-cells และ T-cells เป็นการตายแบบ apoptosis ซึ่งมีสารคุ้มจากกิจกรรมเชื้อไวรัสที่สุนัขโดยตรง หรือเกิดจากรายใดรายหนึ่งที่ส่งเสริมกระบวนการอักเสบ(proinflammatory cytokine) จากเซลล์โมโนไซต์/Macrophage ที่มีการติดเชื้อ โดยเฉพาะ (Tumor necrosis factor alpha; TNF-α) และ (Interleukin-1 alpha; IL-1α) (Narita et al., 1996; Bruschke et al., 1997; Summerfield et al., 1998; Sato et al., 2000; Sanchez-Cordon et al., 2003) โดยการ apoptosisจะเป็นแบบ bystander ของ B-cells และ T-cells เซลล์ (Ganges et al.,
2008) โดยสามารถตรวจพบได้ตั้งแต่เป็นการริเริ่มการติดเชื้อไวรัสหัวใจสุนัข (cytokine) ที่ไม่สมบูรณ์จากการติดเชื้อไวรัสหัวใจสุนัข. หรือเกิดจากการติดเชื้อไวรัสหัวใจสุนัขในกลุ่มของผู้ป่วยที่มีสุนัขเป็นสีแดง (Supertag) ที่ไม่เกี่ยวข้องกับความทุกข์ทรมานของสุนัข (Summerfield et al., 2001) หรือเกิดจาก GP Ems ที่ไปยังเร็วถึงการส่งทางโปรตีนของเซลล์มีข้อต้องชี้ว่าพบได้ตั้งแต่ 4 ข้างในหลังการได้รับ GP Ems และความรุนแรงของการติดเชื้อของเซลล์ขึ้นอยู่กับความเข้มข้นของ GP Ems และระดับเวลาที่เซลล์ได้รับการติดเชื้อสุนัข โภชนาการในเนื้อเยื่อเนื้อเยื่อ และโภชนาการทำให้เกิดการตายของเซลล์เมื่อเปลี่ยนขาดสารซึ่งส่งผลให้เกิดภาวะเม็ดเลือดขาวต่ำ (Susa et al., 1992; Gomez-Villamandos et al., 2001; Summerfield et al., 2001) โดยสามารถตรวจพบเวลาเม็ดเลือดขาวต่ำได้ตั้งแต่ 1-4 วัน ทำให้สามารถตรวจพบไวรัสหัวใจสุนัขในกระแสนำเสีย ไวรัสหัวใจสุนัขสามารถพบในหัวใจที่มีการเปลี่ยนแปลงทางชีวภาพได้
โดยพบว่ามีการกระตุ้นของตัวอย่าง neutrophils, NK cells, gammadelta T และ alphabeta-TCR+T-cells, CD4+/CD8+ T-cells และ B-cells (Summerfield et al., 2001) ในช่วงที่มีการติดเชื้อจะมีสิ่งที่รุนแรงที่สุดคือเม็ดเลือดขาวนิรภัย (clinical sign) ให้เห็น โดยที่มีผักบุ้งที่นิ่มของเซลล์หรือเนื้อเยื่อของอวัยวะต่างๆ ที่ได้รับความเสียหายจากการติดเชื้อไวรัสสามารถตรวจพบจุดเลือดออก (hemorrhagic) ในอวัยวะต่างๆ ซึ่งเกิดจากการติดเชื้อที่เซลล์เมื่อปลูกเลือดตามภาวะมีเกลือเลือดต่ำ (thrombocytopenia) (van Oirschot, 1999) ซึ่งภาวะการเมื่อมีเกลือเลือดต่ำนี้เกิดจากการบีบผิวภูกับกลุ่ม Kupffer เชื้อในผิว และมีการสร้าง proinflammatory cytokine โดยเฉพาะ IL-1 ซึ่งเป็นสารที่กระตุ้นให้เกิดภาวะต่ำภูมิของเซลล์เลือดดูดและเป็นสาเหตุที่สำคัญที่ทำให้เกิดภาวะภูมิสูงสื่อ หลังการติดเชื้อไวรัสหัวใจสุนัขที่เซลล์เมื่อปลูกเลือดตามภาวะมีการกระตุ้นให้เซลล์มีการสร้าง coagulation factor, tissue factor, และ vascular endothelial cell growth factor (VEGF) โดยการกระตุ้นผ่านทาง nuclear factor kappa B (NF-KB) ทำให้มีเกลือเลือดต่ำ permeability เชื้อไม่แกะ เทียบเท่า ซึ่งทางมานปกติบริเวณอิดไข้ และไวรัส ยีนทางชีวภาพ icrease ทำให้เกิดภาวะภูมิสูงสื่อ ผลัพธ์เป็นการกระตุ้นของเซลล์เมื่อปลูกเลือดตามภาวะภูมิสูงสื่อ (Pauly et al., 1998; Summerfield et al., 1998; Lee et al., 1999; Sato et al., 2000; Choi et al., 2004) เชื้อไวรัสหัวใจสุนัขสามารถกระตุ้นผ่านทาง หลากหลายเป็นต้นไปตามที่มีการกระตุ้นโดยวิธีหนึ่งจะมีเชื้อไวรัสในกระแสนำเสียคู่ที่ไม่ได้รับการกระตุ้นต่อเนื่องกัน
ภาพ 3 รอยโรค

A สุกรที่เกิดไขววิตจากโรคหัวรากสุกรจะพบจุดเลือดออกตามตัวและใหญ่กระจายทั่วผิวภายนอก
B กล้องเนื้อของสุกรมีจุดเลือดออกกระจายอยู่ทั่วไปผิวหนังและมีการติดถิ่นที่ผิว
C ต่อมเนื้อหลังของสุกรมีการขยายและมีเลือดอยู่ หรือมีการติดถิ่นที่ผิวที่อาจจะมีมากจน
ที่เกิดผลตรงบริเวณ เรียกว่า strawberry lymph node
D ไตของสุกรจะพบจุดเลือดออกขนาดต่างๆ ใต้เปลือกไตและบริเวณ cortex กระจาย
ทั่วไปเรียกว่า turkey egg kidney
อาการ

โรคพิการตุ่นที่อาศัยที่ค้านาน 7-10 วัน (Moenng, 2000) หลังจากสู่การได้รับ
เชื้อโรคพิการตุ่น 2-10 วัน จะเริ่มแสดงอาการ ซึ่งมี ไข้สูง แขนขา น่องสูบกลม แล้วจึงมีความติดปกติ
ของระบบการทำงานต่าง ๆ ของร่างกาย คือ

อาการของระบบทางเดินอาหาร

1. เบี้ยวอาหาร จนกระทั่งไม่กินอาหาร
2. ท้องร่วง ถ่ายเป็นเนื้อกระดิุง 2-3 วัน
3. หลังจากนั้นจะผูกตึงอักเสบของอุจจาระเป็นเส้นเหนื่อยเชื้อ
บางครั้งมีเลือดปน อาจพบคลื่นท้องสูงถึงต่ำ และสังเกตอาการอุจจาระระหว่างไปผู้ตรวจทั้งหลาย

อาการทางระบบทางเดินหายใจ

1. มีอาการหายใจต้านทาน เนื่องจากมีโรคแทรกซ้อน (คิดเชื้อโรคภูมิแพ้) เกิดอาการ
ปอดบวม ความรู้สึกมึน อาจมีอาการจุกอืดขี่ อยู่เกินเวลานั้นอาจส่งผลต่อการหายใจ

อาการทางระบบประสาท

1. อาการต้านไข้ ขาดоде ไม่มีแรง
2. การทำงานของกล้ามเนื้อจะเกิดการต้าน ไปสู่การสับสนกัน
3. อาการท้อง
4. ภูมิคุ้มกันจะมีการรักษา
5. ระยะท้ายๆ จะมีอาการขัดเทา

MAEJOR UNIVERSITY
อาการทางระบบหมุนเวียนโลหิต

1. เส้นเลือดด้วยได้ผิวหนังแดง เป็นหรือผิดม่วงเข้มที่บริเวณ ปลายจมูก ใบゆっくり และด้านล่างของห้อง เรียกว่า ไข้อาโนซิส (Cyanosis)

2. เส้นเลือดที่ผิวเผื่องอวัยวะภายในแตกทำให้เกิดอาการเสื้อดอกของอวัยวะภายใน

3. ต่อมน้ำเหลืองบวม อักเสบ และขยายตัวขึ้น
อาการที่แสดงออกนั้นเป็นผู้ป่วย อาการและอาการพันธุ์ของสุขภาพ ความรุนแรงของขี้มด้วน
และช่วงของขี้มด้วนที่ใช้รับชื่อ โดยสุนัขสามารถแสดงอาการไว้ได้ 3 แบบคือ แบบนิ่มนวลแบบ
แบบเครื่อง และแบบที่แสดงอาการระทึก

1. แบบนิ่มนวล แบ่งตามความรุนแรงได้ 3 ระดับ

1.1 รุนแรงมาก สุราจุกไม่ได้ประมาณ 42 องศาเซลเซียส และความถี่หัวใจใน
2-5 วันของการพิสูจน์ โดยไม่แสดงอาการปร่า อาการแสดงนิ่มนวลมีเตรียมความพร้อม
เช่น เสี่ยงไว้เพราะความรุนแรงแรกสุราได้รับชื่อในบริเวณผาก และสุนัขมีอาการระทึกภูมิคุ้มกัน
อีสานเร็วได้ไม่เต็มที่

1.2 รุนแรง สุราจุกจะมีอาการป่วย (ประมาณ 41 องศาเซลเซียส) เชื่อม
ป่วย เอ็นอาหรับ หรือไม่กินอาหาร ไม่ได้ขับถ่ายน้ำมูก เผาจะหายกลับเลยอย่าง
รุนแรง ในระยะเวลาขึ้นชิ้นใช้ สุณัฐาติจุกมีอาการห้องสมองระคายเคืองจะมีอาการท้องร่วงอย่าง
รุนแรง และอาจเจ็บปวดร้ายขึ้นได้ในสุนัขบางส่วน สุนัขจะมีความรู้สึกต่อมต่อมสุนัขและอาจพบอาการ
ทางประสาทต่างๆ เช่น การเคลื่อนไหวเมื่อจับจากไม่มีแรงหรืออาการทำงานของกล้ามเนื้อไม่
ประสานกันโดยเฉพาะที่ของขาหลัง ทำให้สัตว์ไม่สามารถไปทางที่ชอบ การเดินทุ่นบนเป็น
วงกลม อาการอันพาลางส่วน อาการอัมพาต และอาการช้า โดยเฉพาะในช่วงก่อนตายมีอาการหน้า
ตาที่บวม เหลือง หรือขี้มด้วนในเชื้อได้พิษหนังของสุนัข แลวใช้ สุนัขน้ำมูกจะแสดงอาการ
หายใจทุ้ม และพบกลั้นที่หลากหลายตีนที่แสดงถึงการคัดออก Ciการคัดออกประสิทธิภาพในการระบายของระบบ
การไหลเวียนได้แก่ ผิวหน้าบริเวณใบหรือผิวโคนตา และการใช้กระเพาะเป็นเสื้อดอกน้ำ
เมื่อไม่หรือเรียกว่าติดใจไปในเชื้อ เพราะเข้าไปในเชื้อและน้ำที่เป็นไปดังกล่าวหากคัดออกซิเจน เมื่อผ่าน
ขาต่อมสุนัขจะเดินไปตามอวัยวะต่างๆ สมองและเส้นประสาทออกพบ ยาบางหรือผิวโคนปลอดภัยมี
ที่บวม เหลือง
วิธีการเริ่มต้นใน 3-15 วัน หลังเสร็จสิ้นอาการป่วย การดีเอ็นเอที่เรียก_meter_infection ไม่มีการเกิดโรคติดต่อผ่านร่างกายเป็นรูปแบบแบบเรียลไทม์ 100% และมีอัตราการตายที่ใกล้เคียงกัน โดยเฉพาะในรายที่การระบาดของโรคนี้เกิดจากไวรัสที่มีสาเหตุจากเรื่อง โดยไม่สูญเสียหายจากการตาย 100%

ช่วงการเกิดโรคแบบเรียลไทม์ แม้สูตรการเกิดขึ้นแต่ไม่ละเมิดสูตรคัดหน่ายไม่เกิน 35 วัน อาการจะเริ่มบวมบริเวณเท้าและเกิดการดูดซึมคลุม อาการคิดเรื่องเกิดขึ้นกับแบคทีเรีย ที่เกิดและระบาดของไวรัสไม่รุนแรง ทำให้เกิดการคัดกรองเป็นมันหรือการคัดกรองบวกคลุม หรือมีอาการฉุกเฉินได้ถูกแยกกิจการจะมีพยาบาลถูก รวมทั้งการป่วยเป็นโรคติดต่อแล้วเกิดในลูกสุนัขเรียกเกิด

1.3 รูโรเงิน ทางการแพทย์ทำการสแกนการคัดกรองแบบเรียลไทม์ แต่ความรุนแรงของโรคจะน้อยกว่าและสูตรส่วนใหญ่จะหายภายในวันที่ 20-30 หลังได้รับเชื้อ

2. แบบเรียลไทม์

การเป็นโรคแบบเรียลไทม์ นอกจากรัวจะพบในสุนัขที่รุกจากการเป็นโรคแบบเรียลไทม์ ดังกล่าวได้กับสุนัขที่ไม่เกิดการกัดที่ไม่เกิดการเกิดرار์ไวรัสที่มักก่อน อาการของโรคไม่เกิดต่ำมากนัก ลักษณะของโรคไม่เกิดต่ำมากนัก ที่เกิดเป็นเรียลไทม์เพื่อแสดงการกระจายของไวรัสจะชัดเจนและระบาดของไวรัสในกระแส谳ค์ และที่กล่าวมานี้ จะสามารถทำให้สุนัขที่เกิดความรุนแรงในการเกิดโรคไวรัส ซึ่งเป็นเรื่องในสุนัขที่เกิดความรุนแรง

ลักษณะทางคลินิกของโรคแบบเรียลไทม์ มีความแตกต่างกันค่อนข้างมาก อาการใช้สุนัขไม่เกิดต่อเนื่องหรือไม่ปรากฏให้เห็น อาการที่พบสูงสุดในท้องจริงอาจจะพบได้ในสุนัขที่ร่างกิจกรรม การใช้สุนัขก็จะเป็นเรื่องมากมาย มีการระบาดของโรคในเรื่องเร็วเร็ว อาการคัดกรองแบบเรียลไทม์สามารถทำในสุนัขที่เกิดความรุนแรง รวมทั้งการกระด้างเพราะสุนัขนั้นกับเนื้อเยื่อส่วน เข้าไปในสุนัขที่เกิดความรุนแรง

โรคศัพท์สุนัขสแกนแบบเรียลไทม์ ส่วนใหญ่จะเกิดก็ให้เกิดการสุนัขเรียลไทม์ ซึ่งอาการที่จะสังเกตุได้ว่ามีอาการติดเชื้อโรคเนื้อเยื่อวันที่เริ่มอาการสูงสุดที่เริ่มต้นกับความรุนแรงในลักษณะใกล้เคียงกับการสุนัขอุปกรณ์ที่พบกิจกรรมซึ่งจะสูงสุด ตอนนี้ไม่สามารถพันธุ์การนี้ การกระด้าง การกระด้าง ปรากฏสุนัขสแกนแบบเรียลไทม์มีอาการท้องร่วมในราวกับสุนัขเป็นโรคติดต่อแล้วเกิดในสุนัขเรียลไทม์และสุนัขสแกนแบบเรียลไทม์
สุกุรฉานที่ป่วยเป็นโรคแบบเรื้อรังในใหญ่จะไม่แสดงอาการป่วยที่เด่นชัดในลักษณะคลินิกที่จะตรวจพบได้ก็คือวิเคราะห์ข้อมูลแบบเริ่มต้นของสุกุรฉานซึ่งส่วนใหญ่จะอยู่ในสุกุรฉานเริ่มต้นหรือมีอัตราการเจริญเติบโตที่ช้ากว่าปกติถ้าพิจารณาการตายในสุกุรฉานนี้จะไม่สุ่มยากอาการทางคลินิกของอาการแบบเรื้อรังจะแบ่งเป็น 3 ระยะ

2.1 สุกุรฉานที่ได้รับเชื้อจะมีอาการเมืองอวัยวะซึ่งมีอาการท้องเสียและมีไข้ข้อตัวในกระแสเลือดต่ำอาการของโรคไม่แตกต่างกันแบบยีปสิลม์เพียงแต่การตรวจคลาสของไวรัสจะมียาวนานและระยะต่างๆจะต่ำกว่าระยะนี้ประมาณ 1-2 สัปดาห์หรืออาจจะถึง 1 เดือน โดยสุกุรฉานจะมีอาการเข้าไวรัสของมะเร็งได้ตลอดเวลา

2.2 สุกุรฉานจะมีอาการเหมือนปกติไม่มีไข้กินอาหารได้แต่ปริมาณฝีมิขึ้นในกระแสเป็นส่วนมากและจะมีไข้ข้อตัวในกระแสมีความยาวนานเพิ่มขึ้นในเนื้อเยื่อเนื้อต่ำร่างกายจะสัมผัสเลือดต่ำเข็ญไวรัสทำให้มีการตรวจไวรัสในเริ่มของโรคหรือจะตรวจไวรัสไวรัสในระยะแรกไวรัสได้หายแล้วต่างจากไข้ชนิดต่อเนื่องถ้าได้สุกุรฉานนี้จะไม่สุ่มยากและได้สุกุรฉานมีอาการเข้าไวรัสของมะเร็งหรือไม่เข้าไวรัส

2.3 สุกุรฉานจะเก็บเลือดมีอาการเมืองอวัยวะซึ่งมีไข้ผูกสุกุรฉานต่ำสุกุรฉานจะมีอาการมีระยะต่างๆที่ร่างกายทำให้สุกุรฉานมีความยาวนานเมื่อสุกุรฉานที่เกิดขึ้นจากอาการเมืองอาหารจะไม่พบจุดเลือดออกเลือดย้ายกับอาการแบบยีปสิลม์แต่จะพบผลข้อมูลที่เกี่ยวข้องกับสุกุรฉานต่ำสุกุรฉานเนื้อต่ำร่างกายจะสัมผัสเลือดต่ำเกินกว่าก่อนสุกุรฉานหรือจะเก็บเลือดเลือดไวรัสตามข้อมูลที่เกี่ยวข้องกับการกว้างข้อมูลไปยังปริมาณของสุกุรฉานได้ที่จะสุกุรฉานเป็นอย่างมากระยะเวลานั้นแต่ระยะที่ 1 ถึง 3 ใช้วาจาว่าประมาณ 1-3 เดือน

3. แบบแสดงอาการระยะท้าย

เป็นอาการที่เกิดขึ้นหลังจากการที่สุกุรฉานที่เกิดขึ้นจากอวัยวะสุกุรฉานที่มีอาการมักจะมีอาการต่ำกว่าสุกุรฉานที่เกิดขึ้นจากอวัยวะมีความยาวนานในระยะแรกนี้เป็นปริมาณที่สูงกว่าระยะที่ 1 และจะมีการแก้ไขอาการในระยะที่ 2 แต่จะมีการกลับมาเก็บอวัยวะซึ่งเป็นอาการที่เกิดขึ้นหลังสุกุรฉานจะไม่มีไข้และไม่พบจุดเลือดออกตามวัวจะสุกุรฉานจะไม่มีอาการแสดงอาการร่วมกันมักจะมีเวลานานกว่า 6 เดือนแก่สุกุรฉานไม่มีการกระทำต่อสุกุรฉานอื่นๆ
ตาราง 1 เปรียบเทียบลักษณะที่สำคัญของโรคหิววัวตับสุกร แบ่งตามความรุนแรงของโรค

<table>
<thead>
<tr>
<th>ลักษณะที่สำคัญ</th>
<th>รุนแรง</th>
<th>เริ่มแรก</th>
<th>แสดงอาการระยะท้าย</th>
</tr>
</thead>
<tbody>
<tr>
<td>ความรุนแรงของเชื้อไวรัส</td>
<td>ไม่สูง</td>
<td>ปานกลาง</td>
<td>ต่ำ</td>
</tr>
<tr>
<td>เวลาที่เกิดการระคายเคือง</td>
<td>รกหลักการคลอด</td>
<td>รกหลักการคลอด</td>
<td>รกหลักการคลอด</td>
</tr>
<tr>
<td>ช่วงเวลาของการป่วยและอาการ</td>
<td>ระยะที่ด่าสั้น รุนแรง สุขภาพ ใช้สูง</td>
<td>ระยะที่ด่าสั้น มี 3 ช่วงคือ 1. ซึมมีใช้</td>
<td>ระยะที่มีอาการ</td>
</tr>
<tr>
<td>Viremia</td>
<td>ไม่สูง</td>
<td>ลดลงช้ากว่าหรือหายไปเลย</td>
<td>คนยังไม่ระคับสูง</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>ระคายเข็มร่วงเร็วมาก</td>
<td>ระคายเข็มต่ำ</td>
<td>แจ้งพันในช่วงท้าย</td>
</tr>
</tbody>
</table>

การตอบสนองทางภูมิคุ้มกัน เข็มรังวัด์ไม่พับ พับไม่พับ

การตาย | 10-20 วัน | 1-3 เดือน | 2-11 เดือน

อาการ	จุดเสื้อออกหัวไป	แดงภูมิที่ส้ม	ค่อนมาเป็นเซลล์ของ	endothelium ขาด
วิการ	โพลิเอเลาที่ต่อ	และ colon เนื้อสี	lymphocytes หยัก	hyperplasia
	นาเหงื่อนและไฟฟ้า	จากการขาดเซลล์ของ	รุนแรง histocytic	
	เนื้อตัวจากการระดับ	มีริม พบการที่ซูโทรศ		
การวิเคราะห์โรค

เมื่อจากโรคหัวใจสุกรเป็นโรคระบาดที่สามารถสระรังควมเสียหายอย่างรวดเร็ว และ
รุนแรง ดังนั้นการวิจัยโรคให้เกิดดังกล่าวมีความจับปีเป็นอย่างยิ่ง เพื่อที่จะสามารถ
ควบคุมและป้องกันโรคได้อย่างมีประสิทธิภาพ ไม่ใช่ที่จะสามารถแบ่งการวิจัยโรคได้เป็นการ
วิจัยโรคเบื้องลับ และการวิจัยเบื้องหน้าที่อยู่ในอ่านวิจัยการ วิเคราะห์โรค ความสามารถที่จะวิเคราะห์ โรคภูมิคุ้มกันโรคที่มีการ และระบาดการกลายกลุ่มโรคหัวใจสุกรดังนั้นเรียกชื่อว่าควบคุม
กับการตรวจทางห้องปฏิบัติการที่มีความสูงระดับต่ำขึ้นเพื่อเป็นการยืนยันผลอีกครั้งหนึ่ง
การตรวจทางห้องปฏิบัติการแบ่งออกเป็น 2 กลุ่มคือ

การตรวจทางเทคนิคต่อเชื้อไวรัส CSFV

1. Fluorescent antibody (FA) เป็นการตรวจเนื้อเยื่อที่ผ่านการแข่งขัน ด้วย
monoclonal antibody หรือ polyclonal antibody ที่ผ่านความจุuxtaposition ใดๆ ที่เกิดขึ้นได้รับความ
นิยมในอีกครั้งครั้งที่โรคหัวใจสุกรระบาดในประเทศแอฟริกา เนื่องในปี พ.ศ. 2540-2541 มีการส่ง
ตรวจด้วยกล้องที่มีความสามารถแข่งขันสูงกว่าที่ขึ้นในกระท่อมหรือสัตว์ปศุสัตร เพื่อที่จะเรียก
วิชานี้เป็นวิธีที่มีความรวดเร็ว และน่าเชื่อถือและมีประสิทธิภาพในห้องอุตร์ ห้องที่เกิด นั้น

2. การทดสอบเชื้อไวรัสในเซลล์ของสัตว์ เช่นเซลล์ที่สามารถใช้ในการเพาะเลี้ยงต่ำ
เช่น porcine kidney (PK-15) swine kidney (SK-6) และ swine testicle cell (ST cell) ในการทำ
เพาะเลี้ยงเซลล์เพาะเลี้ยงสัตว์ที่มีอยู่ที่หน่วยงานตรวจของไวรัส (Grummer et al., 2006) เพื่อที่จะสั่ง
CSFV ลมใหญ่ไม่ทำให้เกิด cytopathic effect (CPE) ในการตรวจเชื้อตัวเวิร์มที่มีคิ้งคือใช้เทคนิค
อื่นเข้ามาช่วย เช่น FA ทั้งระบบ direct และ indirect หรือ เทคนิค Polymerase Chain Reaction (PCR)

3. PCR เป็นการตรวจสารพันธุกรรมของเชื้อไวรัสโดยใช้วิธีทางเทคนิคสร้างฟิล์มครั้ง
ซึ่งมีความรวดเร็ว ความสามารถต่ำจะสูง และสามารถตรวจเชื้อได้แม้จะมีปริมาณน้อย
(Paton et al., 2000) โดยเทคนิคที่ใช้คือ RT-PCR ซึ่งเป็นวิธีที่มีความสามารถต่ำ เชื้อ CSFV ตัวอย่างที่ใช้
ตรวจวิชานี้ถือเป็น หรือชีวิญชีของสุกร

4. Enzyme-linked immunosorbent assay (ELISA) เป็นวิธีการตรวจทางเทคนิคที่
เป็นที่นิยมเมื่อเชื้อมีความรวดเร็วและแน่นอนในระดับปานกลางเนื่องจากวิธีนี้ไม่สามารถยืนยันให้
วัคซีนที่ได้รับมาเป็นวัคซีน หรือเป็นการคัดค้านจากกรมวิทยาการ ตัวอย่างที่ใช้ตรวจวิธีที่คือ เลือด และเนื้อเยื่อของสุกร

การตรวจแอนติเดนต์ของเชื้อไวรัส

แอนติเดนต์จะถูกสร้างขึ้นหลังจากที่สุกรได้รับเชื้อไวรัสแล้วเป็นเวลา 2-3 สัปดาห์ การตรวจแอนติเดนต์ของเชื้อไวรัสเป็นวิธีที่มีความแอนต์tamponadeที่นิยมใช้ในตรวจแอนติเดนต์ คือเชื้อ CSFV คือ Virus neutralization test (VNT) และ ELISA

1 VNT เนื้อจากเชื้อ CSFV ส่วนใหญ่ไม่ทำให้เกิด CPE วิธีนี้จึงเป็นวิธีที่นิยมใช้ในตรวจแอนติเดนต์ที่นิยมมักใช้กันในการตรวจหา เป็นการใช้แอนติเดนต์ที่แนวทางตรวจไวรัสโดย ทำให้ไวรัสเสีย ประสิทธิภาพ และไม่ทำให้ผลเปลี่ยนแปลงใด ๆ ก่อนขั้นสุดท้าย

2 ELISA ใช้หลักการเช่นเดียวกับการตรวจแอนติเดนต์แต่เป็นวิธีการเป็นการ ตรวจแอนติเดนต์ของเชื้อไวรัสแทน

การควบคุมโรคและป้องกันโรคเชื้อไวรัส

เชื้อสามารถมีชีวิตอยู่ในเนื้อสุกรที่พักการรวบรวมมากว่า 10 วัน ใหม่เนื้อสุกรเชื้อไวรัส ได้นาน 17-18 วัน ในเนื้อสุกรเชื้อไวรัสสามารถอยู่ในเนื้อสุกรพันธุ์สุกรนานได้นาน 10 สัปดาห์ (Hass et al., 1995)

ในปัจจุบันโรคหัวคัดสุกรยังไม่มีวิธีการรักษาจึงทำให้เพื่อยกระดับควบคุมและ ควบคุมโรคซึ่งในประเทศไทย มีการใช้วิธีการรักษาที่สามารถควบคุม โรคพันธุ์ได้ วัคซีนที่มีประสิทธิภาพเป็นและวัคซีนที่มีประสิทธิภาพ วัคซีนที่มีประสิทธิภาพโดยตัวอย่าง ไวรัสที่มีความต้านทานต่อโรคได้ กรม ปศุสัตว์ได้รับการผลิตวัคซีนหัวคัดสุกรปี พ.ศ. 2496 โดยใช้วัคซีน SFA ชนิดก่อน กรมคัดค้านโรคขึ้นตามที่มีความรุนแรงของโรค โรคซึ่งมีวิธีการรักษาด้วยวัคซีน (hyperimmune serum) ที่มีกับการให้ ไวรัสที่มี (กษณิยาและราบรื่น, 2548) ต่อมาได้มีการพัฒนาวัคซีนป้องกันโรคหัวคัดสุกรเชื้อเป็น ชนิดกันโรคเชื้อไวรัส (Chinese-strain) ที่มีวิธีการคัดค้านโรค (lapanized Chinese (C)-strain) เป็นวัคซีนที่มีการใช้เพาะเพาะ เป็นวัคซีนป้องกันโรคหัวคัดสุกรที่มีประสิทธิภาพสูง การไม่ป้องกันจะ สามารถกระตุ้น neutralizing antibody ให้สุกรสามารถป้องกันโรคได้ตั้งแต่ 5-6 วันหลังการทำวัคซีน ถ้าแม้ว่าสุกรได้รับวัคซีนเพียงครั้งเดียว (van Oirschot, 1999) นอกจากนี้ยังสามารถตรวจพบ
เนื้อหาที่ทำให้รักษาได้ (Suradhat et al., 2007) และป้องกันเมื่อใช้ในระยะสุดท้าย (Moening, 2000; van Oirschot, 1999)

ข้อจำกัดของวัคซีนเจมเป็นไปได้ไม่สามารถจ่ายแก่สัตว์ที่ใช้วัคซีนจากสุลตันที่ดีซื้อโดยการตรวจวัคซีนวิทยาเพื่อเป็นปัญหาทางการใช้วัคซีน "marker vaccine" เพื่อในการใช้วัคซีนที่ดีสำหรับการسائرบุคคลและมีความร่วมควบคุมเชื้อไวรัสหวิดสุนัขสกุลแคเนเนียส โดยเตรียมจาก E2 glycoprotein ของเชื้อ CSFV ซึ่งไปจากการ expression ใน baculovirus system (Hulst et al., 1993; Bouma et al., 1999; Szczuczenek and Dulin, 2048) นอกจากนี้ยังมีวัคซีนที่ดีสำหรับคื่องนึงที่มีประสิทธิภาพของวัคซีน ซึ่งวัคซีนตัวบัตรทุกกรณีได้จากชนิดเชื้อบุคคล E2 วัคซีเนียนบน GPE ชนิดผ่านเซลล์ชนิดนี้มีวัคซีนที่ดีการที่จะต้องการนี้มีวัคซีเนียนบน Thiverval ชนิดผ่านเซลล์ชนิดนี้มีวัคซีน GPE ผ่านเซลล์ในขั้นตอนส่วน WPE/Th ผ่านเซลล์ในขั้นตอน Lom ชนิดผ่านเซลล์เพื่อเร็วได้แก่ และวัคซีเนียนบนชนิดนี้มีวัคซีนที่ดีการที่จะต้องการนี้มีวัคซีเนียนบน P.と思ったวัคซีนได้ใช้ในผสมผสานกัน นักศึกษาจะมีข้อมูลทุกกรณีของวัคซีนของเสื้อถึงขั้นอยู่กับอิทธิพลปัจจัย เข้า ขั้นตอนที่ได้รับการยุธศึกษา ภูมิคุ้มกันจากมังض์จะมีผลในการควบคุมประสิทธิภาพในการที่ วัคซีเนียน (Suradhat et al., 2003) โดยพบว่าการบุคคลที่รับภูมิคุ้มกันจากมังส์จะมีผลในการควบคุมประสิทธิภาพในการที่ วัคซีเนียน (Suradhat et al., 2007)

จากข้อจำกัดในการใช้วัคซีนเหล่านี้ได้กล่าวมาข้างต้น จึงมีการของเหตุผลโทษไม่เพียงใดจะใช้ระบบที่ดีในการควบคุมโรคและป้องกันโรคพร้อมทุกกรณีร่วมกันการใช้วัคซีน สารสนเทศรวมถึงจากมังส์โรคเป็นอิทธิพลเล็กน้อยที่จะใช้ในการป้องกันและควบคุมโรคฟิวแนลสุนัขเนื่องจากมีผลข้างเคียงน้อย หากได้รับการปรับลดลง นอกจากนี้ยังมีการพบว่ามันโรค หลายชนิดมีอุทกภัยในไวรัส เช่น คลื่นตาย ผูกถัก และทองฟิวเน็น
พบลูก

ชื่อวิทยาศาสตร์: Houttuynia cordata Thunb.
วงศ์: Saururaceae
ชื่อท้องถิ่น: พักยาว ด้วยปลายนิ้ว พักยาว
นิสากรกิจ: นำกลิ่นเป็นน้ำผึ้งย่อย ปรุงรักษาผักและผลไม้
ทางการแพทย์

ภาพ 4 Houttuynia cordata Thunb.

อุทิตค้นไวรัส

มีรายงานว่าเนื้อท่อนมหะเหดจากพุทราที่ประกอบไปด้วย n-decyl aldehyde, dodecyl aldehyde และ methyl-n-nonyl ketone มีฤทธิ์ในการยับยั้งไวรัสที่เป็นสาเหตุของไข้หวัดใหญ่ในทดลองทดลองได้ โดยมีค่า ED₅₀ ท่ากับ 41 μl/ml ค่ามากกว่า Hayashi et al. (1995) ได้ศึกษาฤทธิ์ในการยับยั้งไวรัสของเนื้อท่อนมหะเหดที่บกพร่องในการทำลายไวรัสที่มีเปลือกภูมิ (envelope) โดยทำการทดลองกับไวรัสที่มีเปลือกภูมิ 3 ชนิดคือ ไวรัสไข้หวัดใหญ่ human immunodeficiency type-1 virus (HIV-1) และ herpes simplex type-1 (HSV-1) แต่ไม่สามารถทำลายไวรัสที่ไม่มีเปลือกภูมิได้ โดยทำการทดลองกับ โปลิโอไวรัสและcoxsackie virus โดยสารสำคัญที่พบในเนื้อท่อนมหะเหดคือ methyl-n-nonyl ketone, lauryl aldehyde และ capryl aldehyde ในปี พ.ศ. 2543 Neyts และคณะพบว่า monoglyceride ของ capric
acid มีฤทธิ์ในการดันไวรัส HIV และ HSV โดย capric acid เป็นกรดไนโพรีที่สามารถพบใน สมุนไพรพัลลาด

ศึกษาถูกที่จะว่า quercetin 7-rhamnoside ต่อการดันไข้ไวรัส porcine epidemic diarrhea virus (PEDV) ซึ่งเป็นสาเหตุของโรคพัลลาดในสุกร โดยการทดสอบสารสกัดเม ทานอลจากพัลลาด จากนั้นแยกสารและทำการวิเคราะห์ด้วย silica gel แล้ววิเคราะห์หา สารสกัดที่ดีที่สุด High-performance liquid chromatography (HPLC) พะวุงสารที่แยกได้คือ quercetin 7-rhamnoside และนิวสารที่เหลือไปทดลองการยับยั้งการเพิ่มจำนวนของไวรัส เปรียบเทียบกับยาด้านไวรัส ribavirin, interferon-α และสารในธรรมชาติ ได้แก่ coumarin และ tannin acid พะวุงสาร quercetin 7-rhamnoside ซึ่งเป็นสารสำคัญในกลุ่ม flavonoids มีฤทธิ์ในการ ยับยั้งและเหนือน้าให้เกิดอาการตาย ที่ค่า IC₅₀ ที่มากกว่า 100 mg/kg หรือมีผลสูง และค่า IC₅₀ เท่ากับ 0.0144±0.005 ในโครรมมิลิลิตร ในขณะที่ ribavirin, coumarin, tannin acid และ interferon-α มีค่า IC₅₀เท่ากับ 4.1, 47.4, 9 ในโครรมมิลิลิตร และ 0.52 unit ตามลำดับเมื่อ ทดสอบผลของการยับยั้งไข้ไวรัส PEDV ก่อนการยับยั้งพบว่า quercetin 7-rhamnoside มีฤทธิ์ ยับยั้งไวรัสได้ 14.9% เมื่อเปรียบเทียบกับ ribavirin ยับยั้งได้เพียง 0.09% และในระหว่าง 1, 2, และ 4 ชั่วโมงของการยับยั้งพบว่า quercetin 7-rhamnoside ให้ผลในการยับยั้งได้ในร้อยละ 85 ชั่วโมงของการยับยั้งได้ que r cetin 7-rhamnoside สามารถยับยั้งการเพิ่มจำนวนของไวรัสสายพันธ์จากการติดเชื้อไวรัส ได้ สารสกัดที่พบอยู่ในกลุ่มของสาร flavonoids ได้แก่ quercetin, apigenin, luteolin, catechin, quercetin 7-rhamnoside และสารในน้ำมันหอมระเหยเช่น capryl aldehyde, 2-undecanone lauryl aldehyde, β–myrcene, 1-nonanol, α–terpineol, methyl nonyl ketone, bornyl acetate, n-decanoic acid, carophyll-lene และ docosanoic acid ethyl ester (Choi et al., 2009).

การศึกษาถูกที่จะ quercetin 3-rhamnoside ที่สำคัญจากการพัฒนา ในการยับยั้งไข้ influenza A virus ซึ่งเป็นสาเหตุของโรคไข้หวัดใหญ่ โดย quercetin 3-rhamnoside สามารถยับยั้ง influenza A virus หลังจากนั้นไวรัสเข้าไปในเซลล์ MDCKI, 2 และ 4 ชั่วโมงแต่ไม่ยับยั้งหลังจาก นั้นไวรัสเข้าไป 6 ชั่วโมงโดยทำการปริมาณที่ยับยั้งการติดไวรัส oseltamivir โดยใช้อย่างละ 10 มิกโรกรัมมิลิลิตร พะวุง quercetin 3-rhamnoside มีฤทธิ์ในการยับยั้งไวรัสได้ดีกว่ายาต้านไวรัส oseltamivir และเปรียบเทียบการเกิด CPE พะวุง quercetin 3-rhamnoside น้อยกว่ายา oseltamivir อย่างชัดเจน (Choi et al., 2009).
พบยา

ชื่อวิทยาศาสตร์ : Clinacanthus nutans (Burm.f.) Lindau

วงศ์ : Acanthaceae

ชื่อพืช : Clinacanthus burmanni Nees

ชื่อท้องถิ่น : คุ้มบ้าน ให้ หลักธงเขียว พญ่ายิ้มคู่ พญายิ้มเดี่ยว พญายิ้ม singly

เนื้อพืช : พืกดักหัวไปตามป่าในประเทศไทย และบริเวณที่มีความชุ่มชื้นอุดมสมบูรณ์

ภาพ 5 Clinacanthus nutans (Burm,f.) Lindau

ถิ่นดินซื้อไวรัส

ถิ่นดินซื้อไวรัสบิริม (Herpes simplex) จากการศึกษาบางครั้งประกอบจากสารสกัดน้ำจากใบพญายิ้มที่สกัดได้ คือ 13β-hydroxy-(13β-R)-phaeophytin b, 13β-hydroxy-(13β-S)-phaeophytin a และ 13β-hydroxy-(13β-R)-phaeophytin a, ซึ่งเป็นสารอนุพันธ์ของ chlorophyll a และ chlorophyll b พบว่าด้วยความเข้มข้นที่ไม่เป็นพิษต่อเซลล์เฉพาะเจาะ Vero cell สามารถทำลายไวรัส HSV-1 โดยตรงก่อนที่ไวรัสจะเข้าสู่เซลล์ ซึ่งน่าจะทำลายเซลล์ไวรัสหรือยับยั้งไวรัสในขั้นการ adsorption และ penetration (Santi et al., 2008)

รายงานพบว่าพญายิ้มสามารถซื้อไวรัสที่เป็นเชื้อไวรัส HSV-2 ใน Vero cell เพาะเลี้ยงในหุ้งทดลอง โดยทำลายไวรัสโดยตรงเมื่อไวรัสยังไม่เข้าสู่เซลล์ แต่ไม่มีผลเมื่อเชื้อ
สุรชลและแต่ละทีมรายงานพบว่าสารตกหนักจากไฮโดรเจนและสารตกหนักจากไฮโดรเจนไม่มีผลต้าน
อันเชสกับ H5N2 สารออกฤทธิ์ต้าน H5N1 และ H5N2 คือสาร monoglycosyl diglycerides จาก
ไข่ โดยมีสาร 1,2-Di(2-aminoethyl)-3,4-dihydroxybenzoate acid และกลิ่นที่มีกิจกรรมต้าน H5N1 และ H5N2 ได้ร้อยละ 50 เท่ากับ 12.5±0.5 และ 18.5±1.5 ไมโครกรัมมิลลิลิตรตามลำดับ และสาร glycodecylglycerolipids ที่สกัดแยกได้จากสาร
ตกหนักจากไข่ (Yoonsook et al., 1999)

ในปี 2536 สมาคมและคณะได้รายงานว่าสารตกหนักจากไข่สามารถต้าน
ไวรัส Varicella zoster ที่เป็นสาเหตุของโรคซีโรสและอีกอีกโรคฟูรูโระซ่าที่มีหลายโรคนั้น
โดยตรงก่อนที่จะเข้าสู่สุนัขวัยสกนุ้งแล้วทำให้ผลิตภัณฑ์สุนัขติดเชื้อแล้ว (Thawaranantha et al.,
1992)

ในปี พ.ศ. 2536 สมาคมและคณะได้รายงานว่าสารตกหนักจากไข่สามารถต้าน
ไวรัส Varicella zoster ที่เป็นสาเหตุของโรคซีโรสและอีกอีกโรคฟูรูโระซ่าที่มีหลายโรคนั้น
โดยตรงก่อนที่จะเข้าสู่สุนัขวัยสกนุ้งแล้วทำให้ผลิตภัณฑ์สุนัขติดเชื้อแล้ว (Thawaranantha et al.,
1992)
รักษาด้วยสารสกัดใบพอกยอดจะกระตุ้นระดับภายใน 3 วัน และหายภายใน 7-10 วัน มีจำนวน
มากกว่ากลุ่มที่รักษาด้วยยาทั่วไปตามที่มีนัยสำคัญทางสถิติ นอกจากนี้ระดับความเจ็บป่วยลดลงเร็ว
กว่ากลุ่มยาหลอก และไม่พบผลข้างเคียงใดๆ (Sangkitporn et al., 1995)

ทองพันธุ์

ชื่อวิทยาศาสตร์ : Rhinacanthus nasutus (Linn.) Kurz
วงศ์ : Acanthaceae
ชื่อท้องถิ่น : ทองพันธุ์, สูบหมี่ไถ

นิเวศวิทยา : พืชในบริเวณที่ความชื้นสูงมาก และพบได้ในประเทศจีน, ไทย, อินเดีย, เมียนมาร์ และบางส่วนของประเทศพม่า

ภาพ 6 Rhinacanthus nasutus (Linn.) Kurz

ถิ่นด้านเชื้อไวรัส

สารสกัดจากใบทองพันธุ์ที่ทำการสกัดด้วยน้ำ และเอทานอล เมื่อนำมาทดสอบ
ถิ่นด้านไวรัส ด้วยวิธี plaque reduction assay พบว่าสามารถยับยั้งเชื้อไวรัส HSV-1 ได้
(Akaanitapichet et al., 2003)

สารสกัดสมุนไพร rhinacanthin-C และ rhinacanthin-D จากทองพันธุ์มีฤทธิ์ใน
การยับยั้ง cytomegalovirus โดยมีค่า EC₅₀ ที่กับ 21 มิลลิเมตร (Sendl et al., 1996) สาร
สกัดสมุนไพร rhinacanthin-E และ rhinacanthin-F พบว่ามีฤทธิ์ยับยั้งไวรัสหวัดใหญ่ใน
cytopathic effect assay พบว่า สารสกัดทั้งสองชนิดมีฤทธิ์ในการยับยั้งเชื้อ influenza virus type A ใน (Kerman
et al., 1997)
Sirotamarat และคณะ (2005) ได้ทำการทดสอบฤทธิ์ยับเบย์จากการสร้างแอนติเจนชนิดพิษของไวรัสตับอักเสบบี ซึ่งหลังออกมาจากเซลล์เพาะเลี้ยง PLC/PRF/5 โดยใช้สารสกัดจากสมุนไพรทองพันธุ์ โดยทำการสกัดของพืชตั้งคู่ขยายตามอัตราและนำไปให้บริสุทธิ์ยึดขึ้นตัวด้วยท่าสาร hexane พบว่าสารสกัดสมุนไพรทองพันธุ์ยึดซึ่งมีฤทธิ์ยับยั้งการสร้างแอนติเจนชนิดพิษของไวรัสตับอักเสบบี โดยมีค่า IC₅₀ 126.12 มิลิกรัม/มิลลิลิตร

สารสำคัญที่พบอยู่ในกลุ่มของสาร rhinacanthin, sesquiterpenoid, naphthoquinones, rutin
บทที่ 3
วิธีการดำเนินการวิจัย

เครื่องมือ

1. ตู้อบ (Hot air oven: BINDER, model ED115(E2), Norway)
3. เครื่องปั่นทริอัลส์ (ปั่นทริอัลส์: MSE, Germany)
4. ตู้อบเพาะเชื้อ (Incubator CO₂ 5%: Forma Scientific, USA)
5. ตู้อบเพาะเชื้อ (Incubator 37 องศาเซลเซียส: Gallenkamp Scientific, USA)
6. ตู้เคลือบสี (Lamina air flow cabinet classII: Microtech, UK)
7. เครื่องวัดความเป็นกรด-ด่าง (pH meter: Metrohm, Thailand)
8. อ่างควบคุมอุณหภูมิ (Water bath: Julabo, model TW 20, USA)
9. เครื่องชั่ง 2 ดิาน่า (Balance: METTLER-TOLEDO, model PG802-S, Switzerland)
10. เครื่องทวนผสมแบบเหล็กและเหล็กให้ความร้อน (Magnetic stirrer and hot plate: JENWAY, model 1000, UK)
11. ตู้แช่แข็ง -80 องศาเซลเซียส (Sanyo, Japan)
12. ตู้แช่แข็ง -20 องศาเซลเซียส (Chest-type Ult Freezer: Sanyo, Japan)
13. ตู้แช่ 4 องศาเซลเซียส (Sanyo, Japan)
14. เครื่องปั่นทริอัลส์ความเร็วสูง (Sanyo Harrier 18/80, Japan)
15. เครื่อง Vortex GENIE-2 (Scientific industry, USA)

สารเคมี

1. 40% Formadehyde
2. BSA (Bovine albumin serum) (Sigma, USA)
3. Crystal violet
4. Ethanol (Merck, Germany)
5. Ethylenediaminetetraacetic acid (EDTA, USA)
6. Phosphate buffer saline (PBS)
7. Tween 20 (Merck, Germany)
8. Sodium hydroxide (DMSO: Sigma, USA)
9. Hydrochloric acid (HCl: Merck, Germany)
10. Sodium chloride (NaCl: Merck, Germany)
11. Sodium phosphate, dibasic (Na₂HPO₄: Merck, Germany)
12. Potassium phosphate, monobasic (KH₂PO₄: VWR international, England)
13. Potassium chloride (KCL: Merck, Germany)
14. Ammonium chloride (NH₄Cl: Merck, Germany)
15. Sodium bicarbonate (NaHCO₃: Merck, Germany)
16. Dimethyl sulfoxide (DMSO: Sigma, USA)
17. Fetal bovine serum (PAA, Canada)

สารป้องกันภัยที่ใช้ในงานวิจัย

Antibiotic/antimycotic (PAA, Canada)

เครื่องใช้ในการทดลอง

CSFV strain ALD ได้รับความอนุเคราะห์จากสถาบันสุขภาพสัตว์แห่งชาติ

เซลล์ที่ใช้ในการทดลอง

SK-6 passage 48 ได้รับความอนุเคราะห์จากสถาบันสุขภาพสัตว์แห่งชาติ

แอนติบอดีที่ใช้

Monoclonal antibody Mab HC 301 (สถาบันสุขภาพสัตว์แห่งชาติ)
Polyclonal Rabbit Anti-Mouse Ig/HRP (Dako Cytomation)
การเตรียมสมุนไพร

สมุนไพร พลูบ้า พบกัน ทองพันธุ์ ทั้ง 3 ชนิดจาก สมุนไพรครบถ้วน 60 องศาเซลเซียส ขณะนั้นโปรตีนคงอยู่ในสมุนไพร น้ำสมุนไพรที่ บดได้ขนาดเล็ก โปรตีนคงอยู่ในสมุนไพร น้ำสมุนไпр

ภาพ 7 แผนผังการผลิตสารออกฤทธิ์ของสมุนไพร

เชลยและไวรัส

เชลยไส้สุกหู (SK-6) และไวรัส CSFV สถาน ALD (รับความสูงระดับจากฝ่าย
ไวรัสเวิร์ม สถานบูรพา ทหารสัตวแพทย์และวิทยาศาสตร์) โดยทำการวิเคราะห์สารออกฤทธิ์เชลย Earle’s minimal essential medium (MEM) (Nissui Pharma, Tokyo, Japan) 5%fetal bovine serum (FBS)
แบบ free BVD (Bovine Viral Diarrhoea) โดยเปลี่ยนเชลยที่อุณหภูมิ 37 องศาเซลเซียส ในช่วงที่มี
ความชันและ 5% CO₂โดยทำให้ระดับความเข้มข้นของไวรัสก่อนการทดลองด้วยการวิเคราะห์ (virus titration)

การตรวจหาปริมาณความเข้มข้นของเชื้อ CSFV

ใช้จากตัวอย่าง suspension โดยทำ 10-fold serial dilution เดิมลงในเซลล์ SK-6 ซึ่ง
โดยเริ่มที่มิตรของหลุมไม้ไมโครพอเดียน 96 หลุม โดยใช้ dilution 8 หรือ 4 หลุม นับไม่รวมตู้ที่ 37 องศา
เซลล์ขั้น 5% CO₂, นาน 1-2 ชั่วโมง แล้วเติมโปรตีนด้วย i x PBS จำนวน 2 ครั้ง เติมสารเปลี่ยนเซลล์
หลุมละ 100 ไมโครไลท์ น้ำเชื้อมในผู์มีความเข้มข้นของกลิ่นคาร์บอนไดออกไซด์ 5%
นานประมาณ 4-5 วัน เมื่อครบกำหนด ดูดสารเปลี่ยนเซลล์ออก แล้วเติม 1/3 PBS จำนวน 1 ครั้ง น้ำ
ไมโครพอเดียนที่ล้างแล้วกระเจิงเซลล์ด้วย PBS ซึ่งมีส่วนผสมของ 4% formaldehyde ใน 1% Tween-
20 PBS หลุมละ 100 ไมโครไลท์ นาน 15-20 นาที ล้างด้วย 0.5% PBS Tween-20 จำนวน 3 ครั้ง เติม
Porcine anti-SFV serum (HC301) (ได้รับความอนุเคราะห์จากฝ่ายไวรัสวิทยา สถาบันสุขภาพสัตว์
แห่งชาติ) โดยเจาะลงในสัดส่วนที่เท่ากับสัดส่วน 1:50 เติมลงหลุมละ 50 ไมโครไลท์ น้ำเชื้อมในผู์
ประเด็นแบ่งเจาะจำนวน 60 นาที ล้างเฉพาะด้วย PBS-Tween-20 จำนวน 3 ครั้ง เติม AEC substrate
หลุมละ 50 ไมโครไลท์ ด้วยกิวที่ลูกษึภู่มีทั้ง 20-30 นาที ล้างไมโครพอเดียนน้ำไหลผ่าน ยา
และบีบอัดคละ โดยเชื้อด้วยเชื้อไวรัสจะดีสีน้ำตาลแดง นำผลลัพธ์ไปใส่บานคำนวณความเข้มข้นของ
ไวรัสโดยวิธี Reed and Muench (1938) ต่อไป

การเพาะเลี้ยงเซลล์ SK-6

เลี้ยงเซลล์ในช่วงเลี้ยงเซลล์ขนาด 25 ตารางเซนติเมตร (T-25 Nunc) ด้วยอาหาร
เลี้ยงเซลล์ น้ำเชื้อมปีบมีชีวิตที่ 37 องศาเซลเซียส ประมาณ 3-5 วัน ทำการ subculture เซลล์ SK-6 โดย
เติมย่อยไข่ trypsin-EDTA ลงในช่วงเลี้ยงเซลล์ พักไว้ 24 ชั่วโมง เพื่อให้ trypsin-EDTA กระจาย
ทั่วพื้นผิวของเซลล์ ที่จึงไว้ประมาณ 5 นาที เคาะขาดเลี้ยงเซลล์บางๆ เพื่อให้เซลล์หลุดออกผักดิน
อาหารเลี้ยงเซลล์ลงไปในช่วงเลี้ยงเซลล์ 1 มิลลิลิตร ดูดสารละลายที่ใส่ลงใน centrifuge tube นำไป
ปั่นหรือที่ความเร็ว 1000 รอบต่อนาที เป็นระยะเวลา 10 นาที เพื่อเก็บparenchymal น้ำจำนวน
เซลล์ด้วยวิธี direct microscopic count โดยใช้ haemacytometer counting chamber ทำการคำนวณ
ปริมาณเซลล์ให้เหมาะสมสำหรับนำไปใช้ในการทดลองต่อไป
การทดสอบความเป็นพิษของสารสกัดสมุนไพรต่อเซลล์หมาเดือดจากโคของสุก (SK-6)

ขาด 100 ไมโครลิตรของเซลล์ SK-6 ไล่เท่าเทียมเซลล์ (5x10^4เซลล์/มิลลิลิตร) ผ่านวิธีการวัฎจักรการละลายสารสกัดพิษสมุนไพร (two fold dilution) โดยดำว่าทำละลายให้เป็น 8 ความเข้มข้นได้แก่ 50 25 12.50 6.25 3.13 1.57 0.79 0.40 มิลลิกรัม/มิลลิลิตร ด้วย MEM** และ Dimethyl sulfoxide (DMSO) 1% ขาด 100 ไมโครลิตร ของสารละลายสารสกัดพิษสมุนไพรที่ทำจากการเพาะเลี้ยงในแท่งและหุ้มของพลาส (plate) เลือกเซลล์แบบมี 96 หลุม โดยกลุ่มความอยู่ได้ขาด 100 ไมโครลิตร ของสารละลายเซลล์แทนสารสกัดพิษสมุนไพร นำเหยื่อเซลล์ไปปั่นที่อุณหภูมิ 37 องศาเซลเซียส ไม่คุ้มครองความชื้นและ 5% CO₂เป็นเวลา 72 ชั่วโมง ทำการคริสตัลซอลด้วย 60/40 Acetone/Methanol ทำสารละลายการเทาเซลล์ SK-6 โดยการยั้มสีเข้มสีด้วย 20 0.5% crystal violet และ Sorenson’ citrate buffer วิเคราะห์ตัวการสูดเก็บแสงโดยเครื่อง Microplate reader ที่ความยาวคลื่น 540 นาโนเมตร และเลือกความเข้มข้นของการละลายสารสกัดพิษสมุนไพรที่ไม่เป็นพิษต่อเซลล์ไว้เพื่อต่อโดยเลือกใช้ 2 ความเข้มข้น โดยความเข้มข้นนี้จะเป็นสารสกัดพิษสมุนไพรที่มีความเข้มข้นสูงที่เซลล์ยังคงยังคงชีวิต ความเข้มข้นที่สูงจะเป็นสารสกัดพิษสมุนไพรที่ความเข้มข้นต่ำและเซลล์ยังคงชีวิต

การทดลองยั้มสีเชื้อสุกเซลล์ของไวรัส CSFV

ขาด MEM** ที่มีเซลล์ SK-6 (5x10^4เซลล์/มิลลิลิตร) ไล่ให้เหยื่อเซลล์แบบมี 96 หลุมที่เตรียมไว้อุณหภูมิ 100 ไมโครลิตร ปั่นเซลล์ไว้เป็นเวลา 24 ชั่วโมง เทียบกับการทำลายสารสกัดพิษสมุนไพรด้วย MEM** โดยใช้สารสมุนไพรในความเข้มข้นที่เท่ากับ 2 ระดับความเข้มข้นเชิงไวรัสที่มีความเข้มข้นของไวรัส 10^6 TCID₅₀/มิลลิลิตร โดยทำให้อ่อนต่อการยั้มสี (ten fold dilution) เนื่องใน 8 ความเข้มข้น 10^-7 โดยใช้ MEM** แผ่นกลุ่มการทดลองซ้อนกันเป็น 3 กลุ่ม กลุ่มควบคุมเข้มชี้ว่าจะได้ 100 ไมโครลิตรของ MEM** กลุ่มควบคุมเข้มข้นเชิงไวรัสจะได้ 50 ไมโครลิตรของ MEM** และ 50ไมโครลิตรของไวรัสในแต่ละความเข้มข้นที่ได้เตรียมไว้นี้ กลุ่มทดลองจะได้ 50ไมโครลิตรของไวรัสในแต่ละความเข้มข้นละ 50 ไมโครลิตรของสารสกัดพิษสมุนไพร โดยนำไปผ่านร่วมกับก่อนเป็นเวลา 1 ชั่วโมง เมื่อครบก็กำหนดเวลาสิ้นไวรัสที่สูงกลับมวัสดุสารสกัดพิษสมุนไพรไม่หมดในเพาะเลี้ยงเซลล์ที่เตรียมไว้ นำเหยื่อเซลล์ไปปั่นในตู้ 5% CO₂ให้อุณหภูมิ 37 องศาเซลเซียสเป็นเวลา 72 ชั่วโมง ตรวจทดสอบการยั้มสีไวรัสด้วยวิธี NPLA
การทดสอบการอักย์การเปลี่ยนตัวของไวรัส CSFV

ทดสอบ MEM** ที่มีเซลล์ SK-6 (5x10⁵เซลล์/มิลลิลิตร) ลงในผลักเลี้ยงเซลล์แบบ 96 หลุมที่เตรียมไว้ด้วยมัล 100 ไมโครลิตร บ่มเซลล์ไว้เป็นเวลา 24 ชั่วโมงเชิงยางและทำลายสารภัณฑ์เชื้อไวรัส โดยใช้สารภัณฑ์เชื้อไวรัสในความเข้มข้นที่เท่ากับ 2 ระดับความเข้มข้นเชื้อไวรัส (10⁷ TCID₅₀/มิลลิลิตร) โดยทำภาระเชื้อไวรัส (ten fold dilution) เป็น 8 ความเข้มข้นของ 10⁻⁷ โดยใช้ MEM** ปั่นกลุ่มการทดลองออกเป็น 2 ชุด

ชุดที่ 1
ที่ทำการบ่มเซลล์ร่วมกับไวรัสที่สูงที่สุดไว้เป็นเวลา 6 ชั่วโมง จากนั้นจึงทำการเติมสารภัณฑ์เชื้อไวรัส โดยเปลี่ยนการทดลองออกเป็น 3 กลุ่ม ได้แก่ กลุ่มควบคุมชิงบาง ทดสอบวิทยาห้องสุกรในแต่ละความเข้มข้น 50 ไมโครอิลูมในการทดลองด้วย MEM** 50 ไมโครอิลูมกลุ่มควบคุมเชิงบาง ทดสอบ MEM** 50 ไมโครอิลูม ลงไปในผลักเลี้ยงเซลล์ที่เตรียมไว้นำไปเป็นเวลา 6 ชั่วโมงหลังจากแล้วทำทดลองทดสอบ MEM** 50 ไมโครอิลูมกลุ่มทดลอง ทดสอบไวรัสห้องสุกรในแต่ละความเข้มข้น 50 ไมโครอิลูมลงไปในผลักเลี้ยงเซลล์ที่เตรียมไว้นำไปเป็นเวลา 6 ชั่วโมงหลังจากแกงผลักเลี้ยงเซลล์ปั่นกลุ่มการทดลองฟิชชิสูมไม่ป้องกัน 50% CO₂ ที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 72 ชั่วโมง ตรวจสอบการอักย์ไวรัสด้วยวิธี NPLA

ชุดที่ 2
ที่ทำการบ่มเซลล์ร่วมกับฟิชชิสูมไม่ป้องกันไวรัสไวรัสสูมไม่ป้องกัน 4 ชั่วโมง กลุ่มควบคุมชิงบาง ทดสอบ MEM** 50 ไมโครอิลูม ลงไปในผลักเลี้ยงเซลล์ที่เตรียมไว้มันที่เป็นเวลา 4 ชั่วโมง หลังจากบ่มแล้วทำทดลองทดสอบไวรัสห้องสุกรในแต่ละความเข้มข้น 50 ไมโครอิลูมลงไปในผลักเลี้ยงเซลล์กลุ่มควบคุมเชิงบาง ทดสอบ MEM** 50 ไมโครอิลูม ลงไปในผลักเลี้ยงเซลล์ที่เตรียมไว้นำไปเป็นเวลา 4 ชั่วโมง หลังจากบ่มแล้วทดสอบ MEM** 50 ไมโครอิลูมกลุ่มทดลอง ทดสอบฟิชชิสูมไม่ป้องกัน 50% ไมโครอิลูมลงไปในผลักเลี้ยงเซลล์ที่เตรียมไว้นำไปเป็นเวลา 4 ชั่วโมง ทดสอบไวรัสห้องสุกรในแต่ละความเข้มข้นชิงบาง 50 ไมโครอิลูมลงไปในผลักเลี้ยงเซลล์ที่เตรียมไว้ในซู 5% CO₂ ที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 72 ชั่วโมง ตรวจสอบการอักย์ไวรัสด้วยวิธี NPLA
Serum neutralization peroxidase linked assay (NPLA)

เทาหวานเสียงสารและทำให้ครีมสีแดง 4% formalin 100 มิลลิลิตรออกหมุน
เปิดที่อุณหภูมิ 37 องศาเซลเซียสเป็นเวลา 15 นาที จากนั้นล้างเพลินด้วย 0.5% PBS-T 3 ครั้งด้วย monoclonal antibody (เจล 1:10) 50 มิลลิลิตร บ่มที่อุณหภูมิ 37 องศาเซลเซียสเป็นเวลา 45 นาที ทำให้ครีมสีแดง 0.5% PBS-T อีก 3 ครั้งก่อนที่จะต้ม conjugate (Anti-Mouse Ig/HRP เจล 1:250) 50 มิลลิลิตร บ่มที่อุณหภูมิ 37 องศาเซลเซียสเป็นเวลา 45 นาที ทำให้ครีมสีแดง 0.5% PBS-T อีก 3 ครั้งก่อน Substrate 100 มิลลิลิตร บ่มที่อุณหภูมิ 37 องศาเซลเซียสเป็นเวลา 15 นาที ก่อน ละลายด้วยน้ำอีก 2 ครั้ง แล้วนำไปส่งผลการติดตัวของเซลล์ต่อไป

ระยะเวลาในการทำวิจัย

1 มีนาคม 2553 – 1 มิถุนายน 2555

สถานที่ด้านวิจัย

ที่มีการติดตัวที่สูงและผลิตภัณฑ์ในประเทศที่สำคัญและผลิตภัณฑ์ที่มี
สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย
ที่มีการติดตัวไม่ร่วมกัน สถาบันนักวิทยาศาสตร์แห่งชาติ
ที่มีการติดตัวในโลกวิทยาศาสตร์ และ ที่มีการติดตัวจุลชีววิทยา สาขา
เทคโนโลยีวิทยาศาสตร์และวิศวกรรมศาสตร์ มหาวิทยาลัยเมืองอุทัย
บทที่ 4
ผลการวิจัยและวิจารณ์ผลการวิจัย

ผลการวิจัย

การสะท้อนผิว

การศึกษาชนิดของตัวทำละลายที่ใช้ในการสะท้อนผิวเพื่อให้ทราบถึงร้อยละของผลลิตที่ได้จากการสะท้อนผิวของตัวทำละลายจากการทดลองนำผิวสมุนไพรทั้ง 3 ชนิด คือ พุดาบาน พุดาบาน และทองพันธุ์ มาแสดงโดยใช้วิธีการ percolation ซึ่งเป็นวิธีการสกัดสารสำคัญแบบเต็มเนื้อง ด้วยตัวทำละลายขนาดผสม พบว่าร้อยละของผลลิตที่ได้จากการสะท้อนผิวผลิตภัณฑ์ 95%, 70%, 50% และน้ำ ของสารสกัดพุดาบาน ได้คิดเป็นไปได้ 21.96, 19.40, 5.80 และ 8.75 ตามลำดับ ของสารสกัดทองพันธุ์ที่ได้คิดเป็นไปได้ 14.42, 9.28, 4.32 และ 4.71 ตามลำดับ และของสารสกัดพุดาบานที่ได้คิดเป็นไปได้ 4.76, 11.47, 15.22 และ 0.70 อาจเห็นได้ว่าสารสกัดพุดาบานที่ได้จากการสะท้อนผิวผลิตภัณฑ์ 50% มีค่าร้อยละของผลลิตสูงสุด (ตาราง 2)

ตาราง 2 ร้อยละของผลลิตของสารสกัดผิว ที่สกัดด้วยยาผสมและน้ำ

<table>
<thead>
<tr>
<th>ชนิดพืช</th>
<th>ตัวทำละลาย</th>
<th>น้ำหนักสูตร</th>
<th>ผลลิต (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>พุดาบาน</td>
<td>95% Eth</td>
<td>58.00</td>
<td>5.80</td>
</tr>
<tr>
<td></td>
<td>70% Eth</td>
<td>193.98</td>
<td>19.40</td>
</tr>
<tr>
<td></td>
<td>50% Eth</td>
<td>219.55</td>
<td>21.96</td>
</tr>
<tr>
<td></td>
<td>น้ำ</td>
<td>87.50</td>
<td>8.75</td>
</tr>
<tr>
<td>ทองพันธุ์</td>
<td>95% Eth</td>
<td>43.16</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td>70% Eth</td>
<td>92.77</td>
<td>9.28</td>
</tr>
<tr>
<td></td>
<td>50% Eth</td>
<td>144.16</td>
<td>14.42</td>
</tr>
<tr>
<td></td>
<td>น้ำ</td>
<td>47.10</td>
<td>4.71</td>
</tr>
<tr>
<td>พุดาบาน</td>
<td>95% Eth</td>
<td>47.62</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td>70% Eth</td>
<td>114.65</td>
<td>11.47</td>
</tr>
<tr>
<td></td>
<td>50% Eth</td>
<td>152.23</td>
<td>15.22</td>
</tr>
<tr>
<td></td>
<td>น้ำ</td>
<td>7.07</td>
<td>0.70</td>
</tr>
</tbody>
</table>

หมายเหตุ 95% Eth: 95% เขทานอล, 70% Eth: 70% เขทานอล, 50% Eth: 50% เขทานอล
การทดสอบความเป็นพื้นพื้นของสารกลีบมูลนิ周岁ต่อเซลล์เพาะเลี้ยงจากโอซิโคลสีสุกร (SK-6)

ในการทดสอบความเป็นพื้นพื้นของสารกลีบมูลนิ周岁ต่อเซลล์เพาะเลี้ยงจากโอซิโคลสีสุกร (SK-6) โดยใช้เยื่อเยื่อ 95%, 70%, 50% และน้ำเป็นตัวท้าละลาย จะทำการเลือกสารกลีบ 2 ความเข้มข้นจากตัวท้าละลายดังกล่าวไปสีภายในขั้นตอนต่อไป โดยความเข้มข้นที่ 1 คือสารกลีบมูลนิ周岁ต่อเซลล์เพาะเลี้ยงจากโอซิโคลสีสุกรที่มีความเข้มข้นที่สูงที่สุด ที่ทำให้เซลล์มีการรอชีวิตมากกว่าร้อยละหนึ่งของเซลล์ทั้งหมด ส่วนความเข้มข้นที่ 2 คือสารกลีบมูลนิ周岁ต่อเซลล์เพาะเลี้ยงที่มีความเข้มข้นรองลงมา และมีการรอชีวิตของเซลล์มากกว่าความเข้มข้นที่ 1

จากภาพทดสอบความเป็นพื้นพื้นของสารกลีบมูลนิ周岁ต่อเซลล์เพาะเลี้ยงจากโอซิโคลสีสุกร พบว่า สารกลีบมูลนิ周岁ต่อเซลล์เพาะเลี้ยงจากโอซิโคลสีสุกรที่มีความเข้มข้น 0.4, 0.80, 1.57 และ 1.57 มีการรอชีวิตของเซลล์มากที่สุดคือ ร้อยละ 59.45, 61.54, 91.03, และ 73.04 ตามลำดับ และความเข้มข้นที่ดั่งกล่าวถึง 0.10, 0.20, 0.80 และ 0.80 มีการรอชีวิตของเซลล์ที่ร้อยละ 63.31, 75.92, 80.00 และ 71.71 ตามลำดับ ซึ่งความเข้มข้นที่มากที่สุดและความเข้มข้นที่รองลงมาทั้งหมดแสดงถึงความเข้มข้นที่ 1 และ 2 ที่จะนำไปใช้ศึกษาต่อไป

ตาราง 3 การรอชีวิตของเซลล์ SK-6 ที่ได้รับสารกลีบมูลนิ周岁ต่อเซลล์เพาะเลี้ยงจากโอซิโคลสีสุกร 95%, 70%, 50% และน้ำ ที่ความเข้มข้นต่างๆ

<table>
<thead>
<tr>
<th>ความเข้มข้น (มิลลิกรัม/มิลลิลิตร)</th>
<th>ภาวะรอชีวิตของเซลล์ (ร้อยละ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>เยื่อเยื่อ 50%</td>
</tr>
<tr>
<td>12.5</td>
<td>11.28</td>
</tr>
<tr>
<td>6.25</td>
<td>10.73</td>
</tr>
<tr>
<td>3.13</td>
<td>9.66</td>
</tr>
<tr>
<td>1.57</td>
<td>9.10</td>
</tr>
<tr>
<td>0.8</td>
<td>41.47</td>
</tr>
<tr>
<td>0.4</td>
<td>59.45</td>
</tr>
<tr>
<td>0.2</td>
<td>67.64</td>
</tr>
<tr>
<td>0.1</td>
<td>63.31</td>
</tr>
</tbody>
</table>
ภาพ 8 ตัวการตอบต่อความเข้มข้นของตัวทำลาย (ไมโครกรัม/มิลลิลิตร) ที่ใช้ในการสกัดสมุนไพรพุทราวิในการทดสอบความเป็นพิษต่องาฬพลอย SK-6 ที่ถูกย้อมด้วย crystal violet เปรียบเทียบกับกลุ่มควบคุม

หมายเหตุ H2O: น้ำ, Eth50: เทานอล50%, Eth70: เทานอล70%, Eth90: เทานอล90%, control: กลุ่มควบคุม

จากการทดสอบความเป็นพิษของสารสกัดพุทราวิพบว่า สารสกัดเกณฑ์ 95%, 70%, 50% และสารสกัดน้ำของพุทราวิพบว่าที่ความเข้มข้น 6.25, 1.57, 6.25 และ 6.25 (ไมโครกรัม/มิลลิลิตร) มีการตอบต่อขีดต้านตระกูลที่สูงสุด รอยละ 93.42, 85.20, 69.45 และ 83.13 ตามลำดับ และความเข้มข้นที่ต่ำที่สุด 0.80, 0.40, 0.40 และ 0.80 (ไมโครกรัม/มิลลิลิตร) มีการตอบต่อขีดต้านตระกูลเซลล์ตีคริสต์ รอยละ 97.66, 89.97, 94.47 และ 88.84 ตามลำดับ ซึ่งความเข้มข้นที่มากที่สุด และความเข้มข้นที่รองลงมาที่ 1 และ 2 ที่จะนำไปใช้ในภายต่อไป
ตาราง 4 ความระดับชีวิตของเซลล์ SK-6 ที่ได้รับสารภัณฑ์มนุษย์โดยคั่นตัวจากที่ละลายเลือดออก 95%, 70%, 50% และน้ำ ที่ความเข้มข้นต่างๆ

<table>
<thead>
<tr>
<th>ความเข้มข้น (มิลลิกรัม/มิลลิลิตร)</th>
<th>การระดับชีวิตของเซลล์ (ร้อยละ)</th>
<th>เลือดออก 50%</th>
<th>เลือดออก 70%</th>
<th>เลือดออก 90%</th>
<th>น้ำ</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
<td>10.03</td>
<td>15.43</td>
<td>13.00</td>
<td>9.98</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>12.00</td>
<td>13.78</td>
<td>10.90</td>
<td>8.57</td>
</tr>
<tr>
<td>12.5</td>
<td></td>
<td>26.83</td>
<td>11.97</td>
<td>11.91</td>
<td>25.07</td>
</tr>
<tr>
<td>6.25</td>
<td></td>
<td>93.42</td>
<td>37.48</td>
<td>69.45</td>
<td>83.13</td>
</tr>
<tr>
<td>3.13</td>
<td></td>
<td>94.51</td>
<td>51.47</td>
<td>89.94</td>
<td>85.33</td>
</tr>
<tr>
<td>1.57</td>
<td></td>
<td>90.83</td>
<td>85.20</td>
<td>88.63</td>
<td>77.57</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>97.66</td>
<td>89.15</td>
<td>93.18</td>
<td>88.84</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>89.81</td>
<td>89.97</td>
<td>94.47</td>
<td>87.29</td>
</tr>
</tbody>
</table>
ภาพ 9 ตัวรากรอบต่อความเข้มข้นของตัวทำละลาย (ไนโตรเจน/มิลลิลิตร) ที่ใช้ในการสังกัดกลุ่มคริสตัลวิโอเลต ใยโพแทสเซียมในภูมิทัศน์ความเป็นพิษต่อเซลล์เพาะเลี้ยงไดสุก SK-6 ที่ถูกย้อมด้วย crystal violetเปรียบเทียบกับกลุ่มควบคุม

หมายเหตุ: H2O: น้ำ, Eth 50: เท่าทอนอล 50%, Eth 70: เท่าทอนอล 70%, Eth 95: เท่าทอนอล 95%, control: กลุ่มควบคุม

จากการทดลองความเป็นพิษของสารสังกัดต่อพืชพบว่า สารสังกัดเท่าทอนอล 95%, 70%, 50% และสารสังกัดน้ำของห้องพืชพบว่า ที่ความเข้มข้น 0.40, 0.80, 1.57 และ 1.57 (มิลลิกรัม/มิลลิลิตร) มีการ堕ใจวิคติของเซลล์มากที่สุดคือ ร้อยละ 72.28, 98.67, 90.43 และ 86.68 ตามลำดับ และความเข้มข้นที่ต่ำสุดคือ 0.20, 0.20, 0.40 และ 0.40 (มิลลิกรัม/มิลลิลิตร) มีการลดจิตวิสัยของเซลล์คือ ร้อยละ 83.24, 96.97, 91.80 และ 82.97 ตามลำดับ ซึ่งความเข้มข้นที่มากที่สุด และความเข้มข้นที่รองลงมาคือ ถูกถือเป็นความเข้มข้นที่ 1 และ 2 ที่จะนำไปใช้กีมาต่อไป
ตาราง 5 การระดับชีวิตของเซลล์ SK-6 ที่ได้รับสารสกัดสมุนไพรของพื้นที่ด้านดีกั่นทำละลายอาหาร

<table>
<thead>
<tr>
<th>ความเข้มข้น (มิลลิกรัม/มิลลิลิตร)</th>
<th>การระดับชีวิตของเซลล์ (ร้อยละ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>เท่านอต 50%</td>
</tr>
<tr>
<td>12.5</td>
<td>8.53</td>
</tr>
<tr>
<td>6.25</td>
<td>11.63</td>
</tr>
<tr>
<td>3.13</td>
<td>21.06</td>
</tr>
<tr>
<td>1.57</td>
<td>38.52</td>
</tr>
<tr>
<td>0.8</td>
<td>55.44</td>
</tr>
<tr>
<td>0.4</td>
<td>72.28</td>
</tr>
<tr>
<td>0.2</td>
<td>83.24</td>
</tr>
<tr>
<td>0.1</td>
<td>89.16</td>
</tr>
</tbody>
</table>
ภาพ 10 อัตราการบรรลุค่าความเข้มข้นของคิวทาแรสต เครื่องมือ (ไมโครกรัม/มิลลิลิตร) ที่ใช้ในการสกัดสารสกัดใยใหลักจากผักชีช้าง ในการทดสอบความเป็นพิษต่อเซลล์พืชเสิร์จไคลสกุก SK-6 ที่ถูกบีบคั่นด้วยสาร crystal violet ปรับปัจจัยภายนอก เพื่อสร้างการตอบสนองกลุ่มควบคุม

ที่สำคัญ H2O: น้ำกลั่น, Eth 50: เขทานอล 50%, Eth 70: เขทานอล 70%, Eth 90: เขทานอล 90%, control: กลุ่มควบคุม
ตาราง 6 ฤทธิ์ด้านไวรัสของสารกักยับยั้งไวรัส CSFV พยุงสาย ทองพันชื่น (titer ไวรัสที่含有ที่ 2x10^8 TCID₅₀/มิลลิลิตร)

<table>
<thead>
<tr>
<th>สารกักยับยั้งไวรัส</th>
<th>กลุ่มการทดลอง</th>
<th>ค่าความเข้มข้นที่ 1 (TCID₅₀/มิลลิลิตร)</th>
<th>ค่าความเข้มข้นที่ 2 (TCID₅₀/มิลลิลิตร)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂O</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>พยุงสาย</td>
<td>1</td>
<td>2x10^8.44</td>
<td>2x10^8.40</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2x10^8.30</td>
<td>2x10^8.30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2x10^8.26</td>
<td>2x10^8.26</td>
</tr>
<tr>
<td>พยุงสาย</td>
<td>1</td>
<td>2x10^8.79</td>
<td>2x10^8.79</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2x10^8.60</td>
<td>2x10^8.60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2x10^8.46</td>
<td>2x10^8.46</td>
</tr>
<tr>
<td>ทองพันชื่น</td>
<td>1</td>
<td>2x10^8.30</td>
<td>2x10^8.30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2x10^8.26</td>
<td>2x10^8.26</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2x10^8.22</td>
<td>2x10^8.22</td>
</tr>
</tbody>
</table>

หมายเหตุ

กลุ่มการทดลองที่ 1 คือ ทดลองการยับยั้งการเจาะสูสัตว์ของไวรัส CSFV (บั้มไวรัสกักยับยั้งไวรัสเป็นเวลา 1 ชั่วโมง ก่อนทดสอบเจาะสูสัตว์)
กลุ่มการทดลองที่ 2 คือ ทดลองการยับยั้งการเจาะสัตว์ของไวรัส CSFV ขั้นที่ 1 (บั้มเด็กกับไวรัสเป็นเวลา 6 ชั่วโมง ก่อนทดสอบกักยับยั้ง)
กลุ่มการทดลองที่ 3 คือ ทดลองการยับยั้งการเจาะสัตว์ของไวรัส CSFV ขั้นที่ 2 (บั้มเด็กกับไวรัสก่อนเป็นเวลา 4 ชั่วโมง ก่อนทดสอบไวรัส)
จากการศึกษาดุษฎีบัณฑิตไวรัสของสารสนเทศนิ้วไฟฟ้าพุกพูน และทองพัฒนา โดยการค้นวิวัฒนาค่า TCID50 ที่เป็นค่าที่แสดงถึงความเข้มข้นของไวรัส ซึ่งมีถึงกับความเข้มข้นสูงสุดที่พบไวรัสเพิ่มจำนวนได้ร้อยละ 50ของจำนวนเซลล์เพาะเลี้ยงที่ได้รับชิ้นไวรัสเข้าไป โดยการศึกษานี้แบ่งออกเป็น 2 ส่วนคือ 1. การนำเข้าจุลินทรีย์สุ่มเข้าไวรัส CSFV 2. การนำเข้าจุลินทรีย์สุ่มเข้าไวรัส CSFV โดยแบ่งอย่างเช่น 2 ชุดการทดลองดังนี้ 1. ชุดการทดลองที่ 1 แบ่งฉีดไวรัส CSFV 6 กว่า 1 ชั่วโมงเพื่อให้เซลล์ดิบเข้าไวรัส ชุดการทดลองที่ 2 แบ่งฉีดไวรัส CSFV รวมกับสารสนเทศนิ้วไฟฟ้าเพื่อให้เซลล์เกิดการสกัดสิ่งมีชีวิตได้รับมันไวรัสในเวลา 1 ชั่วโมง

ในการศึกษาการย่อยการแบ่งตัวของไวรัส CSFV ด้วยสมุดไฟฟ้าพุกพูน และทองพัฒนา ซึ่งมีความเข้มข้นสูงสุดในการย่อยการเกี่ยวข้องในไวรัสคือ สมุดไฟฟ้าพุกพูน ที่ทำให้การสกัดด้วยน้ำ 1.57 มิลลิลิตร/มิลลิลิตร (ความเข้มข้นที่ 1) โดยมีค่า TCID50 ที่ 2x10^{4.24} TCID50 มีผลต่อการพยากรณ์ที่สุดในการย่อยการเกี่ยวข้องไวรัสไม่ได้เข้าสู่เซลล์ รองลงไปคือ พยายามที่สกัดด้วยน้ำ 95%, 70%, และ 50% โดยใช้วิธีการเกี่ยวข้องน้ำ 6.25 มิลลิลิตร/มิลลิลิตร ที่สุดของเซลล์ โดยมีค่า TCID50 ที่ 2x10^{4.48} TCID50 มีผลต่อการพยากรณ์ที่สุดในการสกัดด้วยน้ำ 90%, 75%, และ 50% โดยใช้วิธีการเกี่ยวข้องน้ำ 6.25 มิลลิลิตร/มิลลิลิตร ที่สุดของเซลล์ โดยมีค่า TCID50 ที่ 2x10^{4.75} TCID50 มีผลต่อการพยากรณ์ที่สุดในการสกัดด้วยน้ำ 90%, 75%, และ 50% โดยใช้วิธีการเกี่ยวข้องน้ำ 6.25 มิลลิลิตร/มิลลิลิตร ที่สุดของเซลล์ โดยมีค่า TCID50 ที่ 2x10^{4.80} TCID50 มีผลต่อการพยากรณ์ที่สุดในการสกัดด้วยน้ำ 90%, 75%, และ 50% โดยใช้วิธีการเกี่ยวข้องน้ำ 6.25 มิลลิลิตร/มิลลิลิตร ที่สุดของเซลล์ โดยมีค่า TCID50 ที่ 2x10^{4.48} TCID50 มีผลต่อการพยากรณ์ที่สุดของเซลล์

ในการศึกษาการย้อมการแบ่งตัวของไวรัส CSFV โดยทำการปั้นย้อมรวมกับเข็ม ไวรัสเป็นเวลา 6 ชั่วโมง เพื่อให้เซลล์ดิบเข้าไวรัสและย้อมสมุดไฟฟ้าเพื่อย้อมการแบ่งตัวของไวรัส สมุดไฟฟ้าพุกพูนที่มีประสิทธิภาพมากที่สุดในการย้อมการแบ่งตัวของไวรัสหลังจากที่เซลล์ได้รับชิ้นไวรัส ศูนย์สารสนเทศนิ้วไฟฟ้าที่สกัดจากออโตเมตอล 95% ที่ความเข้มข้น 6.25 มิลลิลิตร/มิลลิลิตร ที่สุดของเซลล์ ซึ่งมีค่า TCID50 ที่ 2x10^{4.48} TCID50 มีผลต่อการพยากรณ์ที่สุดของเซลล์

ในการศึกษาการย้อมการแบ่งตัวของไวรัส CSFV โดยทำการปั้นย้อมรวมกับเข็ม ไวรัสเป็นเวลา 4 ชั่วโมง เพื่อให้เซลล์ได้รับชิ้นสมุดไฟฟ้าในเวลา 1 ชั่วโมง การย้อมเข็มไวรัสไปในเซลล์เช่นเดียวกับ สารสนเทศนิ้วไฟฟ้าที่มีประสิทธิภาพมากที่สุดในการย้อมการแบ่งตัวของไวรัสคือ สารสนเทศนิ้วไฟฟ้าที่สกัดจากออโตเมตอล 95% โดยใช้วิธีการเกี่ยวข้องน้ำ 6.25 มิลลิลิตร/มิลลิลิตร (ความเข้มข้นที่ 1) และมีค่า TCID50 ที่ 2x10^{4.75} TCID50 มีผลต่อการพยากรณ์ที่สุดของเซลล์ สารสนเทศนิ้วไฟฟ้าที่สกัดจากออโตเมตอล 95% และสารสนเทศนิ้วไฟฟ้าที่สกัดจากออโตเมตอล 50% โดยมีค่าความเข้มข้น 1.57 และ 6.25 มิลลิลิตร/มิลลิลิตร ตามลำดับ โดยมีค่า
TCID₅₀ ท่ากับ 2x10^{7.5} TCID₅₀/มลลิตร แล้วสูญไปพร้อมไพรีที่มีประสิทธิภาพหน่วยที่สุดในการยับยั้งไวรัส หรือเป็นไปได้ที่อาจไม่มีภูมิคุ้มกันในกรณีของการยับยั้งไวรัส CSFV ที่พบในพื้นที่ Section 11
ภาพ 11 ฤทธิ์ด้านไวรัสของสารสกัดสมุนไพรพยุงขี้ ทองพันธุ์ (titer ไวรัสเร้มีค่าที่ 2x10^-35 TCID₅₀/มิลลิลิตร)

หมายเหตุ

(1) คือค่าความเข้มข้นที่ 1
(2) คือค่าความเข้มข้นที่ 2

1 คือกลุ่มการทดลองที่ 1 คือทดลองยับยั้งการเจริญของไวรัส CSFV (บมจ. ไวรัสกับสารสกัดสมุนไพรพยุงขี้ที่สกัดด้วยท่ากลางต่างๆ ที่ความเข้มข้นที่ 1 และ 2 เป็นเวลา 1 ชั่วโมง กลุ่มหยดของสุนัข)

2 คือกลุ่มการทดลองที่ 2 คือทดลองยับยั้งการเจริญของไวรัส CSFV ขั้นที่ 1 (บมจ. สกัดกับไวรัสเป็นเวลา 6 ชั่วโมง กลุ่มหยดสารสกัดสมุนไพรพยุงขี้ที่สกัดด้วยต่างๆ ที่ความเข้มข้นที่ 1 และ 2)

3 คือกลุ่มการทดลองที่ 3 คือทดลองยับยั้งการเจริญของไวรัส CSFV ขั้นที่ 2 (บมจ. สกัดกับสารสกัดสมุนไพรพยุงขี้ที่สกัดด้วยต่างๆ ที่ความเข้มข้นที่ 1 และ 2 เป็นเวลา 4 ชั่วโมง กลุ่มหยดไวรัส)

4 คือกลุ่มการทดลองที่ 1 คือทดลองยับยั้งการเจริญของไวรัส CSFV (บมจ. ไวรัสกับสารสกัดสมุนไพรพยุงขี้ที่สกัดด้วยต่างๆ ที่ความเข้มข้นที่ 1 และ 2 เป็นเวลา 1 ชั่วโมง กลุ่มหยดของสุนัข)
5 คือ กลุ่มการทดลองที่ 2 คือ ทดสอบการยับยั้งการแพร่ตัวของไวรัส CSEF ชุดที่ 1 และ 2
(นำเซลล์กับไวรัสเป็นเวลา 6 ชั่วโมง 3 ก่อนทดสอบสารกักสมนไพรพญายม
ที่สั่งให้คัดค้านทำละลายต่างๆ ที่ความเข้มข้นที่ 1 และ 2)
6 คือ กลุ่มการทดลองที่ 3 คือ ทดสอบการยับยั้งการแพร่ตัวของไวรัส CSEF ชุดที่ 2
(นำเซลล์กับสารกักสมนไพรพญายมที่สั่งให้คัดค้านทำละลายต่างๆ ที่ความ
เข้มข้นที่ 1 และ 2 ก่อนเป็นเวลา 4 ชั่วโมง ก่อนทดลองไวรัส)
7 คือ กลุ่มการทดลองที่ 1 คือ ทดสอบยับยั้งการเข้าสู่เซลล์ของไวรัส CSEF (นำ
ไวรัสกับสารกักสมนไพรพญายมพ่นชิ้นที่สั่งให้คัดค้านทำละลายต่างๆ ที่ความ
เข้มข้นที่ 1 และ 2 เป็นเวลา 1 ชั่วโมง ก่อนทดลองเข้าสู่เซลล์)
8 คือ กลุ่มการทดลองที่ 2 คือ ทดสอบการยับยั้งการแพร่ตัวของไวรัส CSEF ชุดที่ 1
(นำเซลล์กับไวรัสเป็นเวลา 6 ชั่วโมง 3 ก่อนทดสอบสารกักสมนไพรพญายมที่สั่งให้คัดค้านทำละลายต่างๆ ที่ความเข้มข้นที่ 1 และ 2)
9 คือ กลุ่มการทดลองที่ 3 คือ ทดสอบการยับยั้งการแพร่ตัวของไวรัส CSEF ชุดที่ 2
(นำเซลล์กับสารกักสมนไพรพญายมพ่นชิ้นที่สั่งให้คัดค้านทำละลายต่างๆ ที่ความ
เข้มข้นที่ 1 และ 2 ก่อนเป็นเวลา 4 ชั่วโมง ก่อนทดลองไวรัส)
ภาพ 12 ฤทธิ์ในการยับยั้งเชื้อเซลล์ของไวรัส CSFV ด้วยสารสำคัญเนื้อฟักตุ้มคุ้มด้วยเท่าที่ละแท่งๆ ที่ระดับความเข็งขัน 10⁻³
หมายเหตุ ปั๊มน้ำมัน CSFV กับสารสำคัญเนื้อฟักตุ้มเนื้อฟักตุ้มเป็นเวลา 1 ชั่วโมง ต้นหน่วยเข็งขันเชื่อม
หมายเหตุ A. Positive control ที่ระดับความเข็งขัน 10⁻³
B. สารสำคัญเนื้อฟักตุ้มที่ระดับความเข็งขัน 10⁻³ ที่ระดับความเข็งขัน 50% ที่ระดับความเข็งขัน 2 ที่ระดับความเข็งขัน 10⁻³
C. สารสำคัญเนื้อฟักตุ้มที่ระดับความเข็งขัน 10⁻³ ที่ระดับความเข็งขัน 50% ที่ระดับความเข็งขัน 70% ที่ระดับความเข็งขัน 1 ที่ระดับความเข็งขัน 10⁻³
D. สารสำคัญเนื้อฟักตุ้มที่ระดับความเข็งขัน 10⁻³ ที่ระดับความเข็งขัน 70% ที่ระดับความเข็งขัน 2 ที่ระดับความเข็งขัน 10⁻³
E. สารสำคัญเนื้อฟักตุ้มที่ระดับความเข็งขัน 10⁻³ ที่ระดับความเข็งขัน 70% ที่ระดับความเข็งขัน 1 ที่ระดับความเข็งขัน 10⁻³
F. สารสกัดสมุนไพรถูกการที่ผลด้วยอากาศลด 95% ที่ความเข้มข้นที่ 2 ที่ระดับความ เจือจาง 10⁻³

G. สารสกัดสมุนไพรถูกการที่ผลด้วยอากาศลด 95% ที่ความเข้มข้นที่ 1 ที่ระดับความ เจือจาง 10⁻³

H. สารสกัดสมุนไพรถูกการที่ผลด้วยน้ำที่ความเข้มข้นที่ 2 ที่ระดับความเจือจาง 10⁻³

I. สารสกัดสมุนไพรถูกการที่ผลด้วยน้ำที่ความเข้มข้นที่ 1 ที่ระดับความเจือจาง 10⁻³
ภาพ 13 ฤทธิ์ในการยับยั้งการแบ่งตัวของไวรัส CSFV ด้วยสารกักสมบูรณ์ไฟฟอลูคีคัวด้วงก้า และถ่านต่างๆ ที่ระดับความเข้มข้นจาก 10^{-3} (บัลแอสคลอสก์ไวรัส CSFV เป็นเวลา 6 ชั่วโมง ก่อน หยุดการกักสมบูรณ์ไฟฟอลูคีค)

หมายเหตุ A. Positive control ที่ระดับความเข้มข้น 10^{-3}
B. สารกักสมบูรณ์ไฟฟอลูคีคที่กำกับฆ่าเอาตอนละ 50% ที่ความเข้มข้นที่ 2 ที่ระดับความเข้มข้น 10^{-3}
C. สารกักสมบูรณ์ไฟฟอลูคีคที่กำกับฆ่าเอาตอนละ 50% ที่ความเข้มข้นที่ 1 ที่ระดับความเข้มข้น 10^{-3}
D. สารกักสมบูรณ์ไฟฟอลูคีคที่กำกับฆ่าเอาตอนละ 70% ที่ความเข้มข้นที่ 2 ที่ระดับความเข้มข้น 10^{-3}
E. สารกักสมบูรณ์ไฟฟอลูคีคที่กำกับฆ่าเอาตอนละ 70% ที่ความเข้มข้นที่ 1 ที่ระดับความเข้มข้น 10^{-3}
F. สารสกัดสมุนไพรพุทราที่สกัดด้วยอบทานอล 95% ที่ความเข้มข้นที่ 2 ที่ระดับความ
เสี่ยงทาง 10^{-3}

G. สารสกัดสมุนไพรพุทราที่สกัดด้วยอบทานอล 95% ที่ความเข้มข้นที่ 1 ที่ระดับความ
เสี่ยงทาง 10^{-3}

H. สารสกัดสมุนไพรพุทราที่สกัดด้วยน้ำที่ความเข้มข้นที่ 2 ที่ระดับความเสี่ยงทาง 10^{-3}

I. สารสกัดสมุนไพรพุทราที่สกัดด้วยน้ำที่ความเข้มข้นที่ 1 ที่ระดับความเสี่ยงทาง 10^{-3}
ภาพ 14 ลูกเล่นในการย้อมสีกระดาษของไวรัส CSFV ด้วยสารสกัดสมุนไพรพฤษภาคด้วยตัวที่ 4 และอย่างๆ ที่ระดับความเข้มข้น 10³ (บล็อก และสารสกัดสมุนไพรพฤษภาคเป็นเวลา 4 ชั่วโมง ก่อนทดสอบไวรัส CSFV)

หมายเหตุ A. Positive control ที่ระดับความเข้มข้น 10³
B. สารสกัดสมุนไพรพฤษภาคที่สกัดด้วยเอทานอล 50% ที่ความเข้มข้นที่ 2 ที่ระดับความเข้มข้น 10³
C. สารสกัดสมุนไพรพฤษภาคที่สกัดด้วยเอทานอล 50% ที่ความเข้มข้นที่ 1 ที่ระดับความเข้มข้น 10³
D. สารสกัดสมุนไพรพฤษภาคที่สกัดด้วยเอทานอล 70% ที่ความเข้มข้นที่ 2 ที่ระดับความเข้มข้น 10³
E. สารสกัดสมุนไพรพฤษภาคที่สกัดด้วยเอทานอล 70% ที่ความเข้มข้นที่ 1 ที่ระดับความเข้มข้น 10³
F. สารสนับสนุนให้พฤกษะการที่กักดั้งเอาทานยอด 95% ที่ความแข็งขันที่ 2 ที่ระดับความเจือจาง 10^3

G. สารสนับสนุนให้พฤกษะการที่กักดั้งเอาทานยอด 95% ที่ความแข็งขันที่ 1 ที่ระดับความเจือจาง 10^3

H. สารสนับสนุนให้พฤกษะการที่กักดั้งเอาทนที่ความแข็งขันที่ 2 ที่ระดับความเจือจาง 10^3

I. สารสนับสนุนให้พฤกษะการที่กักดั้งเอาทนที่ความแข็งขันที่ 1 ที่ระดับความเจือจาง 10^3
ภาพ 15 ตัวอย่างการขยับเกี่ยวสุ่มเซลล์ของไวรัส CSFV ด้วยสารกั้นสนูนไวรัสด้วยตัวยาผู้ผลิตต่างๆ ที่ระดับความเข้มข้นจาก 10⁻³ (ผังไวรัส CSFV กับสารกั้นสนูนไวรัสเป็นเวลา 1 ชม. ตามหัวข้อเข้าสู่เซลล์)

หมายเหตุ A. Positive control ที่ระดับความเข้มข้น 10⁻³

B. สารกั้นสนูนไวรัสด้วยตัวยาที่ระดับความเข้มข้น 50% ที่ระดับความเข้มข้นที่ 2 ที่ระดับความเข้มข้น 10⁻³

C. สารกั้นสนูนไวรัสด้วยตัวยาที่ระดับความเข้มข้น 50% ที่ระดับความเข้มข้นที่ 1 ที่ระดับความเข้มข้น 10⁻³

D. สารกั้นสนูนไวรัสด้วยตัวยาที่ระดับความเข้มข้น 70% ที่ระดับความเข้มข้นที่ 2 ที่ระดับความเข้มข้น 10⁻³

E. สารกั้นสนูนไวรัสด้วยตัวยาที่ระดับความเข้มข้น 70% ที่ระดับความเข้มข้นที่ 1 ที่ระดับความเข้มข้น 10⁻³
F. สารสกัดสมุนไพรพุลกาที่สกัดด้วยออกซิเจน 95% ที่ความเข้มข้นที่ 2 ที่ระดับความ
เสี่ยงจ่ำง 10^3

G. สารสกัดสมุนไพรพุลกาที่สกัดด้วยออกซิเจน 95% ที่ความเข้มข้นที่ 1 ที่ระดับความ
เสี่ยงจ่ำง 10^3

H. สารสกัดสมุนไพรพุลกาที่สกัดด้วยนำที่ความเข้มข้นที่ 2 ที่ระดับความเสี่ยงจ่ำง 10^3

I. สารสกัดสมุนไพรพุลกาที่สกัดด้วยนำที่ความเข้มข้นที่ 1 ที่ระดับความเสี่ยงจ่ำง 10^3
ภาพ 16 ถูกจัดในการอธิบายการแบ่งตัวของไวรัส CSFV ด้วยสารภัสดัมบุน้ำลายของคลายดีได้ และอาจต่าง ๆ ที่ระดับความเข็งขัน 10^3 (ปะซอลกับไวรัส CSFV เป็นเวลา 6 ชม. ก่อน ทดสอบสารภัสดัมบุน้ำลาย)

หมายเหตุ A. Positive control ที่ระดับความเข็งขัน 10^3
B. สารภัสดัมบุน้ำลายที่เกิดสิ่งแวดล้อมนอก 50% ที่ความเข็งขันที่ 2 ที่ระดับความ เข็งขัน 10^3
C. สารภัสดัมบุน้ำลายที่เกิดสิ่งแวดล้อมนอกจาก 50% ที่ความเข็งขันที่ 1 ที่ระดับความ เข็งขัน 10^3
D. สารภัสดัมบุน้ำลายที่เกิดสิ่งแวดล้อมนอก 70% ที่ความเข็งขันที่ 2 ที่ระดับความ เข็งขัน 10^3
E. สารภัสดัมบุน้ำลายที่เกิดสิ่งแวดล้อมนอก 70% ที่ความเข็งขันที่ 1 ที่ระดับความ เข็งขัน 10^3
F. สารสกัดสมุนไพรพุด้าวที่สกัดด้วยฮตพลvalu 95% ที่ความเข้มข้นที่ 2 ที่ระดับความเข็งขัน 10^{-3}

G. สารสกัดสมุนไพรพุด้าวที่สกัดด้วยฮตพลvalu 95% ที่ความเข้มข้นที่ 1 ที่ระดับความเข็งขัน 10^{-3}

H. สารสกัดสมุนไพรพุด้าวที่สกัดด้วยน้ำที่ความเข้มข้นที่ 2 ที่ระดับความเข็งขัน 10^{-3}

I. สารสกัดสมุนไพรพุด้าวที่สกัดด้วยน้ำที่ความเข้มข้นที่ 1 ที่ระดับความเข็งขัน 10^{-3}
ภาพ 17 ฤทธิ์ในการยับยั้งการแพร่ระบาดของไวรัส CSFV ด้วยสารกัดสนุนไฟฟ้าของตัวยาต่างๆ ที่ระดับความเจือจาง 10⁻³ (ปิเอเซลล์กับสารกัดสนุนไฟฟ้าเป็นเวลา 4 ชม. ก่อนทดลองไวรัส CSFV)

หมายเหตุ A. Positive control ที่ระดับความเจือจาง 10⁻³
B. สารกัดสนุนไฟฟ้าที่กัดด้วงเอทานอล 50% ที่ความเข้มข้นที่ 2 ที่ระดับความเจือจาง 10⁻³
C. สารกัดสนุนไฟฟ้าที่กัดด้วงเอทานอล 50% ที่ความเข้มข้นที่ 1 ที่ระดับความเจือจาง 10⁻³
D. สารกัดสนุนไฟฟ้าที่กัดด้วงเอทานอล 70% ที่ความเข้มข้นที่ 2 ที่ระดับความเจือจาง 10⁻³
E. สารกัดสนุนไฟฟ้าที่กัดด้วงเอทานอล 70% ที่ความเข้มข้นที่ 1 ที่ระดับความเจือจาง 10⁻³
F. สารภัคสมุนไพรพืชภูมิที่ภัคดีด้วยท่อนยด 95% ที่ความเข้มข้นที่ 2 ที่ระดับความเจื้อน 10^3
G. สารภัคสมุนไพรพืชภูมิที่ภัคดีด้วยท่อนยด 95% ที่ความเข้มข้นที่ 1 ที่ระดับความเจื้อน 10^3
H. สารภัคสมุนไพรพืชภูมิที่ภัคดีด้วยท่อนยดที่ความเข้มข้นที่ 2 ที่ระดับความเจื้อน 10^3
I. สารภัคสมุนไพรพืชภูมิที่ภัคดีด้วยท่อนยดที่ความเข้มข้นที่ 1 ที่ระดับความเจื้อน 10^3
ภาพ 18 ลูกชิ้นในการย้อมยิ้งเข้ากับเซลล์ของไวรัส CSFV ด้วยสารสกัดสมุนไพรทองพันธุ์ช้างด้วดท้ายกากละลายต่างๆ ที่ระดับความเจือจาง 10^{15} (ปั่นไวรัส CSFV กับสารสกัดสมุนไพรทองพันธุ์ช้างเป็นเวลา 1 ชม. ก่อนทดสอบเข้ากับเซลล์)

หมายเหตุ A. Positive control ที่ระดับความเจือจาง 10^{15}

B. สารสกัดสมุนไพรทองพันธุ์ที่สกัดด้วยแอลกอนอล 50% ที่ความเข้มข้นที่ 2 ที่ระดับความเจือจาง 10^{15}

C. สารสกัดสมุนไพรทองพันธุ์ที่สกัดด้วยแอลกอนอล 50% ที่ความเข้มข้นที่ 1 ที่ระดับความเจือจาง 10^{15}

D. สารสกัดสมุนไพรทองพันธุ์ที่สกัดด้วยแอลกอนอล 70% ที่ความเข้มข้นที่ 2 ที่ระดับความเจือจาง 10^{15}

E. สารสกัดสมุนไพรทองพันธุ์ที่สกัดด้วยแอลกอนอล 70% ที่ความเข้มข้นที่ 1 ที่ระดับความเจือจาง 10^{15}
F. สารสกัดสมุนไพรพุลกาที่สกัดด้วยเอทานอล 95% ที่ความเข้มข้นที่ 2 ที่ระดับความเจื้อนต่ำ 10^3
G. สารสกัดสมุนไพรพุลกาที่สกัดด้วยเอทานอล 95% ที่ความเข้มข้นที่ 1 ที่ระดับความเจื้อนต่ำ 10^3
H. สารสกัดสมุนไพรพุลกาที่สกัดด้วยน้ำที่ความเข้มข้นที่ 2 ที่ระดับความเจื้อนต่ำ 10^3
I. สารสกัดสมุนไพรพุลกาที่สกัดด้วยน้ำที่ความเข้มข้นที่ 1 ที่ระดับความเจื้อนต่ำ 10^3
ภาพ 19 ลูกชิ้นในภูมิป้องกันข้อที่พบเห็นตามหัวข้อที่
เวลาต่างๆ ที่ระดับความเข็งขัน 10^-3 (ปัจจุบันการไวรัส CSFV เป็นเวลา 6 ชั่วโมง ก่อน
หยุดการตกคุณภาพของพืชชิ้น)
หมายเหตุ
A. Positive control ที่ระดับความเข็งขัน 10^-3
B. สารกั้นสูญผลลัพธ์ที่สกัดด้วยยาทางทะเล 50% ที่ความเข็งขันที่ 2 ที่ระดับความ
เข็งขัน 10^-3
C. สารกั้นสูญผลลัพธ์ที่สกัดด้วยยาทางทะเล 50% ที่ความเข็งขันที่ 1 ที่ระดับความ
เข็งขัน 10^-3
D. สารกั้นสูญผลลัพธ์ที่สกัดด้วยยาทางทะเล 70% ที่ความเข็งขันที่ 2 ที่ระดับความ
เข็งขัน 10^-3
E. สารกั้นสูญผลลัพธ์ที่สกัดด้วยยาทางทะเล 70% ที่ความเข็งขันที่ 1 ที่ระดับความ
เข็งขัน 10^-3
F. สารกั้นสูญผลลัพธ์ที่สกัดด้วยยาทางทะเล 95% ที่ความเข็งขันที่ 2 ที่ระดับความ
เข็งขัน 10^-3
G. สารสกัดสมุนไพรพุทราที่มีเกิดค่าตอบทางนด 95% ที่ความเข้มข้นที่ 1 ที่ระดับความเขี้ยวทาง 10^3

H. สารสกัดสมุนไพรพุทราที่มีเกิดค่าตอบทางนนที่ความเข้มข้นที่ 2 ที่ระดับความเขี้ยวทาง 10^3

I. สารสกัดสมุนไพรพุทราที่มีเกิดค่าตอบทางนนที่ความเข้มข้นที่ 1 ที่ระดับความเขี้ยวทาง 10^3
ภาพ 20 ลูกศิลป์ในการย้อมสีเกล็ดตัวของไวรัส CSFV ด้วยสารสกัดสมุนไพรของพืชชนิดตัวว่าก้าล และผลิตภัณฑ์ที่ระดับความเข้มข้น 10^3 (แบบเซลล์กับสารสกัดสมุนไพรพืชชนิดเป็นเวลา 4 ชม. ก่อนเขย่าไวรัส CSFV)

หมายเหตุ A. Positive control ที่ระดับความเข้มข้น 10^3
B. สารสกัดสมุนไพรพืชชนิดตัวเกล็ดตัวว่าก้าล 50% ที่ความเข้มข้นที่ 2 ที่ระดับความเข้มข้น 10^3
C. สารสกัดสมุนไพรพืชชนิดตัวเกล็ดตัวว่าก้าล 50% ที่ความเข้มข้นที่ 1 ที่ระดับความเข้มข้น 10^3
D. สารสกัดสมุนไพรพืชชนิดตัวเกล็ดตัวว่าก้าล 70% ที่ความเข้มข้นที่ 2 ที่ระดับความเข้มข้น 10^3
E. สารสกัดสมุนไพรพืชชนิดตัวเกล็ดตัวว่าก้าล 70% ที่ความเข้มข้นที่ 1 ที่ระดับความเข้มข้น 10^3
F. สารสนเทศน์ไฟฟ้าลูกวัตรที่สกัดด้วยianaชนะที่ 2 ที่ระดับความ เซี้ยวของ 10⁻³
G. สารสนเทศน์ไฟฟ้าลูกวัตรที่สกัดด้วยianaชนะที่ 1 ที่ระดับความ เซี้ยวของ 10⁻³
H. สารสนเทศน์ไฟฟ้าลูกวัตรที่สกัดด้วยianaชนะที่ 2 ที่ระดับความเซี้ยวของ 10⁻³
I. สารสนเทศน์ไฟฟ้าลูกวัตรที่สกัดด้วยianaชนะที่ 1 ที่ระดับความเซี้ยวของ 10⁻³
วิจารณ์เอกสารวิจัย

ยิ่งกว่าในสุนัขเป็นโรคติดต่อร้ายแรงในสุนัข สร้างความเสียหายทางเศรษฐกิจให้แก่
เกษตรกรผู้เลี้ยงสุนัขได้อย่างเป็นวงกว้างและรวดเร็ว เนื่องจากความเสียหายให้แก่สุนัชนากรเกษตร
โดย World Organization for Animal Health หรือ Office International des Epizooties (OIE) (www.oie.int)
เป็นหน่วยงานที่เรียกวิวัฒน์ให้ระบบปฏิบัติกู้ศัตรูพยาธิของสุนัข โอโมลิโวิรัส CSFV และสุ
โรกสัตว์ เช่นสุนัขสามารถแพร่กระจายได้อย่างรวดเร็วทางการสัมผัสต่างๆ หรือโดยการสัมผัสของสุนั
ทาง หมายถึง อาการและการควบคุมโรคของโรคซึ่งอยู่ในระบบทวีระยุทธ์ในฟาร์มสุนัขเรื่อยๆ 100 แต่ละที่นักศึกษาสุนัข เช่นในประเทศไทยที่ไม่เพียงการกระจายของโรค จะทำให้สุนั
กลายเป็นพาทอย่างโรคต่อไปในแม่สุนัขที่ได้รับโรคจะทำให้เกิดการติดเชื้อตามที่กระจายไปสู่สุนัขที่
ซึ่งทำให้สุนัขที่เกิดมาเต็มความคงที่ไป หรือกินอาหาร ในการติดเชื้อที่มีความรวดเร็วสูงกว่าไปตาม
กลาง จะทำให้สุนัขอยู่น่อนและจะแสดงอาการป่วยเพิ่มเติมมากกว่า จะปรากฏเป็นเวลาสั่ง ทำให้เกิดการ
แพร่กระจายของโรคได้มากและนาน (van Oirschot, 1999) นอกจากนี้ยังทำให้เกิดการกระทำความ
ของผู้ถูกสัมผัสในตัวสุนัขที่ได้รับโรค ทำให้เงินที่จะทำให้เกิดโรคในชีวิตสัตว์ โรคซึ่งเป็น
แหล่งที่เกิดการระบาดของไวรัสที่ทำให้สุนัขสัมผัสมีเนื้อเยื่อไม่เป็นโรคติดต่อแล้วทำให้มีการกระจายในสกลา
ติดเชื้อของสุนัขจากไวรัสที่ทำให้สุนัขสูญสุขภาพต่อไป โดยส่วนใหญ่สุนัขที่ติดเชื้อจะมาจากเกษตรกรที่เป็นผู้
เมื่อสุนัขอยู่เนื่องจากไม่ได้ถูกสุนัขอย่างอุกตั้ง จึงสำคัญที่มีการป้องกันอยู่
ภายในประเทศไทย ซึ่งทำให้เกษตรกรผู้เลี้ยงสุนัขต้องเรียนรู้อย่างรู้สึกเจ็บปวดในการส่งออก เนื่องจากประเทศที่เป็น
แหล่งของโรคติดเชื้อสุนัข เช่น ญี่ปุ่น ไม่รับสัมพันธ์เนื่องจากประเทศไทย ในปัจจุบันโรคที่สัตว์
อยู่และมีวิธีรักษาให้หายขาดได้เพื่อเตรียมการป้องกันทันทัน เช่น การจัดตั้งขั้นตอนต่างๆ หรือ
การใช้ระบบ biosafety ภายในฟาร์มเป็นสิ่งที่ไม่ได้ยาก ในเกษตรกรผู้เลี้ยงสุนัขอย่างยั่งยืน ดังนั้น
สมุนไพรจึงเป็นอีกทางเลือกหนึ่งที่มีความน่าสนใจในการจะนำมามีการใช้ร่วมกับการป้องกันและค้า
ระหว่างโรคติดต่อที่จะช่วยให้ความสนใจเป็นสมุนไพรที่มีฤทธิ์ต้านไวรัส จาก
การศึกษาพบว่า สมุนไพรไทยหลายชนิดที่มีฤทธิ์ต้านไวรัส เช่น ถูกใส่ ฟักถั่ว, ฟักถั่ว
เป็นต้น แต่ที่น่าสนใจที่สุดคือ 3 ชนิดคือ ผักขาว ผักขาว และผักนายชื้น เนื่องจากเป็นสมุนไพรที่มี
ผ่าและสามารถปลูกได้ตลอดทั้งปี เป็นสมุนไพรที่ใช้เป็นยาแก่โรคและใช้บริโภคอาหารอย่าง
สบาย จึงเป็นแนวทางใหม่ในการศึกษาวิจัยครั้งนี้
จากการวิจัยจะเห็นได้ว่าสมุนไพรที่มีฤทธิ์ในการดับไวรัสได้อายังมีประสิทธิภาพคือ สมุนไพรพูดดาว และตองพันชีง เมื่อจับสมุนไพรทั้งสองชนิดนี้ใช้ผสมให้ได้สารสกัดที่มีผลต่อการอักเสบต่างๆ ของสายพันธุ์ไวรัส ซึ่งห้องปฏิบัติการ ทั้งหลายได้พบว่า สารสกัดสมุนไพรที่มีฤทธิ์เป็นที่ต้องการต่อการอักเสบที่นำไปใช้ในการดับไวรัสจากสมุนไพรให้เป็นสิ่งที่สำคัญอย่างหนึ่ง ในการวิจัยครั้งนี้ได้เลือกตัวทำลายดาบ 4 ชนิดคือ เท่านั้น 95%, 70%, 50% และน้ำ เพื่อให้ได้สารสกัดสมุนไพรเป็นวงกว้าง และปริมาณสารสกัดได้ออกมากที่สุดไม่เท่ากัน

ในการเลือกใช้สารสกัดสมุนไพรดังนี้ต้องใช้ความเป็นพืชต่อชอบสิ่งใดใน ปริมาณที่มากก็ได้โดยติดต่อให้เข้ากับที่ทำการผลิตโดยเขาและต้องเป็นสิ่งที่มีเหตุผลที่สุดเกิดการผลิตและมีที่ตั้งในที่สุด ดังนั้นถ้าจะทำให้สารสกัดของสารสกัดดังกล่าวต่อสาร ทดสอบความเป็นพิษต่อชอบสิ่ง ในการเลือกใช้ต่ำๆ 2 ต่ำ ในการวิจัยครั้งนี้นั้น เพราะที่การเป็นไปตามการปรับปรุงของสารสกัด สำหรับความเป็นที่ต้องการผลิตยุทธ์หรือไม่ จากการทดลอง ส่งผลต่อกำลังต่อเหงื่อที่มีองค์ประกอบของสารสกัดได้อย่างมีประสิทธิภาพจะเป็นสารในความเข้มข้นที่ 1 หน่วยที่มีปริมาณและความเข้มข้นที่ใช้ในการทดลองดูว่ามีความเข้มข้นนั้น (ความเข้มข้นที่ 2) ที่มีในการที่จะเลือกใช้ปริมาณสารสกัดจากต่องอักเสบที่ต้องการเสีย คงต้องเปลี่ยนปริมาณที่เหมาะสมที่ใช้ ต่ำๆในปริมาณเนื้อเยื่อไปถึงอาจไม่แต่ละในการรักษา

จากการทดลองจะเห็นได้ว่า ในส่วนของการยึดถือการนำตัวอย่างไวรัสในที่พื้นที่ 2 น้ำมันสำริดนี้เก็บไวรัสเป็นเวลา 6 ชั่วโมงเพื่อให้เซลส์เกิดซึ่งไวรัสมนไพรพื้นที่ 3 ชนิดมีประสิทธิภาพหน่อยว่าจะมีผลค่อยๆในบางการทดลอง อาจเป็นผลจากการตอบต่อการ สมุนไพรพื้นที่ 3 ชนิดนี้ไม่สามารถเปลี่ยนไปได้ถ้าการเพิ่มจำนวนของไวรัสไปในเซลส์ได้ดังนั้นที่แสดง ไว้ข้างต้นได้แก่เลือกตัวอย่างข้อมูลของการแก้ไขเกี่ยวกับตัวอย่างไวรัส โดยการน้ำมันสกัดร่วมกับกิมโนฟูไกโงไพร์ไวรัสเป็นเวลา 4 ชั่วโมง สมุนไพรพื้นที่ 3 ชนิด สามารถทำงานได้อายังมีประสิทธิภาพคงที่ 11 โดยสมุนไพรพื้นที่ 3 ชนิด มีการยึดถือไวรัสได้ในปริมาณที่ต่ำที่สุด และในการยึดถือการเข้าสู่เซลส์ของไวรัส โดยการนำสมุนไพรพื้นที่ 3 ชนิด สามารถทำงานได้อายังมีประสิทธิภาพโดยเฉพาะอย่างยิ่ง สมุนไพรพูดดาว สามารถยึดถือไวรัสได้มากที่สุดในที่พื้นที่ 3 ชนิด รองลงมาคือพูดดาว และทำพันชั่ง จากตัว TCID₅₀อาจจะเห็นว่าพันชั่งนี้มีประสิทธิภาพเพียง เส้นน้อยหรือไม่มีประสิทธิภาพแต่จากการทดลอง ทำพันชั่งสามารถลดปริมาณไวรัสได้ในระดับ หนึ่ง แต่ไม่สามารถทำลายไวรัสได้หรือถึงแหล่งโทษการทดลองของพันชั่ง มีฤทธิ์ที่ยังกว่า
สนุนไพรีกิของชนิด ขาดผลกระทบของข้อตกลงว่าสนามไฟฟ้าทั้ง 3 ชนิดสามารถยอมรับข้อให้รั่วได้อย่าง
พบว่าความเห็นขึ้นที่ไม่เป็นพิษดีเพราะเพียง สามารถทำลายเครื่องรั่วโดยตรงก่อนที่รั่วจะ
เข้าสู่ฉนวน ซึ่งมีการขยายเครื่องรั่วที่เป็นสถานะการ adsorption และpenetration และยัง
สดคล้องกับ Hayashi และคณะ (1995) ได้ศึกษาพื้นฐานไวรัสน้ำมันปาร์คทรีที่เกิดจากพื้นที่
พบว่ามีความในการทำลายไวรัสที่มีผลต่อพื้นที่ ซึ่ง CSFV ที่เป็นไวรัสที่มีผลต่อพื้นที่สัตว์กัน
จากผลที่กล่าวมาข้างต้นจะทำให้เห็นว่าสนามไฟฟ้าทั้ง 3 ชนิด โดยเฉพาะพื้นที่การ
และของพื้นที่มีประสิทธิภาพสามารถนำให้ร่วมกันการทำป้องกันโรคได้ด้วยวิธีสิ้น เข้า ใช้ร่วมกับ
วัคซีน เนื่องจากสนามไฟฟ้าทั้ง 3 ชนิดมีรูปสุ่ม ปลูกง่าย ซึ่งสามารถนำมาใช้ผสมกับยาธาตุให้กับ
สุนัขเพื่อใช้ในการป้องกันและรักษาโรค ดังนั้นในปี 2553 ทุกจนและคณะ ได้ศึกษาการใช้
สนามไฟฟ้าทำลายไวรัสและยังในการรักษาโรคที่มีโรคสุนัขในระยะยาว พบว่าสุนั
ที่รีกิยาสูงในบริเวณ 1,000 มิลลิกรัม/คิว รวมกับไฟฟ้าคลอโรฟิล 500 มิลลิกรัม/คิว และยังมี
เฉพาะ ROS 100 มิลลิกรัม/คิว ได้มีแนวโน้มในการรักษาโรคจากอาการที่ดีกว่าความไม่ดี และใช้
เพียงสนามไฟฟ้าทั้ง 3 ชนิดมีความสัมพันธ์กันอย่างต่อเนื่องทั้งนั้น อีกทั้งในงานล่าสุด
แบบพื้นฐานและเชื้อราได้ศึกษากลับ โดยสามารถนำไปใช้ร่วมกันในการรักษาสัตว์ในโรคพิษซึ่งชนิดต่างๆ ให้
สดคล้องกับการรายงานของ Yam และคณะ (2011) โดยนำมาพิจารณาที่ลักษณะเป็นรูปที่ 75%
ที่ผ่านการใช้เป็นแผนที่และสมดุลทางค่าสูงสุดเป็นเวลา 10 วันข้างท้ายการเกิดผลในผื้นที่
ที่ 5 และ 10 พบว่าไม่ส่งให้สุนัขเสียชีวิต และยังทำให้ปริมาณที่หนักตัวต่ำกว่า ปริมาณการกิน
อาหารต่ำกว่าร้อย ปริมาณเม็ดกลูกงาน และปริมาณสัตว์ที่เนื่องจากพื้นที่ขึ้น เมื่อก่อนกับกลุ่ม
ควบคุม และพบว่าระบบของอาหารของสัตว์กลุ่มที่ได้รับสนามไฟฟ้ามีพื้นที่คือกว่ากลุ่มควบคุม
นอกมากกว่าที่ไฟฟ้าคลาสสิคยังต่ำสมทัพที่เป็นสัตว์ที่มีดีเด่น ซึ่งในปี 2010 ได้มีรายงานของ
Kim และคณะ ที่ได้ทำการศึกษาสัตว์กลุ่มพื้นที่โดยการกีดขวางผิวเอานั่น พบว่ามีต้นที่ใน
อีกหนึ่ง Escherichia coli 0157 โดยการที่ใช้เป็นที่เที่ยวขึ้นดีกับกระบวนการสร้างเม็ดกลูกติดไป
ถึงทางยังทำกระบวนการสร้างอาหาร folic acid ในการศึกษาด้านไวรัสหนึ่ง Direkbusarakom
และคณะ (1998) ได้ทำการทดลองโดยเพิ่มพันธุ์กับยาบางกลุ่ม พบว่าเมื่อผสมยาที่กินแล้ว 1
กรัมต่อตันทูร์ 1 กิโลกรัม ทำให้สัตว์มีความคราบจากโรควิวัฒน์เป็นรูปตัว 57.4 เม็ดที่ kob 1
กลุ่มควบคุมที่มีผลการต่ำเวณละ 100

ในทุกวันนี้ยังมีโรงเรียนที่ก่อให้เกิดความเสียหายอย่างรุนแรงของพื้นที่โรค ไม่ว่าจะเป็น
โรคปากก้าตีเพื่อ โรคระบบทางเดินหายใจและระบบสิ่งพื้นที่และโรคกิ่วติดสุขภาพ เป็นต้น
ซึ่งโรคที่กล่าวมาที่เสียหายจากโรคไวรัส และโรคจุฬาเป็นประเด็นและรักษาโรคโดยการใช้
ยังและวัคซีนฉีดไม่มีประสิทธิภาพเพียงพอ ดังนั้นจึงมีการสำรวจวิธีทางในการรักษาที่เสริมประสิทธิภาพของการรักษาให้ยิ่งขึ้นไปอีก สมุนไพรจีนเป็นอีกห้องเล็กน้อยที่ทำให้ได้รับความสนใจในเรื่องการฟื้นฟูสุขภาพของผู้ป่วยโรคต่าง ๆ เช่น ไวรัส HBV, HCV และ HIV สมุนไพรที่มีฤทธิ์ในการต้านไวรัส (HIV) และป้องกันการแพร่ระบาดของโรคต่าง ๆ เช่น ไวรัสซิฟิลิส (HSV) และไวรัส Cytomegalovirus (CMV) ซึ่งมีการใช้ในทางการแพทย์หลายประเทศ สมุนไพรที่มีฤทธิ์ในการต้านไวรัสและป้องกันโรคต่าง ๆ สามารถช่วยให้รักษารักษาโรคต่าง ๆ ได้ยิ่งขึ้นไปอีก

จากที่กล่าวมาทั้งหมดข้างต้น จะเห็นได้ว่า สมุนไพรทอง 3 ชนิดนี้สามารถที่จะนำมาประยุกต์ใช้เพื่อเพิ่มประสิทธิภาพในการป้องกันและรักษาโรคที่มีสาเหตุจากเชื้อไวรัส เพิ่มปริมาณของผลิตภัณฑ์ที่ได้ ลดค่าทุนในการผลิตสิ่งสร้างความเสี่ยงจากการใช้ยาและวัคซีนที่อาจส่งผลกระทบต่อสิ่งแวดล้อมและสุขภาพของสัตว์และมนุษย์.
บทที่ 5
สรุปผลการวิจัยและข้อเสนอแนะ

สรุปผลการวิจัย

ในการศึกษาการอักเสบร่างเชื้อเชื้อสัตว์ไข้เลือดจูงไวรัส CSFV ด้วยสมุนไพรไทยพุลวัล พฤกษ์ และทองพันธุ์ ด้วยการทดลองต่าง ๆ สมุนไพรที่มีประสิทธิภาพมากที่สุดในการยับยั้งการเจริญเติบโตของไวรัสคือ สมุนไพรพุลวัล ที่ทำให้การอักเสบร่างเชื้อ TCIDso ของ TCID90 ที่ 2×10^4 TCID90/มิลลิลิตร มีประสิทธิภาพสูงที่สุดในการยับยั้งไวรัส ไม่ให้เจริญเติบโต พบว่าที่สกัดด้วยอนำละ 50% และ 95% โดยใช้สมุนไพรที่ความเข้มข้น 6.25 มิลลิกรัม/มิลลิลิตร ที่สกัดชนิด ต่ำสุดของชนิด โดยมีค่า TCID90 ที่ 2×10^4 TCID90/มิลลิลิตร

ในการศึกษาการยับยั้งการแบ่งตัวของไวรัส CSFV โดยทำให้สมุนไพรข้าวสารร่วมกับเชื้อไวรัสเป็นเวลา 6 ชั่วโมง สมุนไพรที่มีประสิทธิภาพเพื่อการแบ่งตัวของไวรัส คือ สารสกัดสมุนไพรพุลวัลที่สกัดจากอนำละ 50% และ 95% ที่ความเข้มข้น 6.25 มิลลิกรัม/มิลลิลิตร ที่สกัดชนิด ซึ่งมีค่า TCID90 ที่ 2×10^4 TCID90/มิลลิลิตรพวงของชนิด

ในการศึกษาการยับยั้งการแบ่งตัวของไวรัส CSFV โดยทำให้สมุนไพรข้าวสารร่วมกับเชื้อไวรัสเป็นเวลา 4 ชั่วโมง และสารสกัดสมุนไพรที่มีประสิทธิภาพสูงในการยับยั้งการแบ่งตัวของไวรัสคือ สารสกัดสมุนไพรพุลวัลที่ใช้ออนำละ 95% โดยใช้ในความเข้มข้น 6.25 มิลลิกรัม/มิลลิลิตร (ความเข้มข้นนี้ 1) และมีค่า TCID90 เท่ากับ 2×10^4 TCID90/มิลลิลิตรตรงไปตรงมา และสารสกัดสมุนไพรพุลวัลที่สกัดด้วยอนำละ 50% โดยมีค่าความเข้มข้น 1.57 และ 6.25 มิลลิกรัม/มิลลิลิตร ตามลำดับ โดยมีค่า TCID90 เท่ากับ 2×10^7 TCID90/มิลลิลิตร

จากการศึกษาครั้งนี้สมุนไพร พุลวัล พฤกษ์ และทองพันธุ์มีฤทธิ์ในการยับยั้งการเจริญเติบโตของเชื้อไวรัส CSFV ได้อย่างมีประสิทธิภาพ โดยเฉพาะพุลวัล และทองพันธุ์ ในการปริมาณความเข้มข้นที่เหมาะสม
ข้อเสนอแนะ

1. ในการทดสอบความมั่นคงของผู้ศึกษาที่มีดุลยพินิจเฉพาะทางในการด้านไวรัสของสมุนไพรทั้ง 3 ชนิดเพื่อให้มีประสิทธิภาพในการรักษาโรค CSFV ต่อไป

2. ควรมีการนำไปใช้ในอุตสาหกรรมการแพทย์ที่มีชีวิต เพื่อที่จะได้ประโยชน์จากสารปุษฎังวิ้ง

3. ควรมีการปรับปรุงวิธีในการทำละลายสารภัณฑ์ให้สามารถละลายสารภัณฑ์ให้หมดหรือใกล้หมด เพื่อไม่ให้เกิดความคลาดเคลื่อนในการทดลอง
บรรณานุกรม

กัญญา สุวิมาน และ วานา ภูธูปชญา. 2548. การวิจัยการปรับปรุงตุ่นภาพของวัคซีนอีฟิวท์สูตรพิเศษเพื่อส่งเสริม WPE/TH และการพัฒนาวัคซีนในระดับสุขภาพกรม. 10 ม.

ศศิวัฒน์ ดาภิเษก เจริญดีพงศ์กุล ศรีวิชัย โรจน์เกต สวัสดิ์ ติ๊ก สมกุล วิชักษา ชัยวุฒิ และ กนิภัฏ สมประสงค์. 2554. บางส่วนของการใช้ยารับจำเป็นเพื่อเสริมประสิทธิภาพของระบบออสเตริโอติกศุกร์. เจาะจงการวิจัยและพัฒนาวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย. 16 ม.

ศุภชัย คุณากร ภาคี และ นวมินท์ ศรีวัฒน์สุทธิ. 2548. การสร้างตัวแปลงของโรคไข้หวัด ฤทธิ์โดยใช้วัคซีนโรคไข้หวัดตัว E2 เป็นตัวแทนของโรคกลุ่ม E2 บนต้อสถิติที่ไม่พบความแตกต่างระหว่างที่สูตรหรือกลุ่มโรค. ทวิﺜง: สถาบันสุขภาพการแพทย์ ระหว่างตัวถี่การวิจัย. 6 ม.

อภิชาติ พีระศรี. 2543. ประสิทธิภาพของวัคซีนอีฟิวท์สูตรในระบบและแนวทางต่อไปที่ได้ผล. วารสารสุข. 10(69): 9-14.

ภาพเหมือน
ภาคผนวก ก

การเตรียมสารเคมีสำหรับการเยื่อ NPLA และย้อม crystal violet
การเตรียมสารเคมีสำหรับการย้อม NPLA และย้อม crystal violet

1. 1% Phosphate buffer saline – Tween 20 (1% PBS-T)
 - PBS 10X 100 มิลลิลิตร
 - น้ำอุ่น 900 มิลลิลิตร
 - Tween 20 10 มิลลิลิตร

2. 0.5% Phosphate buffer saline – Tween 20 (0.5% PBS-T)
 - PBS 10X 100 มิลลิลิตร
 - น้ำอุ่น 900 มิลลิลิตร
 - Tween 20 5 มิลลิลิตร

3. 4% Formalin
 - 1% PBS-T 9.6 มิลลิลิตร
 - 40% Formaldehyde 0.4 มิลลิลิตร

4. 1% BSA (Albumin from bovine serum) 10 มิลลิลิตร
 - BSA 0.1 กรัม
 - 1% PBS-T 10 มิลลิลิตร

5. Monoclonal antibody (dilute 1:10) 5 มิลลิลิตร
 - 1% BSA 4.5 มิลลิลิตร
 - Mab HC 301 0.5 มิลลิลิตร

6. Polyclonal antibody (dilute 1:250) 5 มิลลิลิตร
 - 1% BSA 5 มิลลิลิตร
 - polyconal 12.5 ไมโครลิตร

7. Conjugate
 - Monoclonal ใช้ Anti-Mouse Ig/HRP dilute คั่ว 1% BSA ความเข้มข้น 1:300

8. Substrate 10 มิลลิลิตร
 - Acetate buffer pH 5.2 9.5 มิลลิลิตร
 - AEC solution 0.5 มิลลิลิตร
 - 30% H₂O₂ 10 ไมโครลิตร
9. Acetate buffer pH 5.2

Solution A 0.1 M Acetic acid

- Glacial acetic acid 5.75 มิลลิลิตร
- เติมน้ำให้ได้ 1000 มิลลิลิตร

Solution B 0.1 Sodium acetate

- Sodium acetate 13.16 กรัม
- เติมน้ำให้ได้ 1000 มิลลิลิตร

ผสม Solution A 21 ชั่วโมง เข้ากับ Solution B 79 ชั่วโมง

10. AEC solution

- 3-amino-9-ethyl carbazol 30 ไมโครกรัม
- N,N-dimethylformamide 75 มิลลิลิตร

กรองแล้วเก็บที่ 4 องศาเซลเซียส (นำไปเย็นจนเก็บที่ -20 องศาเซลเซียส)

11. 1% crystal violet ใน 20% แธนาซอล

12. Sorenson’s buffer

Sodium citrate 5.88 กรัม

เซทนอล 100 มล.

น้ำกลั่น 100 มล.

pH 4.2

การเตรียมสารละลาย PBS

NaCl	8 กรัม
Na₂HPO₄	1.44 กรัม
KH₂PO₄	0.25 กรัม
KCl	0.2 กรัม
H₂O	ทำให้เป็น 1 ลิตร

จากนั้นนำไปเตรียมที่ความค่านิ่ว 15 ปอนด์ต่อดารงนิ่ว ถูกลดหนึ่ง 121 องศาเซลเซียส เเป่งเวลา 15 นาที
องค์ประกอบของอาหารเลี้ยงเซลล์ MEM

MEM 1 ซอง (10.4 กรัม)
NaHCO₃ 2.2 กรัม
Heat-inactivated fetal bovine serum 100 มิลลิลิตร
น้ำกลั้น 800 มิลลิลิตร

วิธีการนับจำนวนเซลล์ด้วยเทคนิค Direct microscopic count โดยใช้ Haemacytometer counting chamber

นำเซลล์เฉพาะบางเทิ่งที่ผ่านการ subculture ไปป้อนหนึ่งจานที่ความเร็ว 1,000 รอบต่อนาที เมื่อครบกำหนดให้เทอาหารเลี้ยงเซลล์เดิมทั้งเดิม เพิ่มอาหารเลี้ยงเซลล์ที่มี Fetal bovine serum (FBS) 5 เยกซ์ขึ้นไป ปริมาณ 1 มิลลิลิตร จากนั้นใช้ tip ตู้สาระลายเคลือบใสใน haemacytometer counting chamber ทำการนับจำนวนเซลล์ที่มีชีวิตอยู่ (เซลล์ที่ไม่ติดสีน้ำเงินของ trypan blue) มีสัดส่วนของเซลล์ที่ไม่ได้ไปต้าน vant เพื่อใช้ต่อไป

การค้นหาปริมาณไวรัส

วิธีการค้นหาปริมาณไวรัส (CPE) หรือการแสดงคีตติชของเซลล์ Cytopathic effect (CPE) หรือการถูกสลาย ของเซลล์ จากเหตุที่ทำให้เซลล์เป็นหยกไวรัส โดยการเพิ่มขั้นตอน 1:10

<table>
<thead>
<tr>
<th></th>
<th>10⁴</th>
<th>10³</th>
<th>10²</th>
<th>10¹</th>
<th>10⁰</th>
<th>10⁻¹</th>
<th>Control Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
ลายเหตุ + คือ เกิด CPE หรือย้อมติดสี - คือ ไม่มีเกิด CPE หรือย้อมไม่ติดสี

จากตัวอย่างการทดลองร่างต้น เมื่อต้มเก็บการเพิ่มแอนติแอนต์ของเซลล์ เนื่องจากไวรัสจะต้อง dilution แล้ว น้ำมันการทดลองตั้งแต่ dilution ที่ให้ผล + 100% จนถึง dilution ที่ไม่ให้ผล + เลย มาหาตารางคำนวณ ทั้งโดยคำที่สมเหตุสมผล แล้วคำรวม ดังตัวอย่าง

<table>
<thead>
<tr>
<th>Dilution of stock virus</th>
<th>Observed results</th>
<th>Accumulated results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPE</td>
<td>noCPE</td>
</tr>
<tr>
<td>10-7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>10-8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>10-9</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>10-10</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

การคำนวณจะเป็นการหาค่า 50% response ของเซลล์ที่ไวรัส ซึ่งที่ค่อยความเข้มแข็งของไวรัสที่ให้ค่า 1 TCID_{50}/50 μl เมื่อได้คำนวณแล้วสามารถคำนวณอธิบายกลับไปหาความเข้มข้นของ Stock virus ในหน่วย TCID_{50}/volume ได้

การคำนวณวิธีของ Reed and Muench

วิธีนี้จะคำนวณจากค่าสะสม ซึ่งหมายถึงค่า 50% response ของค่าสะสม จะอยู่ระหว่าง dilution ที่ 10^9 ถึง 10^9 การคำนวณหาค่า TCID50 ซึ่งอยู่ระหว่าง dilution ที่ 2 ทำได้โดยการหาค่า proportionate distance (PD)

โดยกำหนดให้

\[A = \% \text{ response} \text{ สะสม ค่าแรกที่มากกว่า} 50\% \]
\[B = \% \text{ response} \text{ สะสม ค่าแรกที่น้อยกว่า} 50\% \]
\[C = \text{ dilution ของไวรัส} \text{ ที่ให้ค่า} A \]
\[X = \text{ ตัวบวกการเขียนช่องไวรัส} \text{ (dilution factor)} \]

\[PD = \frac{A - 50}{A - B} = \frac{70 - 50}{70 - 18} = \frac{20}{52} = 0.38 \]

เฉลย

\[PD = 0.38 \]
เมื่อได้ค่า PD แล้วนับมาคำนวณด้วยสมการ

\[
\text{log of 50\% end point} = (\text{log } C) - (\text{PD} \times \text{log } X)
\]

\[
\text{log } \text{TCID}_{50} = (-8) - (0.38)(1)
\]

\[
= -8.38
\]

แสดงว่าที่ dilution 10\(^{-8.38}\) ไวรัสจะมีความเข้มข้น 1 TCID\(_{50}\)/50 μl

หัวน้ำ stock virus จะมีความเข้ำข้น \(= 10^{8.38}\) TCID\(_{50}\)/50 μl

หรือ \(= 2 \times 10^{9.38}\) TCID\(_{50}\)/ml
สภานิติการ
มหาวิทยาลัยมหิดล
ประกาศผู้วิจัย

ชื่อ

มหาจิตวารี วรรณบุษ

เกิดเมื่อ

23 เมษายน พ.ศ. 2529

ประวัติการศึกษา

พ.ศ. 2541-2543 มหาวิทยาลัยศรีนครินทรวิโรฒ คณะศิลปศาสตร์ มหาวิทยาลัยนครินทรวิโรฒ

พ.ศ. 2544-2546 มหาวิทยาลัยศรีนครินทรวิโรฒ คณะศิลปศาสตร์ มหาวิทยาลัยนครินทรวิโรฒ

พ.ศ. 2547-2548 มหาวิทยาลัยศรีนครินทรวิโรฒ คณะศิลปศาสตร์ มหาวิทยาลัยนครินทรวิโรฒ

พ.ศ. 2549-2550 มหาวิทยาลัยศรีนครินทรวิโรฒ คณะศิลปศาสตร์ มหาวิทยาลัยนครินทรวิโรฒ

(ปรัชญาศาสตร์บัณฑิต มหาวิทยาลัยศรีนครินทรวิโรฒ)