ชื่อเรื่อง การผลิตฟักทอง เผือก และถั่วแคงผง และการนำไปใช้ประโยชน์

ในผลิตภัณฑ์ขนมอบ

ชื่อผู้เขียน นายวิศรุต สุวรรณา

ชื่อปริญญา วิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีทางอาหาร

ประธานกรรมการที่ปรึกษา ผู้ช่วยศาสตราจารย์ คร.กรผกา อรรคนิตย์

บทคัดย่อ

ศึกษาผลของวัตถุเงือปนอาหารและอุณหภูมิอบแห้งค่อคุณภาพของฟักทอง เผือก และถั่วแคงผง และการนำไปใช้ประโยชน์ในผลิคภัณฑ์ขนมอบและใส้ขนม พบว่าการแช่ฟักทอง ในสารละลายกรคซิตริก 0.10 % 40 นาที และอบแห้งที่อุณหภูมิ 55 °ซ จะได้ฟักทองผงที่มีค่า L*, b* ปริมาณเบด้าแก โรทีน สมบัติด้านความหนืด และสมบัติทางหน้าที่สูงสุด การแช่เผือกในสารละลาย โพแทสเซียมเมตาไบซัลไฟต์ 0.15 % 60 นาที และอบแห้งที่อุณหภูมิ 65 °ซ จะได้เผือกผงที่มีค่า L* ปริมาณแอนโทไซยานินทั้งหมด และสมบัติทางหน้าที่สูงสุด การแช่ถั่วแดงในสารละลาย โซเคียมไบการ์บอเนค 1.0 % 12 ชั่วโมง แล้วนำไปค้มสุกในน้ำเคือค 18 นาที และอบแห้งที่อุณหภูมิ 55 °ซ จะ ได้ถั่วแดงผงที่มีค่า L* ปริมาณแอน โท ไซยานินทั้งหมด สมบัติด้านความหนืด และสมบัติ ทางหน้าที่สูงสุด เมื่อนำฟักทอง เผือก และถั่วแคงผงไปใช้ทดแทนแป้งสาลีที่ระดับ 0-50 % ในการ ทำขนมปังและเค้กเนย พบว่าการเพิ่มระดับการทดแทนจะทำให้ขนมปังและเค้กเนยมีค่ากิจกรรม ของน้ำและปริมาณความชื้นเพิ่มขึ้น แต่มีค่า L* และปริมาตรจำเพาะลคลง โดยขนมปังและเค้กเนยที่ ทดแทนแป้งสาถีด้วยฟักทอง เผือก และถั่วแดงผงที่ระดับ 20 และ 30 % มีคะแนนความชอบ โดยรวมไม่แตกต่างจากตัวอย่างควบคุม (p>0.05) เมื่อนำฟักทอง เผือก และถั่วแคงผงไปผลิตเป็น ใส้ขนม พบว่าใส้ขนมที่ทำจากฟักทองและเผือกผงที่ผ่านการร่อนค้วยตะแกรงขนาด 80 เมช มีคะแนนความชอบ โดยรวมไม่แตกต่างจากตัวอย่างควบคุม (p>0.05) ขณะที่ใส้ขนมที่ทำจาก ถั่วแดงผงที่ไม่ผ่านการร่อนจะมีคะแนนความชอบโดยรวมสูงกว่าตัวอย่างควบคุม ($p\!\!\leq\!\!0.05$) การศึกษาอิทธิพลของชนิดบรรจุภัณฑ์และสภาวะในการบรรจุต่ออายุการเก็บรักษาของฟักทอง เผือก และถั่วแคงผง พบว่าการเก็บรักษาฟักทอง เผือก และถั่วแดงผงไว้ที่อุณหภูมิห้องเป็นเวลา 12 สัปดาห์ โดยบรรจุในถุงอะลูมิเนียมฟอยล์และปิดผนึกในสภาวะสุญญากาศ จะทำให้ผลิตภัณฑ์ มีการเปลี่ยนแปลงค่าสี ค่ากิจกรรมของน้ำ ปริมาณความชื้น เบค้าแคโรทีน และแอนโทไซยานิน ทั้งหมคน้อยที่สุด

Title Production of Pumpkin, Taro and Red Kidney Bean

Powder and Utilization in Bakery Products

Author Mr. Witsarut Suwanna

Degree of Master of Science in Food Technology

Advisory Committee Chairperson Assistant Professor Dr. Kornpaka Arkanit

ABSTRACT

The effects of various food additives and drying temperature on pumpkin, taro and red kidney bean powder quality and their potential use in bread, butter cake and filling making were investigated. Results indicated that soaking pumpkin in 0.10 % citric acid solution for 40 min and drying at 55 °C gave the highest L* and b* values, β-carotene content, pasting and functional properties of pumpkin powder. Meanwhile, soaking taro in 0.15 % potassium metabisulfite solution for 60 min and drying at 65 °C gave the highest L* value, total anthocyanin content and functional properties of taro powder and soaking red kidney beans in 1.0 % sodium bicarbonate solution for 12 h, then cooking in boiling water for 18 min and drying at 55 °C gave the highest L* value, total anthocyanin content, pasting and functional properties of red kidney bean powder. Pumpkin, taro and red kidney bean powders were later used to substitute wheat flour at 0-50 % in bread and butter cake making. Results showed that an increase in substitution level increased a, and moisture content but decreased L* value and specific volume of the samples. Substitution of wheat flour by pumpkin, taro and red kidney bean powders at 20 % in bread or 30 % in butter cake had no effect on the overall acceptance scores when compared to control (p>0.05). Pumpkin, taro and red kidney bean powders were also used in filling making. It was found that overall acceptance scores of filling prepared by 80 mesh sieved pumpkin and taro powders were not significantly different (p>0.05) from control. However, overall acceptance score of filling prepared by non-sieved red kidney bean powder were higher than control (p<0.05). In addition, effects of different packaging materials and packaging conditions on the shelf life of pumpkin, taro and red kidney bean powders were investigated. It was found that color values, a_w, moisture, β-carotene and total anthocyanin contents of samples packed in aluminum foil bag under vacuum were slightly changed when kept at room temperature for 12 weeks.