พวกนายหนึ่งนี้เป็นส่วนหนึ่งของความสมบูรณ์ของการศึกษาตามหลักสูตร
ปริญญาโท วิทยาศาสตรมหาบัณฑิต สาขาวิทยาเทคโนโลยีชีวภาพ
สำนักบริหารและพัฒนาวิชาการ มหาวิทยาลัยแม่โจ้
พ.ศ. 2554

ลิขสิทธิ์ของมหาวิทยาลัยแม่โจ้
โปรดให้ข้อมูลเพิ่มเติม
สำนักบริหารและพัฒนาวิชาการ มหาวิทยาลัยแม่โจ้
ปริญญาตรีสาขาวิทยาศาสตร์บัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ

ชื่อเรื่อง
ผลของการระดมยิงกระสุนยิงกลวิทยาลัยอิทธิยากรทหาร

โดย
ฉานน์ ใจชื่น

พิจารณาเห็นชอบโดย

ประธานกรรมการที่ปรึกษา

(อาจารย์ดร.รัฐวุฒิ จันทรกำกับ)
วันที่: 80 เดือน: พ.ย. พ.ศ. 54

กรรมการที่ปรึกษา

(รองศาสตราจารย์ดร.สมบูรณ์ อันนะศัยโยธิน)
วันที่: 30 เดือน: พ.ย. พ.ศ. 54

(ศาสตราจารย์ดร.ชัย ศิริยานุภาพ)
วันที่: 30 เดือน: พ.ย. พ.ศ. 54

(อาจารย์ ดร.นภดำ ชัยภูมิ)
วันที่: 30 เดือน: พ.ย. พ.ศ. 54

ประธานกรรมการประจําหลักสูตร

สำนักบริหารและพัฒนาวิชาการวิจัยและพัฒนา

(คุณพงษ์ ผลจันทร์)
ประธานกรรมการยิปส์ศึกษา
วันที่: 51 เดือน: พ.ย. พ.ศ. 2552
งานวิจัยนี้มีวัตถุประสงค์เพื่ศึกษาผลของพลาสมาที่มีค่าดีเอ็นเอ ในความหนาผนัง ให้เกิดการกลายพันธุ์ ซึ่งด้วยวิธีการคัดเลือกที่ใช้คือ พลาสมาคิด pUC19 และ LacZ gene โดยจะสูกอิ่งด้วยพลาสมาที่อยู่ในรูปของไอออนที่แพร่กระจายในโครณ ซึ่งวิธีการจะให้ bias ที่แตกต่างกันที่ 2.5, 3.5 และ 5 กิโลวัลท์ และปริมาณไอออนที่แตกต่างคันกันที่ 0.5, 1, 2 และ 4×10^{15} ions/cm2 โดยค่าอย่างของดีเอ็นเอที่ส่งต่อพันธุ์ของพลาสมาเรีย้วาจะถูกส่งเข้าสู่แบคทีเรีย Escherichia coli สายพันธุ์ DH5α แล้วส่งเกิดการกลายพันธุ์ จากการศึกษาพบว่ามีการเพิ่มขึ้นของความดีเอ็นเอของการกลายพันธุ์อันเกิดจากการกัดหนวด bias และปริมาณไอออน ซึ่งความเสถียรของอีเล็กทรอนิกส์ LacZ มีผลต่อการเกิดการกลายพันธุ์ของแบคทีเรีย ซึ่งเกิดจากการกัดหนวดของพลาสมา และการวิเคราะห์ค่ามะละของพลาสมาจะเป็นอีกหนึ่งอันความเสถียรของอีเล็กทรอนิกส์ LacZ และเผยให้เห็นหนึ่งความเสถียรมากโดยการเกิด deletion ในพลาสมา pUC19 และการ transversion ใน LacZ gene และจะเป็นผลที่มี radiation-sensitivity สูงสุด
Title
Effect of Plasma Immersion Ion Implantation on Deoxyribonucleic Acid

Author
Mr. Chanon Jaichuen

Degree of
Master of Science in Biotechnology

Advisory Committee Chairperson
Dr. Ruttaporn Chundet

ABSTRACT

This study was conducted to investigate the effect of plasma immersion ion implantation on DNA as a method of mutation induction. Samples of plasmid DNA pUC19 and a DNA fragment containing the LacZ gene were directly bombarded with nitrogen plasma immersion ion implantation of varied biases (2.5, 3.5 and 5 kV) and varied fluences (0.5, 1, 2 and 4 x 10^{15} ions/cm^2). Plasma treated DNA and DNA fragments were transferred into the bacteria, Escherichia coli DH5α, to observe mutation induction. Mutation frequencies as a function of the bias voltage for fixed fluences and as a function of fluence for fixed bias, were found to increase in direct proportion with bias or fluence. Damage in the LacZ gene was then identified to determine the kinds of mutation induced by plasma implantation on the DNA. DNA sequencing confirmed the damage to the LacZ gene and revealed the dominant types of damage: deletion of pUC19, transversion in the LacZ gene fragment and mutation of the base cytosine (C) with highest radiosensitivity.
ที่ดิลกธรรมศาสตร์

ชัยพงษ์ ขยายพงษ์ อาจารย์ ดร.วัชรพน จันทร์กต ประณามธรรมศาสตร์ที่ปรึกษา
ได้ให้คำแนะนำแนวทางในการทดลอง ตลอดจนให้ความอนุเคราะห์ด้านการศึกษาและให้การสนับสนุน
อย่างหนักอ่อน และช่วยตรวจสอบแก้ไขข้อบกพร่องต่างๆ ด้วยคัดสรรค์มาจดанияวิทยานิพนธ์เรื่อง
สมจริง

ขอขอบพระคุณ รองศาสตราจารย์ ดร.สมบูรณ์ นันตนาภิญย และ รอง
ศาสตราจารย์ ดร.สมบูรณ์ ตั้ง ธรรม กรรมการที่ปรึกษา ที่ได้ให้คำแนะนำแนวทางในการทดลอง
ข้าโดยอิงในการวางแผนการทดลองและให้คำแนะนำในการทดลองของ
แก้ไขวิทยานิพนธ์ จนสำเร็จถึงวันไปด้วยดี

ขอขอบคุณคุณๆ เพื่อน และน้องๆ ที่ช่วยปฏิบัติการวิจัย Molecular Unit ทุกคน พิจิ
ไป ฟื้น ฟิวช , พิภิษ ฟิวช ฯลฯ เป็นผู้ผลิต และนักศึกษาปริญญาเอกและสำนักพิมพ์ ที่
คอยให้คำปรึกษาและให้ความช่วยเหลือก่อนดำเนินการวิจัยนี้

ขอขอบพระคุณ คุณแม่ ที่คอยให้คำปรึกษา, คอยรับฟังปัญหาและคอยให้คำติ
เสนอในการทำงานวิจัย และสุขตั้งใจที่จะมีדודพระคุณครูอาจารย์ทุกๆ ท่านที่ให้ความรู้แก่กุลศิลป์
คนนี้ให้มีวิชากวมรู้เพื่อนำไปใช้ในการพัฒนาสังคมและประเทศชาติได้ไป

และขอขอบคุณคุณแม่ คุณพ่อ คุณพี่ คุณน้อง และสหายในคณะ ที่ได้ให้การสนับสนุนทุกวิจัย
นี้เพื่อพัฒนาวิทยาศาสตร์และเทคโนโลยีให้มีประโยชน์ต่อสังคมและประเทศชาติได้ไป

ชัยพงษ์ ใจชัน
พฤษภาคม 2554
สารบัญ

บทที่ 1 บทนำ
 วัตถุประสงค์ 2
 ประโยชน์ที่คาดว่าจะได้รับ 2

บทที่ 2 การระดมเอกสาร
 นิยามของพลาสมา 3
 ระบบพลศาสตร์โดยการคิดว่าจุดที่อยู่ห่างตัวยอดและวิธีที่ 3
 องค์ประกอบของระบบพลศาสตร์แบบหมู่ยานิยาม 4
 กระบวนการเคลื่อนพลศาสตร์ (Process of Plasma System) 6
 ไอออนนิยามต่างทางดำเนินการที่เป็นขั้นตอนส่วนต่อไปนี้ 9
 ไอออนนิยามต่างทางดำเนินการ (การปรับปรุงพื้นที่) 10
 การกลายพันธุ์ (Mutation) 12
 กระบวนการเกิดการกลายพันธุ์ 13

บทที่ 3 อุปกรณ์และวิธีการวิจัย
 วัสดุอุปกรณ์และสารเคมี 18
 วิธีการทดลอง 18

บทที่ 4 ผลการทดลองและการวิเคราะห์
 ผลของพลาสมาต่อพลาสมาดี pUC19 28
 ผลของพลาสมาต่อ LacZ gene 36
 วิเคราะห์ผลการทดลอง 50
บทที่ 5 สรุปผลการทดลอง

บรรณานุกรม

ภาคผนวก

ภาคผนวก ก สารเคมี

ภาคผนวก ข การเตรียมสารกลาวย

ภาคผนวก ค ประวัติผู้เขียน
สรุปขั้นตอน

<table>
<thead>
<tr>
<th>จุด</th>
<th>รายละเอียด</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>แสดงสถานะในการใช้พลาสมิด pUC19 ไปเหนี่ยวหน้าต่ำพลาสมา</td>
</tr>
<tr>
<td>2.</td>
<td>แสดงการค้นหาโปรแกรมการเกิดปฏิกิริยา</td>
</tr>
<tr>
<td>3.</td>
<td>Master Mix ของปฏิกิริยา PCR</td>
</tr>
<tr>
<td>4.</td>
<td>แสดงรายชื่อ และลักษณะตัวอย่างไบโอติคของไซโคลิสที่ใช้ในการทดลอง Colonies PCR</td>
</tr>
<tr>
<td>5.</td>
<td>แสดงสถานะในการใช้พลาสมิดที่เทคนิคของแอนชีนกับเกิดการ กลับปรับผู้ด้วยพลาสมา</td>
</tr>
<tr>
<td>6.</td>
<td>แสดงการค้นหาโปรแกรมการเกิดปฏิกิริยา</td>
</tr>
<tr>
<td>7.</td>
<td>Master Mix ของปฏิกิริยา PCR</td>
</tr>
<tr>
<td>8.</td>
<td>แสดงรายชื่อ และลักษณะตัวอย่างไบโอติคของไซโคลิสที่ใช้ในการทดลอง Colonies PCR</td>
</tr>
<tr>
<td>9.</td>
<td>แสดงสถานะในการใช้พลาสมิดที่เทคนิคของแอนชีนกับเกิดการ กลับปรับผู้ด้วยพลาสมา</td>
</tr>
<tr>
<td>10.</td>
<td>แสดงความสัมพันธ์ระหว่าง dosage กับ bias ค่าความน่าจะทางเกิดการกลับปรับผู้ด้วยพลาสมาที่มีการกักหนุน dosage : 2 x 10⁸ ions/cm² ทำที่ และ bias : 2.5 , 3.5 และ 5.0 kV</td>
</tr>
<tr>
<td>11.</td>
<td>แสดงความสัมพันธ์ระหว่าง Dosage กับ Bias ค่าความน่าจะทางเกิดการกลับปรับผู้ด้วยพลาสมาที่มีการกักหนุน dosage : 1x10⁸ , 2 x 10⁸ และ 4x10⁸ ions/cm² ทำที่ bias : 2.5 kV ทำที่</td>
</tr>
<tr>
<td>12.</td>
<td>แสดงรูปแบบการเปลี่ยนแปลงลักษณะของไซโคลิส pUC19 ท่าต้นหน้าของ LacZ gene ของไซโคลิส P2</td>
</tr>
<tr>
<td>13.</td>
<td>แสดงความสัมพันธ์ระหว่าง sensitivity ต่อพลาสมา (ในโคเรนไนโอน) ในไซโคลิส P2</td>
</tr>
<tr>
<td>14.</td>
<td>แสดงสถานะในการใช้ LacZ gene ที่หนึ่งหน่วยตัวแปรพลาสมา</td>
</tr>
<tr>
<td>15.</td>
<td>แสดงความสัมพันธ์ระหว่าง dose กับ bias ค่าความน่าจะทางเกิดการกลับปรับผู้ด้วยพลาสมาที่มีการกักหนุน dosage : 5x10⁸ , 1x10⁸ และ 2 x 10⁸ ions/cm² และ bias : 2.5 kV (คงที่)</td>
</tr>
</tbody>
</table>
แสดงความสัมพันธ์ระหว่าง Dosage กับ Bias คือความยืดของกรอบอิสระ
g่ายพื้นที่ในสภาพแวดล้อมที่มีการก่ำหนด dosage : 2 x 10^11 ions/cm² (คงที่)
และ bias : 2.5, 3.5 และ 5.0 kV

17 แสดงรูปแบบการเปลี่ยนแปลงของลำดับแสดงการใช้ LacZ gene ที่ผ่านการ
เหมือนน้ำมันขยายภาพ (โคเลน L1)

18 แสดงรูปแบบการเปลี่ยนแปลงของลำดับแสดงการใช้ LacZ gene ที่ผ่านการ
เหมือนน้ำมันขยายภาพ (โคเลน L10)

19 แสดงรูปแบบการเปลี่ยนแปลงของลำดับแสดงการใช้ LacZ gene ที่ผ่านการ
เหมือนน้ำมันขยายภาพ (โคเลน L18)

20 แสดงผลของแบบที่ sensitivity ต่อภาพระดับ (ไม่ครอบคลุม) ในโคเลน L1

21 แสดงผลของแบบที่ sensitivity ต่อภาพระดับ (ไม่ครอบคลุม) ในโคเลน L10

22 แสดงผลของแบบที่ sensitivity ต่อภาพระดับ (ไม่ครอบคลุม) ในโคเลน L18
สารบัญภาพ

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>หัว</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>สายอากาศ (Antenna)</td>
</tr>
<tr>
<td>2</td>
<td>แขนยงแบบกลับชะเรียง</td>
</tr>
<tr>
<td>3</td>
<td>ระบบสรางความค้างตดกันดานสูญเสียทาง</td>
</tr>
<tr>
<td>4</td>
<td>ระบบจ่ายไฟฟ้าและระบบจ่ายแรงดันที่สรางกระแส</td>
</tr>
<tr>
<td>5</td>
<td>ลักษณะของ Holder</td>
</tr>
<tr>
<td>6</td>
<td>กระบวนการเตรียมใบพลาสมา</td>
</tr>
<tr>
<td>7</td>
<td>พลาสมาผิว pUC19</td>
</tr>
<tr>
<td>8</td>
<td>การสนับสนุนโคลิ่งการสั่นเวลาจากการนำพลาสมา pUC19 ไปเข้าสู่ระบบดังกล่าวพลาสมา</td>
</tr>
<tr>
<td>9</td>
<td>ภาพแสดงการเปรียบเทียบระหว่าง Dosage : 2 \times 10^{15} \text{ (คงที่)}</td>
</tr>
<tr>
<td></td>
<td>กับ Bias 2.5, 3.5 และ 5.0 kV</td>
</tr>
<tr>
<td>10</td>
<td>ภาพแสดงการเปรียบเทียบระหว่าง Dose : 1 \times 10^{15}, 2 \times 10^{15} และ 4 \times 10^{15}</td>
</tr>
<tr>
<td></td>
<td>กับ Bias 2.5 kV (คงที่)</td>
</tr>
<tr>
<td>11</td>
<td>การเปรียบเทียบแลดับยาระหว่าง pUC19 (control) กับ P1</td>
</tr>
<tr>
<td>12</td>
<td>การเปรียบเทียบแลดับยาระหว่าง pUC19 (control) กับ P2</td>
</tr>
<tr>
<td>13</td>
<td>การตัดั้ติสื่อจากภาพจากการนำ LacZ gene ไปเข้าสู่ระบบดังกล่าวพลาสมา</td>
</tr>
<tr>
<td>14</td>
<td>ภาพแสดงการเปรียบเทียบระหว่าง Dosage : 5 \times 10^{14}, 1 \times 10^{15} และ 2 \times 10^{15}</td>
</tr>
<tr>
<td></td>
<td>กับ Bias 2.5 kV (คงที่)</td>
</tr>
<tr>
<td>15</td>
<td>ภาพแสดงการเปรียบเทียบระหว่าง Dosage : 2 \times 10^{15} (คงที่)</td>
</tr>
<tr>
<td></td>
<td>กับ Bias 2.5, 3.5 และ 5.0 kV</td>
</tr>
<tr>
<td>16</td>
<td>การเปรียบเทียบแลดับยาระหว่าง pUC19 (control) กับ L6</td>
</tr>
<tr>
<td>17</td>
<td>การเปรียบเทียบแลดับยาระหว่าง pUC19 (control) กับ L20</td>
</tr>
<tr>
<td>18</td>
<td>การเปรียบเทียบแลดับยาระหว่าง pUC19 (control) กับ L1</td>
</tr>
<tr>
<td>19</td>
<td>การเปรียบเทียบแลดับยาระหว่าง pUC19 (control) กับ L10</td>
</tr>
<tr>
<td>20</td>
<td>การเปรียบเทียบแลดับยาระหว่าง pUC19 (control) กับ L18</td>
</tr>
</tbody>
</table>
บทที่ 1
บทนำ

ปัจจุบันเทคโนโลยีที่พัฒนาสัมพัทธ์กับงานวิจัยในด้านต่างๆ โดยเฉพาะการประยุกต์ระหว่างเทคโนโลยีทางวิทยาศาสตร์และวิศวกรรมศาสตร์ที่ได้รับความสนใจเป็นอย่างมาก อาทิเช่น ฟิสิกส์และวิศวกรรม เกิดเป็นสาขาวิทยาใหม่ คือ Bio-physics ทำให้เกิดแนวคิดหรือองค์ความรู้ใหม่ๆ ที่มีแนวโน้มจะสามารถนำมาใช้ประโยชน์ได้ กระบวนการเทคโนโลยีสมัยใหม่ด้านต่างๆ เช่น การผลิตวัสดุจากสารให้รับความสนใจมากขึ้นเรื่อยๆ โดยมีการพัฒนาการประยุกต์ความรู้ทางฟิสิกส์เข้ากับงานทางด้านวิทยาศาสตร์เพื่อการใช้งานในเทคโนโลยีที่ล่าช้าของผู้คนในงานด้าน (low-energy ion beam) มาใช้ในวิศวกรรมพันธุกรรม (DNA) เข้าสู่ระบบที่เรียก (Anuntalabchochai et al., 2001) และการปรับปรุงพันธุ์ข้าวหอมมะลิด้วยการรักษาให้เกิดการกลายพันธุ์ข้าวหลายล่าช้าของผู้คนในงานด้าน (Anuntalabchochai et al., 2004) เป็นต้น ซึ่งถ้ามีการพัฒนาเทคโนโลยีให้ดียิ่งยังยิ่งยอดเยี่ยม

เทคโนโลยีทางด้านพลศาสตร์เป็นอีกหนึ่งเทคโนโลยีที่ได้รับความสนใจ เนื่องจากได้มีการประยุกต์เทคโนโลยีดังกล่าวเข้ากับงานทางด้านอุตสาหกรรมต่างๆ เช่น อุตสาหกรรมสิ่งทอ อุตสาหกรรมรังสี ตลอดจนการปรับปรุงพันธุ์ข้าวหอมมะลิให้ดีขึ้น แต่พัฒนาการประยุกต์เทคโนโลยีทางด้านชีววิทยาขึ้นมีอยู่อย่างน้อย

ดังนั้นในการศึกษาเบื้องต้นจึงได้มีการพัฒนาการประยุกต์ใช้กับงานทางด้านชีววิทยา โดยเป็นการศึกษาผลของการประยุกต์เทคโนโลยีทางชีววิทยาในโครงสร้างสารพันธุกรรม (DNA) ซึ่งข้อมูลที่ได้จะมีประโยชน์เป็นแนวทางในการประยุกต์เทคโนโลยีดังกล่าวกับงานทางด้านชีววิทยาและเกณฑ์ ซึ่งการปรับปรุงพันธุ์ข้าวของเมล็ดที่เรียก หรือแม้แต่การส่งเสริมต่อไปในอนาคต
วัตถุประสงค์ของงานวิจัย

1. เพื่อศึกษาผลของการระดมยิงปลาในต่อเติมเฉลี่ย
2. เพื่อศึกษาอัตราการตายของ Dosage กับ Bias คือความถี่ของการเกิดการกลายพันธุ์ (mutation frequency)

ประโยชน์ที่คาดว่าจะได้รับ

1. เข้าใจผลของการระดมยิงปลาในต่อเติมเฉลี่ย
2. ทำให้ทราบเจือปนของระบบปลาและในการเห็นว่าให้เกิดการกลายพันธุ์
บทที่ 2
การตรวจสอบสาร

นิยามของพลasma

พลasma (plasma) เป็นคำที่มาจากภาษากรีก (Greek) ซึ่งหมายถึงบ้านหลอมหรือแม่พิมพ์ (mold) หรือที่เป็นเนื้อขึ้นมา (fabricate) ในเชิงพื้นที่พลasmaคือสถานะหนึ่งของสาร นอกจากนี้ยังมีชั้นของแสงเจ้าของเหลวและแก๊ส สถานะเหล่านี้ เหล่านั้นถูกล้อมรอบด้วยของเหลวหรือในขั้นหนึ่งทำให้เกิดการกระตุ้นจากพลังงานของแสงของเชื้อที่สามารถเปลี่ยนสถานะของเหลวหรือแก๊ส และในขณะเดียวกันก็จะทำให้เกิดการกระตุ้นจากพลังงานของแสงของสถานะสามารถเปลี่ยนสถานะของแสงเจ้าให้ และเมื่อกำลังกระตุ้นจากพลังงานของแสงที่ทำให้เกิดการเคลื่อนที่ (ionization) ก็จะทำให้อาการเปลี่ยนสถานะเป็นพลasma ได้

คุณลักษณะของพลasma คือการมีสถานะของแก๊สที่มีอนุภาคที่มีประจุชั่งระดับ

หรือก็คือชั่งระหว่างเป็นกลุ่มทางไฟฟ้า (Quasineutral gas of charge) ประกอบด้วยอนุภาคที่มีประจุและอนุภาคที่เป็นกลาง โดยแสดงพฤติกรรมรวมกัน (collective behavior) (Chen, 1984) และชี้แจงถึงการเคลื่อนที่ของอนุภาคในพลasma ไม่เพียงแต่ขึ้นกับเรื่องไข่นานหรือรูปแบบอนุภาคนั้นๆแต่ยังขึ้นกับสถานะของพลasmaที่อยู่บริเวณทางไกลออกไปอีกด้วย ดังนั้นคืออนุภาคประจุ

ในพลasmaมีการเคลื่อนที่ อนุภาคเหล่านี้สามารถทำให้เกิดความหนาแน่นของประจุและ

บ่อยในระยะสั้นๆ ซึ่งทำให้เกิดสนามไฟฟ้านี้ นอกจากนี้การเคลื่อนที่ของอนุภาคประกอบส่งให้

เกิดกระแสไฟฟ้าชั่วคราวที่เรียกว่าเกิดสนามแม่เหล็กตั้งศักดิ์ทั้งสนามไฟฟ้านี้และสนามแม่เหล็กนี้

ที่ส่งผลต่อการเคลื่อนที่ของประจุอันหนึ่งๆ ทำให้พลasmaมีลักษณะที่คล้ายกันจะเคลื่อนที่สามารถเคลื่อนไหวและลุ่มรอบๆอย่างไร แต่ยังรวมด้วยกันอยู่เป็นกลุ่มก้อน (พันธ์

วัฒน์, 2546)

ระบบผลิตพลasmaโดยการติดต่อขนาดแบบนี้เรียกว่าดักชั่วเวอร์ (เรือนรัฐ, 2545)

แหล่งพลasmaจุดผลิตพลasmaแบบนี้เรียกว่า (inductively coupled plasma, ICP)

อย่างที่เหมาะสมให้พลasmaความหนาแน่นสูงได้มากถึง 10¹⁰-10¹² cm⁻³ (Anders, 2000) พลasmaที่

ผลิตได้มีความแม่นยำและระดับแหล่งผลิตอินเดียซึ่งประกอบด้วยแรงแม่เหล็ก

คลื่นวิทยุที่ทำให้เกิดแม่เหล็กเหนี่ยว (RF induction coil) จะเหนี่ยวเข้ากับผลิตผลิตนี้ทำให้เกิดกระแสไฟฟ้าชั่วคราวทำให้เกิดกระแสแม่เหล็กที่จะต่อให้เกิดกระแสพลasmaดังกล่าวในแบบนี้จะต้องสามารถผลิตผลิตนี้ให้
องค์ประกอบของระบบท่อส่งฟлюอิกไซน์ผ่านอากาศ

1. แหล่งกำเนิดคลื่นวิทยุความถี่ (RF generator) 13.56 เมกะฮิซี ทำโดย Dresslor รุ่น HPG 1365 สามารถให้กำลังสูงสุด 6.5 กิโลวัตต์ มีระบบควบคุมความร้อนด้วยน้ำ มีตัวปรับสัญญาณคลื่นวิทยุให้มีความสมดุลโดย matching box โดยสามารถให้กำลังคลื่นวิทยุได้ในแบบต่ำเนื่องและแบบหวิว ในการทดลองนี้ทำการทดลองเฉพาะแบบต่ำเนื่อง

2. สายอากาศ (Antenna) สำหรับห้องปฏิบัติการนี้ได้ใช้สายอากาศเป็นแบบประหยัดตลาดหน้านำอยู่ในช่วงแรก

![ภาพ 1 สายอากาศ (Antenna)]

3. ชิ้นแบบท่อส่งผ่านแบบกลับเพื่อป้องกันการกระบอกทำจากสแตนเลสใส่ผ่านสูงฉนวน 31.2 ซม. ยาว 42.5 ซม. หนาที่ 6.0 มม. ที่ด้านบนพุกถ่านโดยรอบสี 4.0 มม. เพื่อป้องกันการกระบอกกระชับขนาด 18.0 มม. หนา 5.0 มม. รอบๆ จำนวน 6 ตัว และที่ผ่านไปทั้งสิ้น ระยะห่างอีก 88 มม. โดยทางการจัดวางแบบ broken-line cusp ความเข้มข้นสูงของสนามแม่เหล็กมีค่า 2.2 กิโลเกอร์ และที่ผ่านด้านในวัดความเข้มของสนามแม่เหล็กได้ 670 เภสัช (Suappoot et al., 1998)

![ภาพ 2 ชิ้นแบบกลับเพื่อป้องกันการกระบอก]
4. ระบบสร้างความดันสูงแบบพัดวง (pulse high-volt generator)
ระบบสร้างความดันสูงแบบพัดวง สามารถสร้างแรงดันสูงได้ตั้งแต่ 2.5 – 30 กิโลเวลต์ ความถี่ 1 – 2,000 เฮอร์ซ ความกว้างของช่วงความถี่ (pulse widths) 5 – 100 ไมโครวินาที

ภาพ 3 ระบบสร้างความดันสูงแบบพัดวง

5. การสร้างระบบให้แรงดันสูง (High Voltages) ระบบให้แรงดันสูงต้องมีช่วงการทำงานที่ 2.5 -30 กิโลเวลต์ ซึ่งสูงกว่าความต้องการในการทดลองที่ได้ออกแบบไว้ ดังนั้นจึงได้ทำการออกแบบสร้างระบบให้แรงดันสูงให้มีช่วงการทำงานอยู่ที่ 1 – 1000 วอลต์ เพื่อรองรับภาระงานที่ต้องการแรงดันต่ำกว่าเดิมในงานทางด้านชีวิตยา

ภาพ 4 ระบบจ่ายไฟฟ้าและระบบจ่ายแรงดันที่สร้างเสร็จ
6. Holder เป็นวัสดุที่ใช้สำหรับใส่สต็อกและตัวยาง โดยมีลักษณะเป็นหลุย 9 หลุม

ภาพ 5 เล็กขนาดของ Holder

กระบวนการเกิดระบบพลาสมา (Process of Plasma system) (เกาหลี, 2,549)

1. การแยกตัว (Ionization)

ซึ่งการทำงานให้ยิ่งเกิดความรุนแรงจากกระดับเนื่องจากกระดับหรือโมลลูกของกั้นให้รับผลลัพธ์ของ หรือความรุนแรงจากกระดับกิจกรรมเพื่อพบที่จะเปลี่ยนสถานะเป็นพลาสมา หรือการให้สิ่งของคลื่นความรู้สึกที่ RF generator ที่มีการลดความคืนของกั้นลงมาอยู่ที่ 1 mbar ซึ่งกระบวนการที่แยกตัวเป็นใส่ย้อม ดีลึกซึ้งที่และย้อมกับกระดับจะหลุดออกมาทำให้กระแสกล้าเป็นใส่ย้อมและเกิดการรุ่งแสง (Glow discharge) เป็นสถานะเป็นพลาสมา ให้ชนิดของกั้นที่มีการเปลี่ยนแสงและใช้แสง (UV) ที่เกิดขึ้นและความเข้มแสงในช่วงที่มีระยะห่างตัวอย่างเป็นรูปในช่วงความยาวคลื่น 400 – 700 นาโนเมตร ลักษณะการรุ่งแสงร่วมอย่างเช่น กั้นหรือผลกระทบให้แสงพุ่ยม่วงในโครงการให้แสงเคลื่อนห่วง การแตกตัวและการลองที่มีลักษณะ

Ionization energy of Argon

\[
e^- + Ar \rightarrow Ar^+ + e^- \quad \text{First ionization energy} \quad 15.7 \text{ eV}
\]

\[
e^- + Ar \rightarrow Ar^{2+} + e^- \quad \text{Second ionization energy} \quad 27.6 \text{ eV}
\]

\[
e^- + Ar^{2+} \rightarrow Ar^{3+} + e^- \quad \text{Third ionization energy} \quad 40.7 \text{ eV}
\]

Ionization energy of Nitrogen

\[
e^- + N_2 \rightarrow e^- + 2N \quad \text{First ionization energy} \quad 10 \text{ eV}
\]
1.1 การถูกกระตุ้น (Excitation)

การส่งค่าน้อยๆมากที่สุดของพลังงานย่อมทำให้คือถูกกระตุ้นโดยคิวไลช์หรือคิวไลช์
จากที่มีพลังงานสูงกว่าในระบบ กระบวนการนี้คือกระบวนการกระตุ้นสถานะของระบบ
tัวอย่างเช่น

(*) คือสถานะกระตุ้น

\[e^- + Ar \rightarrow Ar^* + e^- \]
\[e^- + N_2 \rightarrow e^- + N_2^* \]

1.2 การแยกคัดออก (Dissociation)

เป็นกระบวนการที่เกิดขึ้นโดยคิวไลช์หรือคิวไลช์ของกลูต้าคอมไน:
กระบวนการนี้มีค่าการแยกตัวของกิจทรงออกซิเจน (O_2) สามารถตัดตัวได้เป็นออกซิเจน 2
ออกซิเจน อย่างไรก็ตาม monoatom gas เช่น ถ้าออกซิเจน (Ar) ทุกกรณีไม่สามารถที่จะแยกตัวได้

กระบวนการแยกตัวออก ตัวอย่างเช่น

\[e^+ + O_2 \rightarrow e^+ + O + O \]
\[e^- + N_2 \rightarrow 2N + e^- \]

ผลลัพธ์ของการแยกตัวออก คือการเพิ่มประสิทธิภาพการเกิดปฏิกิริยาทางเคมี ผล
ที่ได้จะมีปฏิกิริยาได้ว่าปฏิกิริยาของโอลูทิน กำลังอาจจะเกิดความสุ่มการแตกตัวหรือไม่ก็
ได้ ตัวอย่างเช่น

\[e^- + CF_4 \rightarrow e^- + CF_3 + F \text{ (DISSOCIATION)} \]
\[e^- + CF_4 \rightarrow 2 e^- + CF_3 + F \text{ (DISSOCIATION IONIZATION)} \]

ผลการเรียงแสงของกิจทรงที่คลุมแสงนั้น และสัดส่วนของกลูต้าคอมไนที่กระตุ้น จะ
ส่งผลให้พลังงานที่ปล่อยแสงที่เรียกว่า glow discharge ซึ่งแสงของพลังงานที่ปล่อยออกมา
เนื่องจากพลังงานของเอกซ์ที่ทำให้เกิดปฏิกิริยาของดนตรีกระตุ้นจากสถานะฟื้นเปลี่ยนสถานะไป
อยู่ในสถานะดุลกระตุ้น

โดยปกติแล้วคิวไลช์สามารถอยู่ในสถานะกระตุ้นได้เพียงชั่วสั้นมาก ๆ คือ
โดยประมาณ 10^{-8} s จากนั้นสถานะคิวไลช์จะกลับถิ่นสู่สถานะฟื้น และปล่อยพลังงาน
ออกมาในรูปพลิคิวแม่เหล็กไฟฟ้าความดันของแสงในช่วงที่มีอยู่
แสงพลазมามีคุณสมบัติเป็นอิเล็กตรอนและกิจกรรมในโครงสร้างของแสงพลазมามีคุณสมบัติเป็นอิเล็กตรอน

ผลเรื่องแสงของกิจการที่คุณความคุณ และฟิสิกส์ของกลุ่มวัสดุที่กระ่ำปุ่น พลазม่า ซึ่งจะประกอบไปด้วย active species ดังย่อเช่น การณ์ของกิจการออกแบบ ตะกอนของกิจการออกแบบจะเกิดออกซิเด็กซ์ บางโลกลุกสารตัวกึ่งอิเล็กตรอนได้ วัสดุแสงที่ติดต่อกับผิวต่าง ๆ และสามารถทำให้ความสะอาดชี้วัดได้

1.3 การแยกเปลี่ยนประจุ (Charge exchange)

คือการณ์ธาตุประจุกับมวลจะเกิดขึ้นได้ตามมาก หากเป็นการแยกเปลี่ยน

โดยกับระยะของธาตุคือหัวสี ด้ว่องเช่น

\[e^- + CF_4 \rightarrow e^- + CF_3 + F \]
\[Ar^+ + Ar \rightarrow Ar + Ar^- \]

1.4 การเปลี่ยนแปลงด้วยพลังงาน (Momentum transfer)

เป็นกลไกป้องกันสำหรับการเปลี่ยนแปลงพลังงานด้วยแรงจากการชนของ

ตะกอน การณ์กิจการเป็นกลวง การนำพาพลังงานต่างของอิเล็กตรอนไว้ได้ความสิ้นที่กระ่ำปุ่น แต่การจัดเก็บพลังงาน

มากกว่าของกิจการเป็นกลวง แต่เป็นกระบวนการที่สามารถเกิดพลазมามาได้ เช่นกรณีกิจการในโครง

ตามสมการ

\[N_2^+ + N_2 \rightarrow N_2^+ + N_2 \]
\[e^- + N_2 \rightarrow N_2 + e^- \]

ภาพ 6 กระบวนการเกิดระบบพลазม่า
หลักการหรือกระบวนการเกิดระบบพลาสมา ได้นำไปใช้ประโยชน์ในงานทางคุณศาสตร์และอุตสาหกรรมการแพทย์ โดยงานทางค้นคว้าต่าง ๆ ทำให้ผลิตภัณฑ์ใหม่มีคุณสมบัติที่ดีในการขับพ музыкซ์ในอุตสาหกรรมนั้น ๆ ซึ่งถูกสมบับที่เกิดขึ้นอย่างเช่น การป้องกันการอักเสบ เพื่อการใช้การที่ดีขึ้น และขจายป้องกันความขึ้นของผลิตภัณฑ์ได้จากคุณสมบัตินั้นด้านแล้วก็เกิดจากการน่าพลาสมาประจุอุดมคติใช้

พลาสมาเป็นเทคนิกหนึ่งทางศาสตร์ของฟิสิกส์ที่นำมาประยุกต์ใช้ เพื่อเพิ่มคุณสมบัติต่าง ๆ พื้นฐานนำไปประกอบกับผลิตภัณฑ์ ซึ่งมีการเปลี่ยนผ่านบนพื้นผิวสัมผัสกับเทคนิคฟิสิกส์อื่น ๆ เช่น เทคนิลก์ไอออนผลลัพธ์งานดังนี้ซึ่งขจายระยะทางเทคนิคล์ไอออนได้มาเป็นไปในงาน Electronic device fabrication และ Material modification ที่มาได้ข้อขึ้นมีบทบาทสำคัญในงานด้านต่าง ๆ มาขึ้นโดยหนึ่งทางงานทางด้านสัมผัสกับสิ่งแวดล้อม การแพทย์ การรักษาโรคที่ซ่วยยาโปรดมีผลต่อฟิสิกส์ประกอบด้วยการวิจัยเทคโนโลยีสัมผัสกับวัสดุที่เปลี่ยนแปลงสิ่งแวดล้อมของโรคเช่น การเปลี่ยนสัมผัสกับสิ่งแวดล้อม สำหรับงานทางด้านวัสดุศาสตร์ จะเกี่ยวข้องกับการปรับปรุงพื้นผิวลง อาหารดังค่อยได้มีการประยุกต์นี้ เทคนิคล์ไอออนหลังงานด้านนี้นำมาใช้กับงานทางด้านวิทยาการทางเทคนิค ได้แก่ ไอออนบีกับงานทางด้านการส่งข้อมูลส่วนตัว เอนไซม์ และไอออนบีกับงานทางด้านการเกษตร (การปรับปรุงพืช)

ไอออนบีกับงานทางด้านวิทยาการ

ได้มีรายงานการสง่ายขันส่วนตัวเป็นเอกษ์จากซิลิซิคซ์ที่มีชีวิต โดยใช้เทคนิคล่าไอออนพลังงานต่ำเข้าถึงการส่งข่าย Gus gene (β-galactosidase) และ cat gene (Chloramphenicol acetyltransferase) เซ่นซิรูลิซิคซ์เข้าซิลิซิคซ์เพื่อให้สารเคมีของซิลิซิคซ์เข้าถึงการส่งข่ายบนซิลิซิคซ์ แต่ยังไม่มีข้อมูลงานที่เป็นทางานเรื่องนี้ อาจเกิดจาก 2 กลไก คือ (1) เมื่อซิลิซิคซ์ถูกกระตุ้นโดยไอออนจะมีผลทำให้เกิดซิลิซิคซ์และเขย่าที่มีชีวิต ทำให้พลาสมาประจุอุดมคติเข้าสู่ซิลิซิคซ์ได้ (Yu et al., 1993)
ค้อมา Vilaithong et al. (2000) ได้ทดลองส่งผ่านพลาสมิดเข้าสู่แบคทีเรีย และเนื้อเยื่อฟัน เพื่อวิเคราะห์การใช้ล้างโอโซนในโรคเยื่อบุถุง สามารถลดระยะเวลาการรักษาได้ดี และใช้ล้างโอโซนของออร์โกรในประสบการณ์การส่งผ่านพลาสมิดเข้าสู่แบคทีเรีย

ซึ่งในปีที่เกิดมา Anuntalabbochait et al. (2001) ได้ทำการทดลองส่งผ่าน มวลมิคเข้าสู่แบคทีเรีย Escherichia coli โดยใช้ล้างโอโซนดังกล่าวในโรคเยื่อบุและออร์โกรได้ประสบผลล่างเร็ว

โอโซนเป็นตัวงานทางด้านแพทย์กรรม (การปรับปรุงพันธุ์พืช)

ได้มีการใช้ล้างโอโซนลดงานในการปรับปรุงพันธุ์พืช ได้ทำการทดลองใช้ล้างโอโซนในโครงการพันธุ์พืชที่มีการใช้กีฏการกลายพันธุ์อ่อนกว่าได้รับการเปลี่ยนแปลงเพื่อให้เกิดความแตกต่าง การเปลี่ยนแปลงอาจที่มีการหายไปในระหว่างการขยายตัว หรือไม่ชัดเจน ซึ่งความแตกต่างนี้จะเกิดมาจากช่วงเวลาที่ใช้ล้างโอโซนที่มีซึ่งได้ใช้ล้างโอโซนในช่วงของความแตกต่างกิ่งโอโซน Acentric fragments, Chromosome deletions, Lagging chromosomes, Chromosome bridge และ Micronuclei โดยชนิดของความแตกต่างกิ่งนำที่สูง คือ Chromium bridge, Lagging chromosomes และFragment เกิดจากการกลายพันธุ์ที่ไม่ได้ถูกกระตุ้นโดยผู้มีภูมิคุ้มกันจากโคลีเนียม ซึ่งมีการส่งผ่านการกลายพันธุ์อยู่ในส่วนของตัว ทำให้มีผลเล็กน้อย แต่ถึงแม้เป็นน้อย ลูกผสมที่ได้จาก 25 องศาเซลเซียส ที่กำหนดไว้ในโครงการฯ ได้สรุปว่าล้างโอโซ่ลดงานตัวการประสิทธิภาพ ในกรณีการเปลี่ยนแปลง เพื่อประสิทธิภาพการพบการเปลี่ยนแปลงพันธุ์พืช ได้มีการทดลองรับข้อมูลประยุกต์ข้อความในการแก้ไขหรือการทดลองใช้ข้อมูลในช่วงเวลาที่ใช้ล้างโอโซน โดยทำการทดลองใช้ล้างโอโซนในช่วงเวลาที่ใช้ข้อมูลในช่วงเวลาที่ใช้ล้างโอโซน คือ Orange Rosamini และ Red Minimo โดยระบุข้อมูล
โอนเทปวิรัสดาชั่งออกตก พบว่าลักษณะที่กลายพันธุ์ ถือ ลักษณะของตก จำนวนตก และผังตก โดยพบว่ามีตกที่พบจะมีเส้นถูกกว่ารูปไข่พเนจร แต่ไม่ได้เปลี่ยนแปลงรูปวงจมกระแท้เป็นเส้นเปลือกขาว หรือชมพู (Yamaguchi et al., 2003) และ Okamura et al. (2003) ได้เห็นขวัญให้กิจการกลายพันธุ์ใน decoration นับ.

ในปีของ Anuntalabhochai et al. (2004) ใช้ล่าไก่ยอมในไก่สมัยที่ระดับ หลังจาก 60 kV, ปริมาณไก่ 1.4 และ 8x10^6 ion/cm^2 ในการนี้ยอมให้กิจการกลายพันธุ์ใน จำนวน พบว่าลักษณะที่กลายพันธุ์สู้กู้ Leaf blade และ Stem sheath แท้ในเป็นสีเขียว

จะเห็นว่าเทคนิคทางสิ่งก่อโรคทำลายทักษะล่าไก่ยอมผลลัพธ์และขั้นตอนของบทบาท ในการค้นหาซีวิวภาษาอังกฤษ โดยมีเป็นธีบียอนภายนอกเหมาะสม ซึ่งทำให้ได้มีการจดจุมมาก ประเทศกิจการกลายพันธุ์สู้กู้ี IPTG ซึ่งมีกิจการกลายพันธุ์สู้กู้ีกิจการกลายพันธุ์สู้กู้ีiptg ประเทศไทยของเกษตรเป็นสีเขียว และสามารถปล่อยเปลือนแปลง โครงสร้างของพลาสมิด

Yang et al. (1997) ได้ทดลองน้ำใส่ยอมของยี่ก้าวไก่ในไถกินไปภักดีให้กิจการกลายพันธุ์สู้กู้ีDs M13mp18 DNA เผื่อวิเคราะห์การเปลี่ยนแปลงของลักษณะของบริเวณของ LacZ gene โดยพบว่าการเปลี่ยนแปลงของแบบแบบ transition (50%), transversion (45%) และ deletion (5%) ซึ่งพบว่าในการเปลี่ยนแปลงของแบบแบบ transition จะพบแนวไตรเซ็นท์เป็นไตรเซ็นท์และ ของนับไตรเซ็นท์ในลำดับการเปลี่ยนแปลงของแบบแบบ transversion พบในไตรเซ็นท์ในไตรเซ็นท์และไตรเซ็นท์ในลำดับการเปลี่ยนแปลงของแบบแบบ基 verin และไตรเซ็นท์และไตรเซ็นท์ในลำดับการเปลี่ยนแปลงของแบบแบบ base substitution ไตรเซ็นท์ในไตรเซ็นท์และ transversion (49.6%) และ transition (39.6%) ซึ่งผลิตภัณฑ์กิจการใช้รังสีหอมในการขับน้ำใส่ยอมการทดลองที่แล้วกัน ซึ่งสามารถยอมได้ไวก่อยอมผลต่อ LacZ gene โดยตรงไม่ใช้การสู่เมื่อการรังสีหอมกันเข้าชูในในการทดลองการใช้รังสีหอม.
จะเห็นว่ากระแสด้านพิสัยกรรมที่จะนำมาประยุกต์ใช้กับงานทางด้าน
ชีวิตภายใต้ชื่อต่าง ๆ ที่จะเห็นว่าไปทางด้านการขับเคลื่อนให้เกิดการกลายพันธุ์ (Mutation) เป็นส่วนใหญ่
ซึ่งสามารถเกิดจากการเปลี่ยนแปลงต่าง ๆ ได้ ซึ่งในการทดลองนี้จะใช้ LacZ gene เป็นตัวอย่างชิ้น
ผลของพลาสม่า โคด LacZ gene เป็นบริเวณหนึ่งที่อยู่บนพลาสม่า pUC19 ซึ่งหลักการคือเป็นการ
ตรวจสอบกิจกรรมของเอนไซม์ที่เรียกว่า β-galactosidase เมื่อพลาสม่าส่งอัลคาลีสูตรต่ำแล้วน้ำมันและผลิตภัณฑ์ที่ใช้สำราญเข้มแบบพิสัยและใส่สาร IPTG (isopropyl-β-D-
thiogalactoside) ซึ่งเป็นสารที่ใช้เหนี่ยวนำให้เกิดการสร้างเอนไซม์ β-galactosidase (inducer)
พร้อมกับสาร X - gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) ซึ่งเป็นสารตั้งต้นของ
เอนไซม์นี้ โดยเฉพาะที่นำไปใช้พลาสม่าและไม่สามารถเคลื่อนขึ้นได้ ส่วนเซลล์ที่ได้รับพลาสม่าจะ
เจริญได้และสามารถผลิตเอนไซม์ β-galactosidase โดยจะดูสาร X - gal เกิดเป็นสีฟ้าขึ้นทำให้มี
โค้ดที่เป็นสีฟ้า
ทำให้มีแนวคิดว่าจะนำเทคนิคพลาสม่า มาแสดงกับเรื่องของการขับเคลื่อนให้เกิดการ
กลายพันธุ์ (Mutation) เป็นขั้นตอนที่ เพื่อที่จะใช้เป็นความรู้พื้นฐานในการต่อยอดการทดลองให้
สูงขึ้นค่อยไป

การกลายพันธุ์ (Mutation)

หมายถึงการเปลี่ยนแปลงในลำดับสายในดีเอ็นเอที่เกิดขึ้นในที่ไม่ชัดเจน ซึ่งสามารถ
เกิดได้จากธรรมชาติ (Spontaneous mutation) หรือเกิดจากภายนอก (Induced mutation) การ
เปลี่ยนแปลงที่เกิดขึ้นก็มีอัตราการเปลี่ยนแปลงจากเริ่มแรกพอๆ กับจำนวนตลาดได้ การกลาย
พันธุ์ยังอาจมาจากข้อผิดพลาด (Duplication) การขาดหาย (Deletion) ของโครโมโซม การ
เปลี่ยนแปลงอัลคาลีสูตรของส่วนของโครโมโซม (Inversion) หรือกิจกรรมขยับสิ่งที่ระหว่าง
โครโมโซมที่ต่างกัน (Translocation) หรือโครโมโซมทำให้เกิดการปรากฏลักษณะอันงอก
(Phenotype) ของสิ่งที่มีชีวิตเปลี่ยนแปลงไปลายละเอียดของสิ่งที่มีชีวิตที่แสดงลักษณะบางสิ่ง เรียกว่า วัสดุ
ไป (Wide type)ส่วนสิ่งที่มีลักษณะเปลี่ยนไปเร็วกว่า คือกลายพันธุ์ (Mutant) สารก่อการ
กลายพันธุ์ (Mutagen) อาจเป็นสารเคมี หรือรังสี ทำให้เกิดการกลายพันธุ์ เช่นกระบวนการที่ก่อการ
กลายพันธุ์เกิดเองในธรรมชาติ หรือจากการเหนื่อยล้า จะเรียกว่า กระบวนการกลายพันธุ์
(Mutagenesis)
ชนิดของการกลายพันธุ์ใน 4 ระดับ

1. การกลายพันธุ์แบบฟรัมชิฟ (Framshift mutation) การกลายพันธุ์นี้มีการพุ่งหรือหายไปของนิวคลีโอติโดคำไม่เกินกลุ่มขีดเอียงเพียง 1 โมเลกุลทำให้การอ่านรหัสของพันธุ์กรรมเปลี่ยนไปแล้วคือเข้าไปประจำที่สร้างจากอินโมโนรอนท่างนอยให้กลายเป็น

2. การกลายพันธุ์แบบพ้อยต์ (Point mutation หรือ gene mutation) การกลายพันธุ์ชนิดนี้มีการเปลี่ยนแปลงของแบบพันธ์หนึ่งขุนจะเรียกว่าการกลายพันธุ์แบบพ้อยต์ หรืออบางครั้งเรียกว่าการกลายพันธุ์แบบแทนที่ (Substitution mutation) การกลายพันธุ์แบบพ้อยต์มีหลายแบบคือ

2.1 การกลายพันธุ์แบบไซเอนท์ (Silent mutation) เป็นการกลายพันธุ์ที่เกิดขึ้นแต่ไม่มีผลต่อลำดับของอะมิโนที่ปรากฏของเซลล์นั้น ตัวอย่างเช่น เปลี่ยนสมบัติโดยเปลี่ยนโปรตีน (Codon) นั้นยังคงพลังงานของกรอมอร์เป็นเดิม

2.2 การกลายพันธุ์แบบมิสเซนส์ (Missense mutation) เป็นการเปลี่ยนรหัสพันธุ์กรรมมีผลให้เปลี่ยนชนิดของการคอมบาลในโปรตีน คือ การเปลี่ยนแทนในสายพันธุ์ไขว้ไข่ไข่ด้านบนที่ 4 ของ A หากให้โปรติเนินเป็นอาร์จิเนินแทนที่จะเป็นโปรตีน หรือการเปลี่ยนแทนในสายพันธุ์ไข่ไข่ด้านบนที่ 15 จากโคดินเป็นไข่ไข่ทำให้ได้พันธุ์ของโปรตีนที่จะเป็นลำดับ นอกจากนี้ยังมีการกลายพันธุ์แบบมิสเซนส์บางชนิดสามารถทำให้เกิดอาการต่ำเซลล์ในระยะหนึ่งแต่ไม่ถึงกว่าต่ำเซลล์ในระยะหนึ่ง การกลายพันธุ์แบบนี้เรียกว่า condition mutation นอกจากนี้ยังมีการกลายพันธุ์ที่เกิดขึ้นทำให้โปรตีนที่มีส่วนหนึ่งที่ไม่ส่งที่จะเรียกว่าเป็นการกลายพันธุ์แบบลีกี้ (Leaky mutation) เช่น ในแบบที่เกิดจากการกลายพันธุ์ของเองใดๆทำให้ประสิทธิภาพเลือดไป

2.3 การกลายพันธุ์แบบนันสันซ์ (Nonsense mutation) เป็นการกลายพันธุ์ที่ทำให้เกิดการเปลี่ยนแปลงของนิวคลีอิโตซึ่งนั้นไม่อาจเกิดเป็นการแทนที่การเพิ่มขึ้นหรือขาดหายไปทำให้เกิดสารอนุกรมเปลี่ยนเป็นรหัสทุกการเปลี่ยน (UAG, UGA หรือ UAA) ทำลายผลิตฟิลิกซ์ร้านพันธุ์ที่มีขึ้นอยู่กับจอมง่ายนั้นๆในแบบพันธุ์โคดอน (Nonsense codon) โดยทำผลิตฟิลิกซ์ที่นั้นหรือยากกว่าปัญหาดีมีผลต่อรูปแบบและการทำหน้าที่

2.4 การกลายพันธุ์แบบสับพาร์ทชั่น (Suppression mutation) เป็นการกลายพันธุ์ที่เกิดขึ้นแล้วไปควบคุมกลายพันธุ์ที่มีมุขต้นทำให้ได้ผลแบบ wide type กับหนึ่งขุน เช่น เมื่อเกิดการกลายพันธุ์ได้พันธุ์ที่เป็นอนุกรมแบบมีกิจการกลายพันธุ์อีกครั้งทำให้มีการสร้างโปรตีนต่อไปได้จนถึงรหัสที่เหนื่อยจริง (ตัวรูป. 2546)
กระบวนการตั้งการคลอฟั่นต่อมย่อยอักษรเป็น 2 แบบคือ

1. การกลายพันธุ์ที่เกิดตามธรรมชาติ (Spontaneous mutation)
 จะมีความถี่ประมาณ 1 ในล้านที่เกิดจาก 2 ปัจจัยใหญ่ ๆ ได้แก่ ปัจจัยภายในพืช
 และปัจจัยภายนอกแวดล้อม

1.1 ปัจจัยภายในพืช
 - องค์ประกอบทางพันธุกรรม เป็นความแตกต่างที่เกิดขึ้นในจีโนมของพืช
 เองเช่น เพื่อที่มีการเปลี่ยนแปลงใน โครงสร้างของโครโมโซม ได้แก่ Inversion heterozygote หรือ
 Translocation heterozygous มีผลทำให้ได้ผลของตัวพันธุ์ที่มีจีโนมยืนยัน และหนึ่งกับกันลักษณะ ในพืช
 บางชนิดมีเห็นพันธุ์ใหม่เช่น Transposable element หรือ Transposon ซึ่งมีคุณสมบัติพิเศษ
 ในการเคลื่อนย้ายด้านหน้าหรือด้านหลังของโครโมซومหนึ่งไปยังด้านหน้าใหม่ ๆ ถ้าได้ในจีโนม มีผลทำให้ได้
 ลักษณะใหม่ออกมา เช่น การเกิดจุดสีบางสีเม็ด ลวดลาย หรือใบของข้าวโพด

 - สภาพทางสรีรวุ พบว่าในพืชมีการปลูกเป็นปัญหาบางประการที่เกิดขึ้นใน
 เป้าหมายที่เกิดขึ้นกับจีโนม เพื่อความที่จะลดลงของจีโนมภาพ พบว่าเมื่อสั่นที่เก็บไว้เป็น
 ความที่ได้พันธุ์ที่มีการเปลี่ยนแปลงพันธุกรรมสูงกว่าพันธุ์ที่ได้จากเม็ดที่ปลูกถ่ายไว้ตาม
 การที่เก็บเม็ดที่เป็นพันธุ์ที่ทำให้มีการกระจายที่คล้ายกันบางประการที่ได้จากเม็ดที่ปลูกถ่ายไว้ตาม
 การที่เก็บเม็ดที่ทำให้มีการกระจายที่คล้ายกันบางประการที่ได้จากเม็ดที่ปลูกถ่ายไว้ตาม

1.2 ปัจจัยภายนอกแวดล้อม
 - ยาหรือ พบว่าการปลูกพืชในแหล่งที่จากการรังของมีผลต่อการกล้วย
 พันธุ์หลายชนิด เช่น การปลูก Tradescantia ในที่ที่ยาใสด้วยยีชี และเม็ดคราบจุดโครโมโซม
 พบว่ามีการแตกต่างของโครโมโซมมากกว่าปกติ

 - อุ่นหรือภูมิที่เปลี่ยนแปลงอุณหภูมิในช่วงวันหนึ่ง ๆ ถ้าสูงมาก หรือต่ำมาก
 อายาคงผลต่อการกล้วยพันธุ์หลายชนิดรวมที่เกี่ยวกับปริมาณ

 - รังสีอิเล็กทรอนิกส์ ในการพืชมีแหล่งใช้รังสีนิวเคลื่อน ๆ เช่น รังสีจากวิทยา
 ศาสตร์ของพวก Radonnuclide เช่น ยูเรเนียม โคเบียม ซึ่งกระจายตัวไปบนพื้นโลก และปัจจัย
 อย่างหนึ่งในการที่จะให้เกิดการกล้วยพันธุ์หลายชนิด นอกจากนี้ยังมีรังสีอิเล็กทรอนิกส์บางชนิดออกจาก
 โลกตัวอย่าง (ศรีรุ่ง, 2540)
2. การกลายพันธุ์ที่เกิดจากการเหยียดใช้ (Induced mutation)
เป็นการใช้ส่งกักลายพันธุ์ (mutagen) เพื่อชักนำให้เกิดการกลายพันธุ์ ซึ่งมีหลาย
วิธี (Gottschalk และ Wolff, 1983) คือ

2.1 การใช้รังสี เฉลี่ยเป็น 2 ประเภท
- รังสีที่ถูกให้เกิดไอกัยในเชื้อ ได้แก่ รังสีอีกอร์, แอนตา, คอสมิก, ทั้งทำ, โดน, ถวายกลิ่น, โปโลน, นิวตรอน และ อนุภาคอื่นๆ ที่มีมีการเคลื่อนที่เร็ว รังสีเหล่านี้ยังมีอำนาจ
ทำลายความยืนต่อต่างๆ ได้สูง
- รังสีที่ไม่ถูกให้เกิดไอกัยในเชื้อ ได้แก่ รังสีอีกอร์ไวโอเลต (Ultraviolet)
รังสีแสงที่สามารถทำลายความยืนต่อต่างๆ ดังกล่าวคู่ของรังสีที่ถูกให้เกิดไอกัยในเชื้อ

2.2 การใช้สารเคมี เฉลี่ยเป็น 2 ประเภท แบ่งเป็น 7 ชนิด
(Milling และ Wassom, 1997)

Alkylation สารเคมีกลุ่มนี้ทำให้เกิดการเปลี่ยนแปลงพันธุ์ ได้ดี ซึ่งจะเข้าทำ
ปฏิกิริยาสกัดดีجينจากอนุภาคพิษของเบลล์วิน และ ไซค์ ไทย มี เช่น Ethyl methane sulphonate
(EMS), Ethyleneimine (EI) และ Diethyl sulphate (DES) เป็นต้น

Arylation สารเคมีกลุ่มนี้ทำให้เกิดการปฏิกิริยาชิวะ และพวก Polycyclic aromatic hydrocarbon เช่น Aflatoxin B1, Benz (a) pyrene และ Acetylaminofluorene (8-AG) เป็นต้น

Intercalation สารเคมีกลุ่มนี้ทำลายการประสานตัวเชื้อไวโอเลตของพีเย่
เช่น Actinomycin D, Acridine orange และ Acriflavin เป็นต้น

Base analogue incorporation เป็นกลุ่มของสารเคมีที่มีโครงสร้างคล้ายกับมี
วัสดุของไบแคปส์ สารเคมีในกลุ่มนี้จะเข้าไปแทนที่เบสจิลค์อีเมื่อการเข้าตัวอย่าง เช่น 5-
bromouracil (5-BU) เป็นเบส analogue ของไทมิน, 2-Aminopurine เป็นเบส analogue ของไท
คีน, และวิตามิน

Deamination สารเคมีนี้มีความสามารถในการเปลี่ยนอนุภาคมีไอกัยออกไป
จากเบสกลุม, ไทมิน, ไซค์และวิตามินได้ทำให้เกิดปฏิกิริยาในจับกลุมบางต่างไปจากเบส
เช่น Nitrogen acid และ Sodium bisulphate เป็นต้น
Metaphase poison สารเคมีกลุ่มนี้มีฤทธิ์บดิบในการทำงานคือกับ Colchicines มีข้อเสียคือก่า C-mitotic agent ทำปฏิกิริยาโดยการจับระหว่างกันโพลิเซียเส้นขนศีรษะ (Spindle fiber) และจัดเรียงขนศีรษะจากกันของโครโมโซม โดยจะรวมกับโปรตีนของโครโมโซม หัวอย่าง (Microtubules) และยังสร้างการเปลี่ยนโครงสร้างของโครโมโซม และเพิ่มจำนวนพอลิซี (Ploidy) ได้ เช่น Hydroquinone และ Vinblastin

Enzyme inhibitor สารเคมีกลุ่มนี้ทำงานโดยจับจัดการทำงานของเอนไซม์ต่างๆ ซึ่งเกี่ยวข้องกับกระบวนการช่วยพันธุ์กัน เช่น จัดเรียงสารสกัดระหว่างที่ใหม่ทำให้เกิดการแทรกเชื่อมกันของที่ใหม่ มีผลทำให้เกิดความผิดพลาดในการจัดเรียงยานด้วยของพอลิซี เช่น น้ำยาสี สีเข้มบางแห่งที่ใหม่ เป็นเหตุให้เกิดการพันธุ์รุนเรื่อง เช่น Caffeine, Azaserine และ Hydroxyurea เป็นต้น

2.3 การเห็นในการทำงานของกลุ่มพันธุ์ที่ดีการทำงานของเซลล์หรือกลุ่มในสายพันธุ์เป็นเซลล์แทรกซ้อน เถื่อนที่ในการทำงานหลักของเซลล์ เช่น ผู้ที่ทำให้เกิดการขัดขวางในกระบวนการของเซลล์ ทำให้เกิดความผิดพลาดในการทำงานของเซลล์ ทำให้เกิดการเรียงลำดับในการทำงานของเซลล์เสียหาย ทำให้เกิดการแข่งขันในที่ใหม่ เช่น Somaclonal variation สามารถกลับหลับกลับมาที่ดีไปใช้ประโยชน์ในการสร้างพันธุ์ใหม่ได้ (Novak, 1990)

2.4 การกลายพันธุ์เกิดจากกระบวนการของเส้นย่อย (DNA insertion-mutation)

รั้นส่วนหรือลักษณะของเส้นย่อยที่สอดแทรกเข้าไปในเยื่อเม็ดกลับทำให้การทำงานของเยื่อเม็ดกลับไปทำให้เกิดการแข่งขันในที่ใหม่ถึงการเปลี่ยนแปลงไปได้ โดยการมีลักษณะอ่อนถึงส่งผลกระทบให้เกิดการเปลี่ยนแปลงไปได้

Transposable element ในสิ่งมีชีวิตติดต่อกับพันธุ์ที่ของเยื่อเม็ดกลับ และสิ่งมีชีวิตนี้มีฤทธิ์ต่อการทำงานของข้อมูลของเซลล์ และสามารถทำงานไปยังเซลล์ได้ ทำให้เกิดการเปลี่ยนแปลงไปอย่างรวดเร็ว ทำหัวผลลัพธ์ไปในที่ใหม่ เช่น Transposon (Fedoroff, 1982) ตัวอย่างเช่น การเกิด Varicigae เป็นกลุ่มของข้อมูลที่รุนแรงย้ายไปตามยี (Wessler et al., 1995 ; Matsubara et al., 2005)
T-DNA ใบการที่ T-DNA สามารถสอดแทรกเข้าไปยังจีโนมของพืชที่มุกได้ ช่วงจึงจะเจาะสอดแทรกเข้าไประหว่างชีวิต ซึ่งมีผลการที่จะดีในอนาคต ทำให้เกิดการเปลี่ยนแปลงลักษณะทางฟิวชันได้ เช่นเดียวกับที่เกิดขึ้นเมื่อจากการเหนือยานิวเคลียร์หรือสารเคมีก่อกลายพันธุ์ ซึ่งในปี 1991 มีรายงานการนำ T-DNA เข้าไปในจีโนมของ Arabidopsis thaliana โดยวิธีการกับที่ละตัวจุลชีพก่อต้นเกื้อ Agrobacterium tumefaciens พบว่าได้ Transformants มากกว่า 8,000 ชนิด และเป็นพันธุ์กล้าที่แท้จริงมากกว่า 1,000 ชนิด (Feldmann, 1991)
บทที่ 3
อุปกรณ์และวิธีการวิจัย

1. วัสดุอุปกรณ์และสารเคมี

1.1 เครื่องมือ/อุปกรณ์

1.1.1 เครื่องผลิตพลาสมาโดยการดิสชาร์จแบบเหนียวตัวเคลื่อนที่
- เครื่องผลิตพลาสมาโดยการดิสชาร์จแบบเหนียวตัวเคลื่อนที่
 ได้รับความอนุเคราะห์การใช้เครื่องมือจาก ภาควิชาวิทยาการชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่
 1.1.2 เครื่อง PCR (Thermal cycler)
 1.1.3 เครื่อง Electrophoresis
 1.1.4 เครื่อง UV
 1.1.5 คิวเวต (cuvette)
 1.1.6 เครื่อง electroporater
 1.1.7 เครื่อง incubator
 1.1.8 Holder
 1.1.9 เครื่อง Microwave
 1.1.10 เครื่องปั้นหมุนทรงจั่วความเร็วสูง (centrifuge)
 1.1.11 เครื่องผสมข้าว (shaker)
 1.1.12 เครื่อง spectrophotometer
 1.1.13 เครื่อง water bath

1.2 สารเคมี

1.2.1 Plasmid extraction buffer (น้ำยาล้าง)
 1.2.2 ชุดการตัดพลาสมิด Mini kit
 1.2.3 Chloroform
 1.2.4 Iso-propanol (แอลกอฮอล์)
 1.2.5 Ethanol 70 % (แอลกอฮอล์)
 1.2.6 Master Mix (สีแกร่ง PCR)
1.2.7 Deionized water (dH₂O)
1.2.8 Agarose gel / Agar gel
1.2.9 TBE 1X buffer (ภาคผนวก)
1.2.10 DNA marker (ภาคผนวก)
1.2.11 Loading buffer (ภาคผนวก)
1.2.12 Ethidium Bromide (ภาคผนวก)

1.3 ขั้นตอนในการทดลอง

1.3.1 พลาสมิด pUC19
- จากบริษัท Clontech ซึ่งมีขนาด 2,686 bp ได้ยึดมิน Amp’ เบียนยีน เครื่องหมายเพื่อใช้ในการคัดเลือกและเพลาสมิดตั้งชื่าว่ามี LacZ gene เป็นซีนรายงานผลที่จะมีการแสดงออกของ β-galactosidase ซึ่งมีลักษณะพิษในไลป์เป็นสิ้นที่เจิน

1.3.2 ขั้นตอนของ LacZ gene
- ทำการคัดชันส่วนของ LacZ gene จากพลาสมิด pUC19 ด้วยอินไซต์สั่น จำเพาะ Restriction enzyme (NdeI / HindIII) ซึ่งจะได้ชันส่วนของ LacZ gene ได้รับขนาดเท่ากับ 264 bp
2. วิธีการทดลอง

- แบ่งออกเป็น 2 การทดลองคือ

2.1 การใช้พลาสมาฟิลด์ pUC19 ไปลงบนเนื้อให้เกิดการกลายพันธุ์ด้วยพลาสมา

2.1.1 การเตรียมพลาสมาฟิลด์ pUC19

เริ่มจากการลงเชื้อ E. coli ที่มีพลาสมาฟิลด์ pUC19 ลงในอาหารเหลว LB ปริมาตร 100 มิลลิลิตร ที่มีโอปุ่มเจลแอมเพอร์ชิลในความเข้มข้น 100 มิลลิกรัม/มิลลิลิตร จากนั้นนำไปแช่คู่กรองเชื้อที่ความเร็ว 150 รอบ/นาที ที่คุณภาพ 100 องศาเซลเซียส โดยใช้เวลาประมาณ 16 – 18 ชั่วโมง จากนั้นนำไปที่ผ่านการเชื่อมต่อสมบัติพลาสมาฟิลด์ด้วยชุด kit (วิธีการตามข้อ 8) เทว่าความเข้มข้นของพลาสมาฟิลด์ด้วยเครื่อง spectrophotometer ที่ความยาวคลื่นที่ 260 นาโน เมตร (ปริมาณที่ใช้ 3 ไมโครกรัม)

2.1.2 ทำการฉีดสารละลายพลาสมาฟิลด์ pCU19 ลงใน holder หัว 9 หมูมแล้วนำไปใส่ในผู้ปลอดเชื้อประมาณ 30 นาที และนำไปแช่สู่เครื่องพลาสมา โดยใช้สารละลายในตู้นี้ สำหรับเรือนจีที่ใช้ในการเตรียมเนื้อให้เกิดการกลายพันธุ์ด้วยพลาสมา

- Gas = Nitrogen (N₂)
- Flow rate = 4.00 sccm
- RF power = 50 watt
- Frequency = 50 Hz
- Phase leughth = 10 μs

ตาราง 1 แสดงสภาวะในการเตรียมเนื้อพลาสมาฟิลด์ที่ใช้พลาสมาฟิลด์ pUC19

<table>
<thead>
<tr>
<th>Dose (ion / cm²)</th>
<th>Bias (kV)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x10¹⁵</td>
<td>2.5</td>
<td>6.30</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>2.5</td>
<td>19.08</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>3.5</td>
<td>17.16</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>5.0</td>
<td>26.14</td>
</tr>
<tr>
<td>4x10¹⁵</td>
<td>2.5</td>
<td>38.17</td>
</tr>
</tbody>
</table>
2.1.3 ทำการละลายพลาสมิดที่อยู่บน holder ด้วยน้ำ

2.1.4 ทำการส่งผ่านพลาสมิดที่ผ่านการซักน้ำด้วยพลาสามา่สุ E. coli

สายพันธุ์ DH5α

2.1.5 มันจานบนโดยสิ่งเส้นและสิ่งเก็บ ทำการบีบเพื่อปักไป
คำนวณความดันของการเคลื่อนที่พลาส์เพื่อใช้ในการหาความเป็นพันธุ์ระหว่าง Dosage และ Bias

2.1.6 การคัดเลือกโคลoniสิ่งเส้นด้วยเทคนิค Colonies PCR โดยวิธีการคิด
- ทำการ pick single colony น้ำไปใส่ในอาหาร LB ปริมาตร 20
ไมโครลิตรเป็นระยะเวลาก 1 - 2 ชั่วโมงในสูบี 37 องศาเซลเซียส ซึ่งจะใช้เป็น template ใน
ปฏิกิริยา PCR โดยตั้งโปรแกรมคัดจะต่าง

ตาราง 2 แสดงการตั้งโปรแกรมการเกิดปฏิกิริยา

<table>
<thead>
<tr>
<th>ขั้นตอน (Step)</th>
<th>อุณหภูมิ (Temperature : °C)</th>
<th>เวลา (Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Warm up</td>
<td>94</td>
<td>2 นาที</td>
</tr>
<tr>
<td>- 3 Step cycling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denaturation</td>
<td>94</td>
<td>30 วินาที</td>
</tr>
<tr>
<td>Primer annealing</td>
<td>65</td>
<td>30 วินาที</td>
</tr>
<tr>
<td>Primer extention (35 cycle)</td>
<td>72</td>
<td>45 วินาที</td>
</tr>
<tr>
<td>- Final extention</td>
<td></td>
<td>5 นาที</td>
</tr>
</tbody>
</table>

- เครื่อง Master Mix โดยสารละลายตามลักษณะการคัดต่าง

ตาราง 3 Master Mix ของปฏิกิริยา PCR

<table>
<thead>
<tr>
<th>องค์ประกอบ (Component)</th>
<th>ความเข้มข้นเริ่มต้น (Stock)</th>
<th>ความเข้มข้นสุดท้าย (final concentration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq buffer</td>
<td>10X</td>
<td>1X</td>
</tr>
<tr>
<td>MgCl2</td>
<td>25 มิลลิโคลิล</td>
<td>2.5 มิลลิโคลิล</td>
</tr>
<tr>
<td>dNTP (Mix)</td>
<td>10 มิลลิโคลิล</td>
<td>0.2 มิลลิโคลิล</td>
</tr>
<tr>
<td>Primers</td>
<td>100 ไมโครโมล</td>
<td>10 ไมโครโมล</td>
</tr>
<tr>
<td>Taq DNA polymerase</td>
<td>0.5 ยูนิต / ไมโครโคลีด</td>
<td>0.4 ไมโครโคลีด</td>
</tr>
<tr>
<td>dH₂O</td>
<td></td>
<td>19 ไมโครโคลีด</td>
</tr>
<tr>
<td>Total volume / rxn</td>
<td></td>
<td>[สถานที่ไม่ชัดเจน]</td>
</tr>
</tbody>
</table>
ตาราง 4 แสดงรายชื่อและลำดับนิวคลีโอไซคล์ของโพลิเมอร์ที่ใช้ในเทคนิค Colonies PCR

<table>
<thead>
<tr>
<th>รายชื่อโพลิเมอร์</th>
<th>ลำดับนิวคลีโอไซคล์ 5' → 3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19 Forward primer</td>
<td>GCT TGT CTG TAA GCG GAT GC</td>
</tr>
<tr>
<td>pUC19 Reverse primer</td>
<td>GCG GGC AGT GAG CGC AAC GC</td>
</tr>
</tbody>
</table>

- เติม DNA template ของแต่ละตัวอย่างจำนวน 1 ไมโครลิตร ต่อปฏิกิริยา
 แล้วผสมให้เข้ากันโดยใช้เครื่องผสม (Shaker) 10 - 20 วินาที แล้วให้เร็งปิ้งเป็นทะCRE 4 - 5 วินาที

- นำไปใส่เครื่อง PCR แล้วกลั้งเร็งให้ทำงาน
 2.1.7 นำ PCR product ไปตรวจวัดโดยเทคนิค Gel electrophoresis หรือ
 แช่ไว้ในตู้ 4 องศาเซลเซียส จนกว่าจะนำไปตรวจวัด

 2.1.8 นำเชื้อ E. coli สายพันธุ์ DH5α ทีกัดออกตัวตามเทคนิค Colonies PCR
 ลงไปในออทาน LB 3 มิลลิลิตร ที่มีสภาพผิวแน่นรอบผักชีตัน จากนั้นนำไปใส่ตัวเครื่องเร็งยาที่
 ความเร็ว 150 รอบ/นาที ที่อุณหภูมิ 37 องศาเซลเซียส โดยใช้เวลาประมาณ 16 – 18 ชั่วโมง แล้ว
 นำมาจากติดผิดมีพื้นดุจดินโดยมีวิธีการดังนี้

 1. นำเชื้อที่นำมาแช่จาก eppendorf tube ขนาด 1.5 มิลลิลิตร นำไปปิ้ง
 หญิงตัวเครื่อง centrifuge เป็นเวลา 1 นาที เล็กที่กระยะระยะวันไถไถ

 2. เติม PD1 buffer (เพิ่ม RNase A) ปริมาตร 200 ไมโครลิตร และผสมให้
 เข้ากันโดยใช้เครื่อง vortex (อย่างแรง) แล้วตั้งเป็นไวที่อุณหภูมิห้อง 2 นาที

 3. เติม PD2 buffer ปริมาตร 200 ไมโครลิตร และผสมให้เข้ากัน (อย่าใช้
 เครื่อง vortex) แล้วตั้งเป็นไวที่อุณหภูมิห้อง 2 นาที

 4. เติม PD3 buffer ปริมาตร 300 ไมโครลิตร และผสมให้เข้ากัน (อย่าใช้
 เครื่อง vortex) แล้วนำไปปิ้งในเครื่อง centrifuge เป็นเวลา 3 นาที

 5. เตรียม PD column ปริมาตรขนาด 2 มิลลิลิตร แล้วอุณหภูมิที่ร้อนส่วนใหญ่
 จากขั้นตอนที่ 8.4 ลงใน PD column และนำไปปิ้งในเครื่อง centrifuge เป็นเวลา 30 วินาที

 6. เติม W1 buffer ลงใน PD column ปริมาตร 400 ไมโครลิตร และนำไป
 ปิ้งในเครื่อง centrifuge เป็นเวลา 30 วินาที เล็กติม Wash Buffer (เพิ่ม ethanol) ปริมาตร
600 ไมโครลิตร ลงใน PD column และนำไปปิ้นหวีดด้วยเครื่อง centrifuge เป็นเวลา 30 วินาที และนำไปปิ้นหวีดด้วยเครื่อง centrifuge อีกครั้งเป็นเวลา 3 นาที เพื่อทำให้แห้ง

- นำ PD column ที่แห้งแล้วใส่ลงใน eppendorf tube ขนาด 1.5 มิลลิลิตร ใหม่

- ดื่ม Elution Buffer หรือ TE ปริมาตร 50 ไมโครลิตร ลงตรงกลางของ column แล้วล็อบให้เป็นเวลา 2 นาที หรือจนกว่า Elution Buffer หรือ TE จะจุดขับหมด และนำไปปิ้นหวีดด้วยเครื่อง centrifuge เป็นเวลา 2 นาที ซึ่งจะได้สารละลายชิ้นส่วนของ LacZ gene

2.1.9 ทำการตรวจสอบการเปลี่ยนแปลงของลำดับนิวคลีโอไทด์ (Sequencing) โดยส่งตัวอย่างพลาสมาไปยัง First BASE Laboratories, Malaysia เพื่อทำการตัดนิวคลีโอไทด์และใช้โปรแกรม CLUSTALW ในการวิเคราะห์ลำดับนิวคลีโอไทด์
2.2 การเตรียม 1 LacZ gene ให้ให้เมื่อการกลับพันธุ์ด้วยพลาสما

2.2.1 การเตรียม LacZ gene

ทำการตัดจับส่วนนี้ของ LacZ gene จากพลาสมิก pUC19 ด้วยเอนไมติคเจรจา (Restriction enzyme) ดี ND6 / HindIII แล้วนำไปปล่อยทุ่งสูญเสีย 37 องศาเซลเซียส และนำไปตรวจสอบโดยการทำ Gel electrophoresis ซึ่งจะได้ขั้นส่วนของ LacZ gene ที่มีขนาดอยู่ที่ 264 bp ผ่านที่มีกิจหมายของ marker (Lambda / PstI) เมื่อตรวจภายในเครื่อง UV แล้วทำการแยกชั้นส่วนต่างด้านออกกลับโดยมีวิธีการต่อไปนี้

- ตัดแบบขั้นส่วนของ LacZ gene ออกจากผ้าใน eppendorf tube

- ติด TBE Conversion Buffer ปริมาตร 50 ไมโครลิตร และดิ้ม Binding Buffer ปริมาตร 250 มิลลิลิตร ลงไป eppendorf tube ทีมีเจลอยู่และนำไปปล่อยในชั้นเครื่อง water bath ที่อุณหภูมิ 55 องศาเซลเซียส เป็นเวลา 5 นาทีหรือจนกว่าจะละลาย

- ติด silica powder suspension ปริมาตร 5 ในโครงรัง และนำไปปล่อยในชั้นเครื่อง water bath ที่อุณหภูมิ 55 องศาเซลเซียส เป็นเวลา 5 นาที โดยทำ 2 – 3 ครั้ง

- นำไปปล่อยในชั้นเครื่อง centrifuge เป็นเวลา 5 วินาที และมีเวลาส่วนนี้สั้นลงซึ่งจะเห็นได้จะแตกออกของ silica powder และดิ้ม washing buffer ปริมาตร 500 ไมโครลิตร المسلحةด้วย silica powder กับ washing buffer ดิ้มเครื่องแช่และนำไปปล่อยในเครื่อง centrifuge เป็นเวลา 5 วินาที และมีเวลาส่วนนี้สั้นลงซึ่งโดยทำขั้นตอนนี้ 3 ครั้ง

- เมื่อเสร็จสิ้นขั้นตอนสุดท้ายของวิธี 1.4 แล้วผังตกซึ่ง silica powder ให้

- ติด deionized water (dH2O) หรือ TE และนำไปปล่อยในชั้นเครื่อง water bath ที่อุณหภูมิ 55 องศาเซลเซียส เป็นเวลา 5 นาที และนำไปปล่อยในชั้นเครื่อง centrifuge เป็นเวลา 30 วินาที และมีเวลาส่วนนี้สั้นลงไป eppendorf tube ขนาด 1.5 มิลลิลิตรใหม่ เพื่อใช้ในชั้นตอนต่อไป

2.2.2 ทำการดูแลสารละลายของ LacZ gene (ปริมาณที่ใช้ 2 ในโครงรัง) ลงใน holder ทั้ง 9 หลุมและทำให้ระเหยในอุณหภูมิต่ำสุดที่มีประมาณ 30 นาที แล้วนำเข้าเครื่องพลาสมาตามเรือนไลด์
ภาวะสื่อนิยมที่ใช้ในการยกบั่มนำให้เกิดการกลายน้ำหนักตัวของพลาสมา
- Gas = Nitrogen (N₂)
- Flow rate = 4.00 sccm
- RF power = 50 watt
- Bias voltage = 2.5 kV
- Frequency = 50 Hz
- Phase length = 10 μs

ตาราง 5 แสดงสภาวะในการเหนี่ยวลึกหน้านั้นของ LacZ gene ให้เกิดการกลายน้ำหนักตัวของพลาสมา

<table>
<thead>
<tr>
<th>Dose (ion/cm²)</th>
<th>Bias (kV)</th>
<th>เวลา (Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x10¹⁴</td>
<td>2.5</td>
<td>3.00นาที</td>
</tr>
<tr>
<td>1x10¹⁵</td>
<td>2.5</td>
<td>7.00นาที</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>2.5</td>
<td>14.08นาที</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>3.5</td>
<td>19.08นาที</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>5.0</td>
<td>21.28นาที</td>
</tr>
</tbody>
</table>

2.2.3 นำพืชส่วนของ LacZ gene ที่ผ่านการเข้ากันได้ดีในพลาสมาแล้ว ทำการฉีดด้วยน้ำ dH₂O (20 มิลลิลิตร)

2.2.4 นำพืชส่วนของ LacZ gene ที่ผ่านการเข้ากันได้ดีในพลาสมา มาเชื่อมกับ ดีเอ็นเอ (vector) ด้วยปฏิวัติการ Ligation โดยยามในเครื่อง PCR ที่อุณหภูมิ 22 องศาเซลเซียส และทำการส่งถ่ายดีเอ็นเอซับ (Recombinant DNA) เข้าสู่ E. coli สายพันธุ์ DH5α

2.2.5 นำผักบุบและวัสดุสัณห์เข้าไว้ในกระบอกที่เคียงน้ำไปกับความกดของกระดูกกล้ามเนื้อ ให้ในภาวะความสัมพันธ์ระหว่าง Dose และ Bias ที่มี

2.2.6 การคัดเลือกกิจภัณฑ์หนีบแย่ง Colonies PCR โดยวิธีการมีดังนี้

- ทำการ pick single colony นำไปปลูกในอาหาร LB ปริมาณ 20 มิลลิลิตรเป็นระยะเวลานาน 1 – 2 ชั่วโมงในสุญญี 37 องศาเซลเซียส ซึ่งจะใช้เป็น template ในปฏิวัติการ PCR โดยตั้งโปรแกรมคำสั่งการ
ตาราง 6 แสดงการตั้งโปรแกรมการเกิดปฏิกิริยา

<table>
<thead>
<tr>
<th>ขั้นตอน (Step)</th>
<th>อุณหภูมิ (Temperature : °C)</th>
<th>เวลา (Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Warm up</td>
<td>94</td>
<td>2 นาที</td>
</tr>
<tr>
<td>- 3 Step cycling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denaturation</td>
<td>94</td>
<td>30 วินาที</td>
</tr>
<tr>
<td>Primer annealing</td>
<td>65</td>
<td>30 วินาที</td>
</tr>
<tr>
<td>Primer extension (35 cycle)</td>
<td>72</td>
<td>45 วินาที</td>
</tr>
<tr>
<td>- Final extension</td>
<td>72</td>
<td>5 นาที</td>
</tr>
</tbody>
</table>

- เครื่ียม Master Mix โดยสารละลายตามลักษณะต่างตาราง

ตาราง 7 Master Mix ของปฏิกิริยา PCR

<table>
<thead>
<tr>
<th>องค์ประกอบ (Component)</th>
<th>ความเข้มข้นรับหน่วย (Stock)</th>
<th>ความเข้มข้นสูงสุดท้าย (final concentration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq buffer</td>
<td>10X</td>
<td>1X</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>25 มิลลิมอล</td>
<td>2.5 มิลลิมอล</td>
</tr>
<tr>
<td>dNTP (Mix)</td>
<td>10 มิลลิมอล</td>
<td>0.2 มิลลิมอล</td>
</tr>
<tr>
<td>Primers</td>
<td>100 ไมโครโมล</td>
<td>10 ไมโครโมล</td>
</tr>
<tr>
<td>Taq DNA polymerase</td>
<td>0.5 รูนิต / ไมโครไลตร์</td>
<td>0.4 ไมโครไลตร์</td>
</tr>
<tr>
<td>dH₂O</td>
<td></td>
<td>19 ไมโครไลตร์</td>
</tr>
<tr>
<td>Total volume / rxn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ตาราง 8 แสดงรายชื่อและลำดับมิคคลีโอโลโฟลของโพเรียร์ ที่ใช้ในเทคนิค Colonies PCR

รายชื่อโพเรียร์ ลำดับมิคคลีโอโลโฟล 5’→ 3’

Forward primer GCT TGT CTG TAA GCG GAT GC
Reverse primer GCG GGC AGT GAG CGC AAC GC
- เดิม DNA template ของแต่ละตัวอย่างจำนวน 1 ในโครไลดร์ ต่อดีกรีบีละ
แล้วผลให้เจ้าทั้งนี้โดยใช้เครื่องผสม (Shaker) 10 – 20 วินาที แล้วให้ครองอันหนึ่งอันกว่า 4 – 5วินาที

- นำไปใส่ออร์ PCR แล้วตกเครื่องให้ทำงาน
 2.2.7 นำ PCR product ไปตรวจสอบโดยเทคนิค Gel electrophoresis หรือ
 เก็บไว้ในสูติ 4 องศาเซลเซียต จนกว่าจะนำไปตรวจสอบ
 2.2.8 นำเชื้อ E. coli สายพันธุ์ DH5α ที่คลอดลากหัวเทคนิค Colonies PCR
 ไปลงในอาหาร LB 3 มิลลิลิตร ที่มีเอปิดีนและแอมindrome เพื่อทำสารพัดผลลัพธ์ชุด kit
 2.2.9 ทำการตรวจสอบการเปลี่ยนแปลงของลำดับนิวคลีโอไซต์ (Sequencing) โดยส่งต่ออย่างเฉพาะมีให้ First BASE Laboratories , Malaysia เพื่อทำลำดับนิ
 วิธีการคำนวณความถี่ของภาวะการกลายพันธุ์ (Mutation frequency)

\[
\text{Mutation frequency} = \frac{\text{No. of white colonies (mutant)}}{\text{Total No. of colonies (blue & white)}} \times 100
\]

วิธีกำหนดถูกของลำดับการกลายพันธุ์

ซึ่งรูปแบบการกลายพันธุ์แบ่งเป็น 4 ประเภทคือ Transition , Transversion , Deletion และ Insertion โดยจำนวนที่เกิดขึ้น (Number of occurrence) ทำการนับที่ละตำแหน่งที่มี
การเปลี่ยนแปลงในโลกที่เป็น mutant เพื่อรับพื้นที่ control และบันทึกจำนวนตำแหน่งที่มีการ
เปลี่ยนแปลงทั้งหมด เพื่อใช้ในการคำนวณถูกของรูปแบบการกลายพันธุ์ (ดัง
สมการด้านล่าง)

\[
\text{Frequency (\\%)} = \frac{\text{Number of occurrence}}{\text{Total No. of occurrence}} \times 100
\]
บทที่ 4 ผลการทดลองและการวิเคราะห์ผลการทดลอง

การทดลองนี้เป็นการศึกษาผลของการระดับพลาสมาต่อติดเอ็นอซิทีเอนทีที่ใช้คือ พลาสมิด pUC19 และชื้นส่วนของ LacZ gene โดยก็ที่ทำให้เกิดการวิเคราะห์ ได้ศึกษาผลของการระดับพลาสมาต่อติดเอ็นอซิทีเอนทีที่ใช้คือพลาสมิด pUC19 และชื้นส่วนของ LacZ gene (ทั้งในโคลนนิ่งเจ็นและสารที่)

1. ผลของพลาสมาต่อติดเอนทีเอน pUC19 จากระดับพลาสมาต่อติดเอนทีเอน pUC19 ในเหยื่อน้ำด้วยพลาสมา โดยแสดงกล่าวเรื่องนี้ในตารางที่ 9 ที่เป็นการกำหนด dosage และ bias ที่ใช้ในการเยี่ยมน้ำให้เกิดการขยายพันธุ์

ตาราง 9 แสดงกล่าวในการเหยื่อน้ำพลาสมิด pUC19 ด้วยพลาสมา

<table>
<thead>
<tr>
<th>Dosage (ion/cm²)</th>
<th>Bias (-kV)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x10^15</td>
<td>2.5</td>
<td>6.30</td>
</tr>
<tr>
<td>2x10^15</td>
<td>2.5</td>
<td>19.08</td>
</tr>
<tr>
<td>2x10^15</td>
<td>3.5</td>
<td>17.16</td>
</tr>
<tr>
<td>2x10^15</td>
<td>5.0</td>
<td>26.14</td>
</tr>
<tr>
<td>4x10^15</td>
<td>2.5</td>
<td>38.17</td>
</tr>
</tbody>
</table>

1.1 การคัดเลือกโยนสิ่งชีวะจากการนาพลาสมิด pUC19 ในเหยื่อน้ำด้วยพลาสมา หลังจากการนาพลาสมิด pUC19 ที่ส่งการเหยื่อน้ำด้วยพลาสมา สำหรับชีวะด้วย แบบที่เรียก E. coli (DH5α) ซึ่งจากการสังเกตการณ์ทางพลาสมาในปัจจุบันชัดเจนและล้วนๆ ขาวกระจายอยู่บนพลาสมา ดังภาพ 8A และการเลือกโยนย่อยชีวะไป re-streak เป็นจำนวน 5 รุ่น เพื่อสังเกตการณ์ของโยนย่อยชีวะและการนาพลาスマิด pUC19 ที่ชัดเจน ดังตาราง 11 เพื่อใช้ในการวิเคราะห์ความสามารถในระหว่าง dosage และ bias คือความถี่ของการเกิดการกลายพันธุ์
ภาพ 8 การตัดเลือกโคลนสีขาวจากการนำพลาสมิด pUC19 ไปหนามนำด้วยพลาสมา

(A) คือ ภาพการกระจายของโคลนสีขาวเงินและสีขาวจากการส่งถ่ายพลาสมิด pUC19 ที่ผ่านการเบนี่ยวนด้วยพลาสมาเข้าสู่แนวนี้กิ่ง (บริเวณสีเขียวขั้วเดิม โคลนสีขาว และบริเวณสีเขียวขั้วเดิม โคลนสีขาวเงิน)

(B, C) คือ ภาพการตัดเลือกโคลนสีขาวบาง re-streak เป็นจำนวน 5 รุ่น
1.2 ความอิสระระหว่าง Dosage กับ Bias คือความถี่ของการเกิดการกลายพันธุ์ที่ใช้ผลิตภัณฑ์ pUC19 เพื่อวิเคราะห์พอลาม่า

จากตาราง 9 แสดงความถี่ของการเกิดการกลายพันธุ์ (mutation frequency) โดยตาราง 10 แสดงความอิสระระหว่าง dosage กับ bias ซึ่งเป็นความถี่ในการเกิดการกลายพันธุ์ ได้ใช้ผลิตภัณฑ์ pUC19 พบว่าในแจ็คมิถูก dosage : 2×10^{15} ions/cm2 คงที่และ bias 2.5 , 3.5 และ 5.0 kV สามารถทำให้ความถี่ของการเกิดการกลายพันธุ์ (mutation frequency) นั้นเป็นจำนวนที่มีการเพิ่มขึ้นอย่างต่อเนื่องตามข้อมูลเรื่องใช้ที่มีการเพิ่มขึ้นของ bias (ภาพ 9)

ตาราง 10 แสดงความอิสระระหว่าง dosage กับ bias คือความถี่ของการเกิดการกลายพันธุ์ในสายการแจ็คมิถูกagle dosage : 2×10^{15} ions/cm2 คงที่และ bias 2.5 , 3.5 และ 5.0 kV

<table>
<thead>
<tr>
<th>Dosage (ions / cm2)</th>
<th>Bias (-kV)</th>
<th>Total No. of observed colonies</th>
<th>No. of white colonies (mutant)</th>
<th>Mutation frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×10^{15}</td>
<td>2.5</td>
<td>2896</td>
<td>1568</td>
<td>54.1</td>
</tr>
<tr>
<td>2×10^{15}</td>
<td>3.5</td>
<td>3023</td>
<td>1655</td>
<td>54.7</td>
</tr>
<tr>
<td>2×10^{15}</td>
<td>5.0</td>
<td>3222</td>
<td>1842</td>
<td>57.2</td>
</tr>
</tbody>
</table>

ภาพ 9 กรา프แสดงการเปลี่ยนแปลงระหว่าง Dosage : 2×10^{15} ions / cm2 (กั้น)กับ Bias 2.5 , 3.5 และ 5.0 kV
ส่วนในตารางเรื่องใช้ dosage: 1 × 10^{15}, 2 × 10^{15} และ 4 × 10^{15} ions / cm² และ bias 2.5 kV (กิโลวัตต์) ตัวตาราง 11 ซึ่งแสดงความสัมพันธ์ระหว่าง dosage กับ bias พบว่าสังเกต คือความถี่ของการเกิดการกลายพันธุ์ (mutation frequency) มีแนวโน้มเพิ่มขึ้นอย่างต่อเนื่องตามสายการเรือนใบที่ถึงการเพิ่มของ dosage (ภาพ 10) ซึ่งส่งผลในเชิงบวกต่อการเพิ่ม bias ตาราง 11 แสดงความสัมพันธ์ระหว่าง Dosage กับ Bias คือความถี่ของการเกิดการกลายพันธุ์ในสายการเรือนใบที่มีการกำาหนด dosage: 1×10^{15}, 2×10^{15} และ 4×10^{15} ions/cm² และ bias: 2.5 kV (กิโลวัตต์)

<table>
<thead>
<tr>
<th>Dosage (ions / cm²)</th>
<th>Bias (-kV)</th>
<th>Total No. of observed colonies</th>
<th>No. of white colonies (mutant)</th>
<th>Mutation frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{15}</td>
<td>2.5</td>
<td>2249</td>
<td>1188</td>
<td>52.8</td>
</tr>
<tr>
<td>2×10^{15}</td>
<td>2.5</td>
<td>2896</td>
<td>1568</td>
<td>54.1</td>
</tr>
<tr>
<td>4×10^{15}</td>
<td>2.5</td>
<td>2681</td>
<td>1584</td>
<td>59.1</td>
</tr>
</tbody>
</table>

ภาพ 10 แสดงการเปลี่ยนแปลงระหว่าง Dosage: 1 × 10^{15}, 2 × 10^{15} และ 4 × 10^{15} ions / cm² กับ Bias 2.5 kV (กิโลวัตต์)
1.3 การเปรียบเทียบผลลัพธ์ของพลาสมิด pUC19 ที่ส่วนการเหนียวด้วย

พลาสมิด

หลังจากการคัดเลือกไนโตรสีขาวพร้อมกับ subculture ไนโตรสีขาว 5 รุ่น และ
สกัดพลาสมิดที่ได้คัดเลือกเพื่อใช้ทำให้ลักษณะมีไอซิลิค ณ บริเวณ First base ที่ประเทศ
มาเลเซีย โดยส่งพลาสมิดไปทำล้างตับเป็นจำนวน 35 กล่อง โดยได้ใช้สูตรลักษณะแน่นและ
โคโนที่ P (P1-P35) และเติมที่เข้มข้นว่ามีความร่าง 2 โคลน (P1, P2)

โดยภาพที่ 11 เป็นการเปรียบเทียบลักษณะระหว่าง pUC19 (control) กับ P1

พบว่าเมื่อเปรียบเทียบลักษณะอันดับ promoter (บันทึกข้อเจริญได้), ด้านเหนือ start codon ซ้ายมือด้านเหนือ
stop codon ซ้ายมือส่วนของ LacZ gene ไม่พบการเปลี่ยนแปลงของลักษณะ ไม่พบขาดส่งออก
ที่ส่วนลักษณะของไนโตรสีขาวที่มีไนโตรสีขาวเป็นส่วน ซึ่งอาจมีการเปลี่ยนแปลงของลักษณะ
ในบริเวณอันดับของพลาสมิด pUC19 ทำให้ส่งผลต่อลักษณะของไนโตรสีขาวเป็นส่วนหนึ่งๆมีการเปลี่ยนแปลงเช่นเดียวกัน ซึ่งอาจเกิดจาก
สาเหตุดังกล่าว

<table>
<thead>
<tr>
<th>Plac promoter -35</th>
<th>Plac promoter -10</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td></td>
</tr>
<tr>
<td>CATTAGGCACCCCAAGCCCTTACATTTAGCTGCCGCTCTCTATCTTCTGTGGAATTTG</td>
<td>540</td>
</tr>
<tr>
<td>pUC19</td>
<td></td>
</tr>
<tr>
<td>CATTAGGCACCCCAAGCCCTTACATTTAGCTGCCGCTCTCTATCTTCTGTGGAATTTG</td>
<td>540</td>
</tr>
</tbody>
</table>

Start codon

<table>
<thead>
<tr>
<th>pUC19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAGCGATACACATTCACCTACACAGGAAACAGCTGATGACATGTTAGGACGTGCTCGT</td>
<td>600</td>
</tr>
<tr>
<td>pUC19</td>
<td></td>
</tr>
<tr>
<td>AAGCGATACACATTCACCTACACAGGAAACAGCTGATGACATGTTAGGACGTGCTCGT</td>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pUC19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCCGGGATATCTCTAGACTGCAATCCGACCTAGCCCTACGTCGCTCGT</td>
<td>660</td>
</tr>
<tr>
<td>pUC19</td>
<td></td>
</tr>
<tr>
<td>ACCCGGGATATCTCTAGACTGCAATCCGACCTAGCCCTACGTCGCTCGT</td>
<td>660</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pUC19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGACGCTGCAGCTGGAGAAAACCTTGGCGTTAACCACCTTGAGCTCTGACATCC</td>
<td>720</td>
</tr>
<tr>
<td>pUC19</td>
<td></td>
</tr>
<tr>
<td>ACGACGCTGCAGCTGGAGAAAACCTTGGCGTTAACCACCTTGAGCTCTGACATCC</td>
<td>720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pUC19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCCCTTTCACGCGCTCAGCTCTGGGAATAGGCGAGGCGAAGACCCCGACCATCC</td>
<td>780</td>
</tr>
<tr>
<td>pUC19</td>
<td></td>
</tr>
<tr>
<td>CCCCCTTTCACGCGCTCAGCTCTGGGAATAGGCGAGGCGAAGACCCCGACCATCC</td>
<td>780</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pUC19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GCCGCAGCTGATTGCCGCTTGAGCTCGCTATCAGCTCTCGGCT</td>
<td>840</td>
</tr>
<tr>
<td>pUC19</td>
<td></td>
</tr>
<tr>
<td>GCCGCAGCTGATTGCCGCTTGAGCTCGCTATCAGCTCTCGGCT</td>
<td>840</td>
</tr>
</tbody>
</table>

Stop codon

<table>
<thead>
<tr>
<th>pUC19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TATTGGACACAGGATATGTTGACACTCTTACATCTACATGGCTCGGATAG</td>
<td>B95</td>
</tr>
<tr>
<td>pUC19</td>
<td></td>
</tr>
<tr>
<td>TATTGGACACAGGATATGTTGACACTCTTACATCTACATGGCTCGGATAG</td>
<td>B95</td>
</tr>
</tbody>
</table>

ภาพ 11 การเปรียบเทียบลักษณะระหว่าง pUC19 (control) กับ P1
ภาพ 12 เป็นการเปรียบเทียบลำดับบรรทัดระหว่าง pUC19 (control) กับ P2 ในด้านหน้าของ promoter (บริเวณจุดเล่นโต้), ด้านหน้า start codon จนถึงด้านหน้า stop codon ซึ่งเป็นส่วนของ LacZ gene พบว่ามีการเปลี่ยนแปลงของลำดับบรรทัดในบริเวณของ LacZ gene ทั้งหมด 131 ด้านหน้า โดยเฉพาะสังเกตการเปลี่ยนแปลงของลำดับบรรทัดระหว่าง 12 ซึ่งเป็นทางแสดงรูปแบบการเปลี่ยนแปลงลำดับบริเวณของผังลายซิม pUC19 ที่ต่อการหนีมันได้ด้วยพลอยมา ซึ่งการเปลี่ยนแปลงของลำดับบรรทัดในบริเวณ LacZ gene ของโคลน P2 นี้ จะส่งผลต่ออักษรและหัวใจในไทยที่เกิดขึ้นที่ทำการให้ประโยชน์ของแพทเทอร์นที่เรียกเป็นสีขาว
1.4 รูปแบบการเปลี่ยนแปลงลำดับแบบของพลาสมิด pUC19 ที่เกิดจากการเปลี่ยนแปลงลำดับแบบการเปลี่ยนแปลงของลำดับแบบ Transition 28 % และ Transversion 34 % ในขณะที่การเปลี่ยนแปลงแบบ Deletion คิดเป็น 38 % ซึ่งสรุปได้ว่าใน P2 พบการเปลี่ยนแปลงของลำดับแบบ Deletion มากที่สุด ดังตาราง 12

ตาราง 12 แสดงรูปแบบการเปลี่ยนแปลงลำดับแบบของพลาสมิด pUC19 ที่คัดหนึ่งของ LacZ gene ของโคน P2

<table>
<thead>
<tr>
<th>Mutational type</th>
<th>Number of occurrence</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A → G</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>G → A</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>C → T</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>T → C</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Transversion</td>
<td>45</td>
<td>34</td>
</tr>
<tr>
<td>A:G → C:T</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>C:T → A:G</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Deletion</td>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td>-A</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>-G</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>-C</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>-T</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>131</td>
<td>100</td>
</tr>
</tbody>
</table>
1.5 ผลของไอออนพลาสมา (ไอออนไอออน) ค่อที่มีซอบที่ ของ LacZ gene

จากการวิเคราะห์ผลของไอออนพลาสมา (ไอออนไอออน) ที่ sensitivity ค่อ
เบสของพลาสมิด pUC19 ของโคลน P2 ที่ค่อเท่าถึงของ LacZ gene พัวที่เบสที่ sensitivity ค่อ
พลาสมิด (ไอออนไอออน) มักที่สูดคือ ฯ Cytosine (C) โดยคิดเป็น 33 % ซึ่งมากกว่าเบส G >
T > A ตามลำดับ ดังตาราง 13.

ตาราง 13 แสดงผลของเบสที่ sensitivity ค่อพลาสมา (ไอออนไอออน) ในโคลน P2

<table>
<thead>
<tr>
<th>เบส (Base)</th>
<th>No. base change occurred</th>
<th>Radiosensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>G</td>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td>*C</td>
<td>43</td>
<td>33</td>
</tr>
<tr>
<td>T</td>
<td>28</td>
<td>22</td>
</tr>
</tbody>
</table>

หมายเหตุ: *คือเบสที่ sensitivity ค่อไอออนชองพลาสมามากที่สุด
2. ผลของพยาบาลต่อ LacZ gene

จากการนำ LacZ gene ไปแทรกแซงในเซลล์พยาบาล โดยแสดงสารสรางเชิงชั่วโมงในตารางที่ 14 ซึ่งเป็นการกำหนด dosage และ bias ที่ใช้ในการแทรกแซงให้กับกลบลักษณะพันธุ์

ตาราง 14 แสดงสารสรางในกรณีใช้ LacZ gene ที่แทรกแซงในเซลล์พยาบาล

<table>
<thead>
<tr>
<th>Dosage (ion / cm²)</th>
<th>Bias (-kV)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x10¹⁴</td>
<td>2.5</td>
<td>7.00</td>
</tr>
<tr>
<td>1x10¹⁵</td>
<td>2.5</td>
<td>14.08</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>2.5</td>
<td>19.08</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>3.5</td>
<td>21.28</td>
</tr>
<tr>
<td>2x10¹⁵</td>
<td>5.0</td>
<td>38.17</td>
</tr>
</tbody>
</table>

2.1 การคัดเลือกโคโรนีซิฟารจากการนำ LacZ gene ไปแทรกแซงในเซลล์พยาบาล

หลังจากนำ LacZ gene ที่ผ่านการแทรกแซงในเซลล์พยาบาลและนำมามีสืบ (ligation) กับพยัคฆ์สอบ (vector) และส่งย้ายเข้าสู่ลำしっかりとเป็น E. coli (DH5α) พบว่าสิ่งที่แทรกโคโรนีซิฟารและสืบสู่โคโรนีซิฟาร (ดังภาพ 13A และ 13B) ไปเรื่อยๆ ที่มีตัวอย่าง 5 รุ่น เพื่อสังเกตความสุทธิของโคโรนีซิฟารและทำการบันทึกจำนวนโคโรนีทั้งหมด เพื่อใช้ในการวิเคราะห์ความสัมพันธ์ระหว่าง dosage และ bias คือความถี่ของการเกิดการกลายพันธุ์

จากผลการเหยียบน้ำมือ LacZ gene คั่นพยาบาลพบว่าพยาบาลมีผลต่อการเปลี่ยนแปลงของลำตัวของใน LacZ gene ซึ่งส่งผลต่อการแสดงออกในระดับพื้นที่ไข้ (ดังภาพ 13 ซึ่งจะสังเกตเห็นโคโรนีซิฟาร (ฤทธิ์ซึ่งซิฟาร) การเจริญกับโคโรนีอินซิฟาร (ฤทธิ์ซึ่งอินซิฟาร) และคัดเลือกโคโรนีซิฟารหรือการ subculture.
ภาพ 13 การคัดเลือกไลโนเลียมจากกล้า Lacz gene ไปหนังเยื่อหน้าด้วยพลาสมา

(A) คือ ภาพการกระจายน์ของไลโนเลียมที่มีการเปลี่ยนแปลงและสีขาวจากการกระตุ้น Lacz gene ที่ผ่านการหนึ่งนำมาด้วยพลาสมาด้วยแบบที่เรียก (บริเวณอุปกรณ์สีขาวหรือไลโนเลียม, บริเวณอุปกรณ์สีน้ำเงินคือไลโนเลียม)

(B) คือ ภาพการคัดเลือกไลโนเลียมสีขาว re-streak เป็นจำนวน 5 รุ่น

2.2 ความสัมพันธ์ระหว่าง Dosage กับ Bias ต่อความถี่ของการเกิดการกลายพันธุ์ที่ใช้ Lacz gene ไป focaหน้าด้วยพลาสมา

จากการบันทึกจำนวนไลโนเลียมที่แบ่งหนา (ทั้งไลโนเลียมที่มีการเปลี่ยนแปลงและสีขาว) เพื่อใช้ในการทดลอง พบความสัมพันธ์ระหว่าง dosage กับ bias ต่อความถี่ของการเกิดการกลายพันธุ์ (mutation frequency) ซึ่งแสดงความสัมพันธ์พิเศษระหว่าง 15 โดยแสดงความสัมพันธ์ระหว่าง dosage กับ bias ซึ่งเป็นสภาวะที่ใช้ในการเตรียมไลโนเลียม Lacz gene ด้วยพลาสมา พบว่าในเชื้อใดที่ทำแผนการใช้ dosage : 5 x 10^14, 1 x 10^15 และ 2 x 10^14 แอมป์/เซนติเมตร² และ bias 2.5 kV (กรดที่) ซึ่งเป็นการเพิ่ม dosage จะเห็นว่าความถี่ของการเกิดการกลายพันธุ์ที่ dosages : 5 x 10^14, 1 x 10^15 และ : 2 x 10^14 เท่ากับ 58.6, 58.0 และ 60.0 % ตามลำดับ ซึ่งจะเห็นว่าความถี่ของการเกิดการกลายพันธุ์ในการทดลองที่ใช้ Lacz gene ไป focaหน้าด้วยพลาสมา ในสภาพเรือนไข่ที่มีการเพิ่ม dosage ให้ผลไม่แตกต่างกัน แต่ภาพ 14
ตาราง 15 แสดงความสัมพันธ์ระหว่าง dose กับ bias คือความถี่ของการเกิดการกลายพันธุ์ใน
สภาพเรือนไข่ที่มีการกำเนิด dose: 5×10^{14}, 1×10^{15} และ 2×10^{15} ions/cm² และ bias:
2.5 kV (กิโลวัตต์)

<table>
<thead>
<tr>
<th>Dosage (ions/cm²)</th>
<th>Bias (-kV)</th>
<th>Total No. of observed colonies</th>
<th>No. of white colonies (mutant)</th>
<th>Mutation frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×10^{14}</td>
<td>2.5</td>
<td>1013</td>
<td>594</td>
<td>58.6</td>
</tr>
<tr>
<td>1×10^{15}</td>
<td>2.5</td>
<td>1128</td>
<td>653</td>
<td>58.0</td>
</tr>
<tr>
<td>2×10^{15}</td>
<td>2.5</td>
<td>1725</td>
<td>1031</td>
<td>59.8</td>
</tr>
</tbody>
</table>

ภาพ 14 กราฟแสดงการเปลี่ยนแปลงระหว่าง Dosage: 5×10^{14}, 1×10^{15} และ 2×10^{15} ions/cm²
gกับ Bias 2.5 kV (กิโลวัตต์)

ในขณะที่เรือนไข่ที่มี dosage: 2×10^{15} ions/cm² พบกับใช้ Bias 2.5, 3.5 และ 5.0 kV ซึ่งเป็นการเพิ่ม bias จะเห็นว่าความถี่ของการเกิดการกลายพันธุ์ที่ bias: 2.5, 3.5 และ 5.0 kV ทำให้ได้ 59.8, 59.7 และ 63.2% ซึ่งจะเห็นว่าความถี่ของการเกิดการกลายพันธุ์ในการทดลองที่
ได้ใช้ LacZ gene ไปหนึ่งวันด้วยผลล้ามา ในการเลื่อนไปที่มีการเพิ่ม bias (ด้วยภาพ 15) ให้ผลไม่แตกต่างกัน ซึ่งให้เห็นได้ว่ากับสภาพเลื่อนไปที่มีการเพิ่ม dosage

ตาราง 16 แสดงความสัมพันธ์ระหว่าง Dosage กับ bias ต่อความถี่ของการเกิดการกลายพันธุ์ในสภาพเลื่อนไปที่มีการกำหนด dosage: 2×10^{15} ions/cm2 (ต่ำที่สุด) และ bias: 2.5, 3.5 และ 5.0 kV

<table>
<thead>
<tr>
<th>Dosage (ions/cm2)</th>
<th>Bias (kV)</th>
<th>Total No. of observed colonies</th>
<th>No. of white colonies (mutant)</th>
<th>Mutation frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×10^{15}</td>
<td>2.5</td>
<td>1725</td>
<td>1031</td>
<td>59.8</td>
</tr>
<tr>
<td>2×10^{15}</td>
<td>3.5</td>
<td>970</td>
<td>579</td>
<td>59.7</td>
</tr>
<tr>
<td>2×10^{15}</td>
<td>5.0</td>
<td>964</td>
<td>610</td>
<td>63.2</td>
</tr>
</tbody>
</table>

ภาพ 15 ภาพแสดงการเปลี่ยนแปลงระหว่าง Dosage: 2×10^{15} ions/cm2 (ต่ำที่สุด) กับ bias 2.5, 3.5 และ 5.0 kV
2.3 การเปรียบเทียบลำดับแบบของ LacZ gene ที่พันการเหนียวหน้าด้วย

支线任务

หลังจากการตัดเลือกไฮโไลน์เข้าไปยัง subculture แล้วให้เข้ากับ 5 รูม และแสดงผลให้เห็นได้ตัดเลือกและเพื่อส่งไปทำตัวบีเวิร์ทิค ให้ตั้ง First base ประเทศมาแล้วซื้อ โดยสบายใจให้ทำข้อมูลแน่นที่จะคิดที่ L (L1-L25) และเมื่อได้ข้อมูลแล้วนำมาวิเคราะห์เป็นจำนวน 5 โคลนคือ L1, L6, L10, L18 และ L20 ซึ่งภาพที่ 16 เป็นการเปรียบเทียบลำดับแบบระหว่าง pUC19 (control) กับโคลน L6 พบว่ามีการเปลี่ยนแปลงของลำดับแบบหน่วยที่ 136 (บริเวณจุดเล่นได้) ของ LacZ gene ซึ่งเกิดจากการกายพันธุ์แบบ deletion ของจุด C ทำให้เกิด frame-shift ขึ้น ซึ่งเป็นสาเหตุหนึ่งของการเกิดการกลายพันธุ์

L6 : Nucleotide sequence

<table>
<thead>
<tr>
<th>L6</th>
<th>pUC19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATGACCATGATTACGAATTCGAGTCCGGTACCGCGATCCTCTAGCTGCAGCTCGAGG</td>
<td>60</td>
</tr>
<tr>
<td>ATGACCATGATTACGAATTCGAGTCCGGTACCGCGATCCTCTAGCTGCAGCTCGAGG</td>
<td>60</td>
</tr>
</tbody>
</table>

HindIII

<table>
<thead>
<tr>
<th>L6</th>
<th>pUC19</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATGGAAAGCTTGCCAGCTGCGGCTGTTTACACAGCTGCTGTCGCCCAAAACCCCTGCGGT</td>
<td>120</td>
</tr>
<tr>
<td>CATGGAAAGCTTGCCAGCTGCGGCTGTTTACACAGCTGCTGTCGCCCAAAACCCCTGCGGT</td>
<td>120</td>
</tr>
</tbody>
</table>

136

<table>
<thead>
<tr>
<th>L6</th>
<th>pUC19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCCACTTTATTCGCTGAGATGTCCCTTGGCAAGTGGGTATACTGGGTAAAGG</td>
<td>179</td>
</tr>
<tr>
<td>ACCCACTTTATTCGCTGAGATGTCCCTTGGCAAGTGGGTATACTGGGTAAAGG</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L6</th>
<th>pUC19</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCCCGGACCGATCGCTCCCTCCCAAGAATGGCGAGATCGCGCTGATTG</td>
<td>239</td>
</tr>
<tr>
<td>GCCCGGACCGATCGCTCCCTCCCAAGAATGGCGAGATCGCGCTGATTG</td>
<td>240</td>
</tr>
</tbody>
</table>

NdeI

<table>
<thead>
<tr>
<th>L6</th>
<th>pUC19</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGGTATTTTTCCCTTTACCGATCGCTGCTATTTCCACCGCCCATGATGCTGCGCTGATTG</td>
<td>299</td>
</tr>
<tr>
<td>CGGTATTTTTCCCTTTACCGATCGCTGCTATTTCCACCGCCCATGATGCTGCGCTGATTG</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L6</th>
<th>pUC19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACATCTCGCTCTGATGGCGAGAAG</td>
<td>323</td>
</tr>
<tr>
<td>ACATCTCGCTCTGATGGCGAGAAG</td>
<td>324</td>
</tr>
</tbody>
</table>

ภาพ 16 การเปรียบเทียบลำดับแบบระหว่าง pUC19 (control) กับ L6

บริเวณที่จุดเล่นได้ คือบริเวณนาก C หายไปที่ลำดับหน่วง 136 บริเวณของ LacZ gene เมื่อเทียบกับ pUC19 (control)
paragraph 17 เป็นการเปรียบเทียบลักษณะระหว่าง pUC19 (control) กับโคโน้ L20 พบว่ามีการเปลี่ยนแปลงของลักษณะที่ต้านพิษจุดตัด เอนไซม์ HindIII (บริเวณชิ้นส่วนใต้) ที่ตำแหน่ง 71 ของ LacZ gene ซึ่งก็คือการลากพันธุ์แบบ deletion ของเบส T ทำให้เกิด frame-shift ขึ้นซึ่งเป็นสาเหตุหนึ่งของการเกิดการลากพันธุ์

L20 : Nucleotide sequence

<p>| L20 | ATGACCATATGATCGAGGCAATTCCGAGCTCGGTACCAGGATCCTCCAGTTGAGTCGCTGCAG 60 |</p>
<table>
<thead>
<tr>
<th>pUC19</th>
<th>ATGACCATATGATCGAGGCAATTCCGAGCTCGGTACCAGGATCCTCCAGTTGAGTCGCTGCAG 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>HindIII</td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td>CATGGCAAGCTCAGACGGCTGCTTATTTACAACGCTGTCCGCTGGGAAACCACTGGCGTT 119</td>
</tr>
<tr>
<td>pUC19</td>
<td>CATGGCAAGCTCAGACGGCTGCTTATTTACAACGCTGTCCGCTGGGAAACCACTGGCGTT 119</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>L20</td>
<td>ACCGAACATTTAAAGCGCTTTGGGCACACATCCCTTTTTTCGCAAGCTGCTGCTGAATATGCAAAAGG 179</td>
</tr>
<tr>
<td>pUC19</td>
<td>ACCGAACATTTAAAGCGCTTTGGGCACACATCCCTTTTTTCGCAAGCTGCTGCTGAATATGCAAAAGG 179</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>NdeI</td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td>GCCCGCAGGATCTCGCCTCCTCCACCAGCTTTGAGTCGGCAGCCGTGGGAGTGGCAGGCTGATG 239</td>
</tr>
<tr>
<td>pUC19</td>
<td>GCCCGCAGGATCTCGCCTCCTCCACCAGCTTTGAGTCGGCAGCCGTGGGAGTGGCAGGCTGATG 239</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>L20</td>
<td>CGGTTATTTTTTCCTCTCTTGGGCTTGCCTGATTTGCGGCTGGGATTTTTCAGCCGATATAGTGCAGCTCAGT 299</td>
</tr>
<tr>
<td>pUC19</td>
<td>CGGTTATTTTTTCCTCTCTTGGGCTTGCCTGATTTGCGGCTGGGATTTTTCAGCCGATATAGTGCAGCTCAGT 299</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>L20</td>
<td>ACAATCTGCTTATGCGCCCATG 323</td>
</tr>
<tr>
<td>pUC19</td>
<td>ACAATCTGCTTATGCGCCCATG 324</td>
</tr>
</tbody>
</table>

paragraph 17 การเปรียบเทียบลักษณะระหว่าง pUC19 (control) กับ L20 บริเวณที่ชัดเจนได้ คือ บริเวณที่เบส T หายไปในบริเวณจุดตัดของเอนไซม์ HindIII ที่ตำแหน่ง 71 ที่บริเวณของ LacZ gene ซึ่งเกิดกับ pUC19 (control)
หัวข้อ 18 เป็นการเปรียบเทียบลัคกี้แคนเนิลระหว่าง pUC19 (control) กับ L1 โดยมีการเปรียบเทียบเฉพาะร้านของ LacZ gene ในตัวแหน่งของ start codon จนถึงตัวแหน่งของ stop codon ซึ่งพบว่ามีการเปลี่ยนแปลงของลัคกี้แคนเนิลที่หน่วย 143 ตัวแหน่ง ซึ่งแสดงรูปแบบการเปลี่ยนแปลงของลัคกี้แคนเนิลในตารางที่ 17

L1: Nucleotide sequence

<table>
<thead>
<tr>
<th>Start codon</th>
<th>L1</th>
<th>ATGAGCATGATTCCGAGCCGAGCTCGGTAACCCGGGATCCTCTCATGATGACAGCTGGAGG 60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pUC19</td>
<td>ATGAGCATGATTCCGAGCCGAGCTCGGTAACCCGGGATCCTCTCATGATGACAGCTGGAGG 60</td>
</tr>
<tr>
<td></td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>CATGCAAGCGCTTGCAGTGTAATTATAGCTATACATCTTAATTTTATCTTAAGGATAGCTTCCTGTG 120</td>
</tr>
<tr>
<td></td>
<td>pUC19</td>
<td>CATGCAAGCGCTTGCAGTGTAATTATAGCTATACATCTTAATTTTATCTTAAGGATAGCTTCCTGTG 120</td>
</tr>
<tr>
<td></td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>TAAAAACTTTATAGGACGACACCTCATAAAAAACTTAAACGAAAGCTCCTGAGACCTTTGTATTGT 180</td>
</tr>
<tr>
<td></td>
<td>pUC19</td>
<td>TAAAAACTTTATAGGACGACACCTCATAAAAAACTTAAACGAAAGCTCCTGAGACCTTTGTATTGT 180</td>
</tr>
<tr>
<td></td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>ATGAAAATAAATACCCCGCCATTCGCTGAGAAGGCAACGGATCTTTTTTTTTTTTTTTTTCTGATATCTAT 240</td>
</tr>
<tr>
<td></td>
<td>pUC19</td>
<td>ATGAAAATAAATACCCCGCCATTCGCTGAGAAGGCAACGGATCTTTTTTTTTTTTTTTTTCTGATATCTAT 240</td>
</tr>
<tr>
<td></td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>GGGGTGTTTTCTTTGATTTAGAATACTGTATCAGAATGAAAATCTCATTCTTACCTTATAGTAGG 297</td>
</tr>
<tr>
<td></td>
<td>pUC19</td>
<td>GGGGTGTTTTCTTTGATTTAGAATACTGTATCAGAATGAAAATCTCATTCTTACCTTATAGTAGG 297</td>
</tr>
<tr>
<td></td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>

Stop codon

<table>
<thead>
<tr>
<th>L1</th>
<th>TGGCATCTCTCGTACAACTGTGCTGATGACTGTCATGACATGGAATGAAATCTCATTCTTATAGTAGG 333</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>TGGCATCTCTCGTACAACTGTGCTGATGACTGTCATGACATGGAATGAAATCTCATTCTTATAGTAGG 333</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
L10: Nucleotide sequence

Start codon

<table>
<thead>
<tr>
<th>L10</th>
<th>ATGACCATTGATTAGGATGGCACTCGGATCCGGCGGATCCGATCTGACCTGCAAGG 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>ATGACCATTGATTAGGATGGCACTCGGATCCGGCGGATCCGATCTGACCTGCAAGG 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L10</th>
<th>CATGCAAGCTTGGCTGCAGCCGAAAAGTTGCGACATGCGGTGTTTTAATTAGACGGGGAAACCCTGGG 118</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>CATGCAAGCTTGGCTGCAGCCGAAAAGTTGCGACATGCGGTGTTTTAATTAGACGGGGAAACCCTGGG 118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L10</th>
<th>GATTCCGTTAAGACCGGAGGGAAGCTTGATTCGACACACCGTCAAGTCAGGTGTGTTTTATATTAGACGGGGAAACCCTGGG 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>GATTCCGTTAAGACCGGAGGGAAGCTTGATTCGACACACCGTCAAGTCAGGTGTGTTTTATATTAGACGGGGAAACCCTGGG 160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L10</th>
<th>---------------CAGCACCTGAAGCTGAGGGAAGCTTGATTCGACACACCGTCAAGTCAGGTGTGTTTTATATTAGACGGGGAAACCCTGGG 201</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>---------------CAGCACCTGAAGCTGAGGGAAGCTTGATTCGACACACCGTCAAGTCAGGTGTGTTTTATATTAGACGGGGAAACCCTGGG 201</td>
</tr>
</tbody>
</table>

Stop codon

<table>
<thead>
<tr>
<th>L10</th>
<th>AGTACAGACAGATCGCAGAGTACGCGCATAG 276</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>AGTACAGACAGATCGCAGAGTACGCGCATAG 324</td>
</tr>
</tbody>
</table>

Section 19 การเปลี่ยนเพียงลำดับแกนสะพาน pUC19 (control) กับ L10 โดยมีการเปลี่ยนเพียงลำดับของ Lact gene ในคิวเนาะของ start codon จนถึงต้นหนึ่ง stop codon ซึ่งพบว่ามีการเปลี่ยนแปลงของลำดับแบบทั้งหมด 126 ต้นหนึ่ง ซึ่งแสดงถูกบนการเปลี่ยนแปลงของลำดับในตารางที่ 18.
L18 : Nucleotide sequence

Start codon

```
<table>
<thead>
<tr>
<th>L18</th>
<th>ATGACCATGATTTACGAAATCTGGCTTACGCTACCACGGATCTACTAGACACGACCTGCAGG 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>ATGACCATGATTTACGAAATCTGGCTTACGCTACCACGGATCTACTAGACACGACCTGCAGG 60</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>L18</th>
<th>CATGCAAGCTTTAAAACCT---CATAATTAAAAAAGATAAAATATATAAAAATATATCAATGAGTCC 117</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>CATGCAAGCTTTAAAACCT---CATAATTAAAAAAGATAAAATATATAAAAATATATCAATGAGTCC 117</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>L18</th>
<th>AACATATATAATATTTTGTCATCGACACATCACAGAGGAATATTATAGCACACGGAAAC 177</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>AACATATATAATATTTTGTCATCGACACATCACAGAGGAATATTATAGCACACGGAAAC 177</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>L18</th>
<th>AAT7GAAAATATTCAATATATATATGTAATGCTGCAATGACATCCTAAAACGCCCAATATACGAA 237</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>AAT7GAAAATATTCAATATATATATGTAATGCTGCAATGACATCCTAAAACGCCCAATATACGAA 237</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>L18</th>
<th>AGGGAAAATGTCATTACATGACTGATTATCATCCTGATATCTTGATAGAATATTATATG 296</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>AGGGAAAATGTCATTACATGACTGATTATCATCCTGATATCTTGATAGAATATTATATG 296</td>
</tr>
</tbody>
</table>

```

Stop codon

```
<table>
<thead>
<tr>
<th>L18</th>
<th>CATATGGTGCACTCTCAGTACAGATCTGGCTCTGATTCGCGAGTAG 339</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19</td>
<td>CATATGGTGCACTCTCAGTACAGATCTGGCTCTGATTCGCGAGTAG 339</td>
</tr>
</tbody>
</table>

```

Page 20 การเปรียบเทียบผลลัพธ์แบบระหว่าง pUC19 (control) กับ L18 โดยมีการพิจารณาว่าแต่ละแบบของ "LacZ gene ได้ดีเมื่อของ start codon จนถึงดีระหว่าง stop codon ซึ่งพบว่ามีการเปลี่ยนแปลงของลักษณะแสดงหรือหมด 142 ดีระหว่าง ซึ่งแสดงระบุแล้วการเปลี่ยนแปลงของลักษณะในตารางที่ 19
2.4 รูปแบบการเปลี่ยนแปลงเลือดใน \(\text{LacZ} \) gene ที่ผ่านการเอนไซม์

หลังจากการวิเคราะห์การเปลี่ยนแปลงของเลือดพบว่า ให้การวิเคราะห์รูปแบบการเปลี่ยนแปลงของเลือดพบว่า ซึ่งพบรูปแบบการเปลี่ยนแปลงของเลือดเป็นแบบ transition และ transversion ที่ติดเป็น 38% และ 53% ในขณะที่แบบ deletion และ insertion ที่ติดเป็น 2% และ 8% ตามลำดับ โดยในโคลน L1 พบการเปลี่ยนแปลงแบบ transversion มากที่สุด คิดเป็น 17

ตาราง 17 แสดงรูปแบบการเปลี่ยนแปลงของเลือดแบบจากการใช้ \(\text{LacZ} \) gene ไปหนึ่งหน่วยด้วย

<table>
<thead>
<tr>
<th>Mutational type</th>
<th>Number of occurrence</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A \rightarrow G</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>G \rightarrow A</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>C \rightarrow T</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>T \rightarrow C</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Transversion</td>
<td>75</td>
<td>53</td>
</tr>
<tr>
<td>A:G \rightarrow C:T</td>
<td>37</td>
<td>26</td>
</tr>
<tr>
<td>C:T \rightarrow A:G</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>Deletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-G</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Insertion</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>+A</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>+G</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>+C</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>+T</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>100</td>
</tr>
</tbody>
</table>
ตามตาราง 18 แสดงรูปแบบการเปลี่ยนแปลงลำดับเบสของโคลน L10 ซึ่งพบรูปแบบการเปลี่ยนแปลงของลำดับเบสแบบ transition และ transversion คิดเป็น 27 % และ 31 % ตามลำดับในรูปแบบ deletion และ insertion ติดเป็น 41 % และ 2 % ตามลำดับ โดยในโคลน L10 พบการเปลี่ยนแปลงแบบ deletion มากที่สุด ดังตารางที่ 18 ตาราง 18 แสดงรูปแบบการเปลี่ยนแปลงของลำดับเบสจากการใช้ LacZ gene ไปหน่วยนับตัวแยบตามลำดับเบส (โคลน L10)

<table>
<thead>
<tr>
<th>Mutational type</th>
<th>Number of occurrence</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A → G</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>G → A</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>C → T</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>T → C</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Transversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:G → C:T</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>C:T → A:G</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>Insertion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+G</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+T</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Deletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-A</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>-G</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>-C</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>-T</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>126</td>
<td>100</td>
</tr>
</tbody>
</table>
ในตาราง 19 แสดงรูปแบบการเปลี่ยนแปลงลำดับแบบของโคลน L18 ซึ่งพบรูปแบบการเปลี่ยนแปลงของลำดับแบบ transition และ transversion คิดเป็น 37% และ 47% ตามลำดับในขณะที่รูปแบบ deletion และ insertion คิดเป็น 3% และ 13% ตามลำดับ โดยในโคลน L18 พบการเปลี่ยนแปลงแบบ transversion มากที่สุด ดังตารางที่ 19

ตาราง 19 แสดงรูปแบบการเปลี่ยนแปลงของลำดับแบบจากการใช้ LacZ gene ที่ผ่านการเหนียวนำด้วยพลาสมา (โคลน L18)

<table>
<thead>
<tr>
<th>Mutational type</th>
<th>Number of occurrence</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A → G</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>G → A</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>C → T</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>T → C</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Transversion</td>
<td>66</td>
<td>47</td>
</tr>
<tr>
<td>A:G → C:T</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>C:T → A:G</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>Deletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-G</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>-C</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Insertion</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>+A</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>+G</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>+C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+T</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>142</td>
<td>100</td>
</tr>
</tbody>
</table>
2.5 ผลของโจโฉนพลาสมา (ในโครงเจนโจโฉน) ต่อชนิดของแบบของ \textit{LacZ} gene

เมื่อวิเคราะห์ผลของโจโฉนพลาสมา (ในโครงเจนโจโฉน) ต่อชนิดของแบบของ \textit{LacZ} gene ทั้ง 3 โคลนคือ L1, L10 และ L18 ซึ่งในโคลน L1 พบว่าประทีป sensitivity ต่อพลาสมา (ในโครงเจนโจโฉน) มากที่สุดคือ เบส Cytosine (C) คิดเป็น 33 % ซึ่งมากกว่าเบส G > T > A ตามลำดับ ดังตารางที่ 20

ตาราง 20 แสดงผลของเบสที่ sensitivity ต่อพลาสมา (ในโครงเจนโจโฉน) ในโคลน L1

<table>
<thead>
<tr>
<th>เบส (Base)</th>
<th>No. Base change occurred</th>
<th>Radiosensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>G</td>
<td>41</td>
<td>29</td>
</tr>
<tr>
<td>*C</td>
<td>47</td>
<td>33</td>
</tr>
<tr>
<td>T</td>
<td>30</td>
<td>21</td>
</tr>
</tbody>
</table>

หมายเหตุ: * คือ เบสที่ sensitivity ต่อโจโฉนของพลาสมามากที่สุด

ในตาราง 21 แสดงผลของโจโฉนพลาสมาที่ sensitivity ต่อชนิดของเบสในโคลน L10 พบว่าเบสที่ sensitivity ต่อพลาสมา (ในโครงเจนโจโฉน) มากที่สุดคือ เบส Cytosine (C) คิดเป็น 33 % ซึ่งมากกว่าเบส T > G > A ตามลำดับ ดังตาราง 21

ตาราง 21 แสดงผลของเบสที่ sensitivity ต่อพลาสมา (ในโครงเจนโจโฉน) ในโคลน L10

<table>
<thead>
<tr>
<th>เบส (Base)</th>
<th>No. Base change occurred</th>
<th>Radiosensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>G</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>*C</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>T</td>
<td>32</td>
<td>25</td>
</tr>
</tbody>
</table>

หมายเหตุ: * คือ เบสที่ sensitivity ต่อโจโฉนของพลาสมามากที่สุด
ตาราง 22 แสดงผลของไอโอนพลาสมาที่ sensitivity ต่อชีวิตของแบลสในโทน L18 พบว่าแบบที่ sensitivity ต่อพลาสมา (ในไอโอนไอโอน) มักที่สุดคือ เบส Cytosine (C) ที่มีเป็น 35% ซึ่งมากกว่าเบส G > T > A ตามลำดับ ค้นตารางที่ 22

ตาราง 22 แสดงผลของแบบที่ sensitivity ต่อพลาสมา (ในไอโอนไอโอน) ในโทน L18

<table>
<thead>
<tr>
<th>เบส (Base)</th>
<th>No. Base change occurred</th>
<th>Radiosensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25</td>
<td>17.6</td>
</tr>
<tr>
<td>G</td>
<td>36</td>
<td>25.4</td>
</tr>
<tr>
<td>*C</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>T</td>
<td>31</td>
<td>22</td>
</tr>
</tbody>
</table>

หมายเหตุ: * คือแบบที่ sensitivity ต่อไอโอนของพลาสมามากที่สุด
วิเคราะห์ผลการทดลอง

จากการใช้พลาสมาในกรณีที่วานำได้กิจกรรมกลับพันธุ์โดยการระคายจังจีเอ็นเอ็ม ซึ่งเดิมเคยที่ใช้เทคนิคกีฬา pUC19 และ LacZ gene โดยใช้ไอออนของไมโครเวฟ โดยจะเห็นว่า
ผลของพลาสมาส่งผลต่อผลการกีฬา pUC19 และ LacZ gene ทำให้เกิดกิจกรรมกลับพันธุ์ในระดับต่ำถึง
เฉพาะพลาสมา (ไอออนของไมโครเวฟ) ส่งผลต่อการเปลี่ยนแปลงของบนพื้นผิว pUC19
(โดยเฉพาะบริเวณของ LacZ gene) และใน LacZ gene ได้รับแบบการเปลี่ยนแปลงของบนพื้นผิว
ใหญ่จะพบแบบ deletion และ transversion (A/G) ไปเป็น C/T และ C/T ไปเป็น A/G ซึ่งเมื่อ
เปรียบเทียบกับเทคนิคล่าสุดไอออนพลังงานดีในงานวิจัยของ Yang et al. (1997) โดยการทดลองใช
ไอออนของไมโครเวฟนำได้กิจกรรมกลับพันธุ์ใน LacZ gene ซึ่งพบแบบการ
เปลี่ยนแปลงแบบ transition (50 %) เป็นส่วนใหญ่ ซึ่งให้ผลแตกต่างจากเทคนิคพลาสมา
(ไมโครเวฟไอออน) โดยรูปแบบการเปลี่ยนแปลงของบนพื้นผิวส่งผลต่ำและส่งผล
เปลี่ยนแปลงในบริเวณของ LacZ gene ซึ่งส่งผลต่อกลับพันธุ์ในการทำแบบที่เรียกเป็นสิ่ง

เมื่อพิจารณาในกรณีที่ sensitivity ต่อพลาสมานมิกโรเวฟ (ไอออนไอออน) มาก
ที่สุดคือบส Cytosine (C) ซึ่งแตกต่างจากการทดลองของ Chang et al. (2003) ที่ใช้เทคนิคล่า
สุดไอออนพลังงานดีที่วานำได้กิจกรรมกลับพันธุ์ใน Arabidopsis ซึ่งเป็นไอออนของไมโครเวฟ
พบว่ามีที่ sensitivity ต่อล่าไอออนพลังงานดี (ไอออนไอออน) มากที่สุดคือบส Thymine (T)
ซึ่งต่างจากเทคนิคพลาสมา (ไมโครเวฟไอออน) แต่บส C และ T อยู่ในกลุ่มของไพรมิเดิน
(pyrimidine) โดยอาจกล่าวได้ว่าที่ sensitivity ต่อล่าไอออนไอออนของไอออนมีและ
พลาสมาเป็นกลุ่มของไพรมิเดิน (pyrimidine)

ในส่วนของ dosage และ bias เป็นปัจจัยหลักที่มีอิทธิพลต่อการเกิดกิจ
กรรมกลับพันธุ์ โดยในการทดลองนี้ได้ทดลองกับระดับระหว่างใน dosage และ bias ขึ้น โดย
พบว่ามีการเปลี่ยนไปของ dosage และ bias ที่ก้าวคืบขึ้นนั้น มีผลต่อพลาสมา pUC19 และ LacZ
gene ซึ่งจะเห็นได้ว่า dosage และ bias มีผลต่อความถี่ของการเกิดกิจกรรมกลับพันธุ์ โดยที่เมื่อ
เพิ่ม dosage ถ้าเป็นการเพิ่มปริมาณของไอออน ส่วนการเพิ่ม bias เนื่องกับการเพิ่มพลังงานให้กับ
ไอออน โดยการเพิ่มทั้ง 2 เส้นไอนี่จะมีผลทำให้ความถี่ของการเกิดกิจกรรมกลับพันธุ์เพิ่มขึ้น

ซึ่งจะเห็นว่าการนำเทคนิคพลาสมามาทดลองกับงานทางด้านเชิงวิทยาการสามารถ
นำมาประยุกต์ได้ใช้ช่วงที่เกิดขึ้นเฉพาะจากเทคนิคไอออนพลังงานดีในช่วงการแสดงคืนกล
หน้าโดย Sarapirom et al. (2010) ได้ศึกษาการระคายจังจีเอ็นเอ็มของพลาสมา โดยคัดลือที่ใช้
เป็นพลาสมา pGFP (ขนาด 3344 bp) ซึ่งมีเนื้อพลาสมาตั้งกล่องกระชับด้ายพลาสมาโดยใช้
ไอโฉมของไวรัสและยาครอบคลุมพลุมะส่งผลต่อการเปลี่ยนแปลงโครงสร้างและหมู่ของพอลิยูคิวต พีซีเอฟ ได้ผลการทดลองต่างๆ ทำให้ทราบว่าความระหว่างได้ว่าพลายสารสามารถเหนี่ยวนำให้เกิดการกลายพันธุ์ได้ แต่ในผลการทดลองนี้สามารถระบุได้ว่าพลายสารสามารถเหนี่ยวนำให้เกิดการกลายพันธุ์ได้ เมื่อใช้เครื่องมือการกลยุทธ์พันธุ์พบว่าแบบ transition, transversion, deletion และ insertion ซึ่งเป็นสาเหตุของการเกิดการกลายพันธุ์

ชื่อภาษาหลักนี้เป็นการศึกษาต่ออดจากศึกษาของ Sarapirom et. al. (2010) โดยจากผลการศึกษาทั้งสองการทดลองสามารถอธิบายได้ว่าเทคนิคพลุมะสามารถประยุกต์ใช้กับงานทางค้านชีววิทยาได้และจะมีการศึกษาเทคนิคพลายสารต่อไปว่าจะมีประสิทธิภาพส่งผลต่อการทำงานหรือไม่ หรือไม่เพียงพอที่จะพัฒนาเทคนิคพลายสารในการส่งผ่านเพื่อเป็นประโยชน์ในทางการแพทย์ หรือการเตรียมวัสดุให้เกิดการพันธุ์ในสิ่งมีชีวิตขึ้นสู่อย่างปลอดภัย ลดความเสี่ยงเช่น ข้าว, ไม้, หรือสัตว์ใช้เป็นเทคนิคในการเก็บตระเตรียมไป
บทที่ 5
สรุปผลการทดลอง

การนำพลาสม่ามาใช้ในการศึกษาช่วงการเกิดการกลยุทธ์โดยการระวางมิจิ้นเดิม ซึ่งความกว้างสืบเนื่องจากความมีประสานอยู่ในเครื่องมือผลิตภัณฑ์ pUC19 และ LacZ gene โดยใช้เธอตกใจในโคลน และผลลัพธ์ภูมิคุ้มกันที่มีความมีประสานอยู่ในเครื่องมือผลิตภัณฑ์ต่างๆ ประกอบด้วย ไฮโดรเจนโมเลกุล และตัวแปรที่วิจัยในที่เปรียบ比如说ว่า วิธีการรู้จักกระบวนการเปลี่ยนแปลงของล่าสุดเนื่องและผลของการพลาสติก (ในไตรมีไตรมอน) ต่อคุณภาพของผล

1. ผลของการพลาสม่าต่อพลาสติค pUC19

พิวจายการพิมพ์มีพลาสติค pUC19 ตัวพลาสติก พักใส่พลาสติก (ในไตรมีไตรมอน) สามารถทำให้เกิดการเกิดการพันธุ์ได้ทั้งในระดับพืชสูงช่วงและช่วงในพืชสูงช่วง โดยในการวิเคราะห์ความมีประสานระหว่าง dosage กับ bias คือความกว้างของการเกิดการกลยุทธ์พันธุ์ พัฒนาได้แน่นอนไปแต่ทั้งคอดีลสำหรับพืชเพื่อให้มีการเพิ่ม dosage และ bias (คงที่) หรือการเพิ่ม bias และ dosage (คงที่) ที่สุดทำให้การเกิดการกลยุทธ์พันธุ์มีการช่วงในสูงสุดในช่วง 54.1 - 57.2 % และ 52.8 - 59.1 % ตามลำดับ

และการวิเคราะห์ผลจากการเปลี่ยนแปลงของล่าสุดเนื่อง และการเปลี่ยนแปลงของล่าสุดเนื่องในไตรมอนของ LacZ gene ซึ่งมีผลทำให้เกิดการย้ายของแบล็คที่เป็นสีขาว และการเปลี่ยนแปลงของล่าสุดเนื่องในโคลน P2 พบการเปลี่ยนแปลงแบบ deletion มากที่สุดคิดเป็น 38 % และในการวิเคราะห์ผลของการพลาสติกของไตรมอนพลาสติก (ในไตรมีไตรมอน) ต่อคุณภาพของผลพบว่าสาร Cytosine (C) เป็นสารที่มี radiosensitivity ต่อพลาสติกมากที่สุด ซึ่งคิดเป็น 33 % โดยมากกว่าสาร G > T > A ตามลำดับ

2. ผลของการพลาสติกต่อ LacZ gene

ในช่วงที่สูงของพลาสติกต่อ LacZ gene พักใส่พลาสติก (ในไตรมีไตรมอน) สามารถทำให้เกิดการเกิดการพันธุ์ได้ช่วงเดียวกับการทดลองที่ใช้พลาสม่า pUC19 โดยในการศึกษาความสัมพันธ์ระหว่าง dosage กับ bias ซึ่งมีการเพิ่มในไตรมอนที่ dosage : 5 x 10^4 , 1 x 10^5 แบบ bias : 2.5 kV (คงที่) พบความมีประสานอยู่ในการเกิดการกลยุทธ์พันธุ์สูงที่ 58.6 , 58.0 และ 59.8 % ตามลำดับ ที่มีการเพิ่มในไตรมอนที่ dosage : 2 x 10^5 ions/cm² แบบ bias : 2.5 , 3.5 และ 5.0 kV พบความมีประสานอยู่ในการเกิดการกลยุทธ์พันธุ์สูงที่ 59.8 , 59.7
และ 63.2% ตามลำดับ ซึ่งจะเห็นได้ว่าในแต่ละเจลในความยืดของการกิจการกลางพันธุ์ให้ผลไม่แตกต่างกัน

ซึ่งในการทดลองทั้ง 2 ข้างไม่สามารถเปลี่ยนแปลงให้พราวความแตกต่างของจานคนที่ต่างกันมากถึง 10 เท่าโดยรูปร่างของพลาสมาดี pUC19 ด้วย LacZ gene โดยรูปร่างของพลาสมิต pUC19 มีอยู่ 3 รูปแบบคือ relax, supercoil และ linear ซึ่งทั้ง 3 รูปแบบนี้ผลต่อการควบคุมการทำงานของพลาสมา (ในโครมาโทกราฟ)

สำหรับการวิเคราะห์รูปแบบการเปลี่ยนแปลงของลักซ์เบส พบมีการเปลี่ยนแปลงของรูปแบบในโคโน L1, L6, L10, L18 และ L20 มีผลทำให้ไอที่มีช่องแบ่งที่เรียงเป็นซีรี่ย์และรูปแบบการเปลี่ยนแปลงของรูปแบบในโคโน L6 พบแบบ deletion ของเบส C ที่ตัวหน่วย 136 (บริเวณของ LacZ gene) และในโคโน L20 พบแบบ deletion ของเบส T ที่ตัวหน่วย 71 (บริเวณจุดตัดของรูปแบบ HindIII ของบริเวณ LacZ gene) ในขณะที่การเปลี่ยนแปลงของ L1, L10 และ L18 พบรูปแบบการเปลี่ยนแปลงแบบ transversion 53%, deletion 41% และ transversion 47% ตามลำดับ

และการวิเคราะห์ผลของไอคอนพลาสมา (ในโครมาโทกราฟ) ตัวชนิดของเบสของทั้ง 3 โคโนคือ L1, L10 และ L18 พบว่าเบสที่ radiosensitivity ต่อพลาสมา (ในโครมาโทกราฟ) มากที่สุดคือเบส Cytosine (C) ซึ่งทำให้ผลเช่นเดียวกับการทดลองที่ใช้พลาสมิต pUC19 ซึ่งในโคโน L1 คิดเป็น 33% มากกว่าเบส G > T > A ตามลำดับ, โคโน L10 คิดเป็น 33% มากกว่าเบส T > G > A ตามลำดับและโคโน L18 คิดเป็น 35% มากกว่าเบส G > T > A ตามลำดับ
บรรณาธิการ

เกษม หนังธรรม. 2549. การปรับปรุงคุณภาพกระดาษด้วยระบบพลาสมควมกับบรรยากาศ.
วิทยานิพนธ์ปริญญาวิทยา. มหาวิทยาลัยเชียงใหม่. 75 หน.

ธารุจ กงสุทธา, ทิพย์ภัทร ธรรมศิลป์, ปริญญา จริยเวชวิทยา, ศรีสุกัญญ ริตังคากุล
และทัพพานา กริวัชร์. 2546. พันธุศาสตร์. เชียงใหม่: ภาควิชาชีววิทยา คณะวิทยาศาสตร์
มหาวิทยาลัยเชียงใหม่, น. 287 – 293.

นิรุต ผุดฟ้า. 2545. การวิจัยพันธุ์ข้าวเล็กทองและความทนทานของพยาธิการก่อนที่เกิดจากการ
ดื้อย้อยในข้าวเปลือกในแบบแยกพลาสมแบบปิดผนังพืช. วิทยานิพนธ์ปริญญาวิทยา.
มหาวิทยาลัยเชียงใหม่. 60 หน.

พิชชาธิ ทองคำมุส. 2551. การเพิ่มขึ้นในคิวตัวเมื่อที่ตั้งของ membrana (Lacuca sativa L.)
ที่สายพันธุ์เรียกไล่เตรียมพืชตัวเรียกไล่. วิทยานิพนธ์ปริญญาวิทยา. มหาวิทยาลัยเชียงใหม่.
80 หน.

พันธุศาสตร์ เฉลิมเวช. 2546. การให้ทางคุณภาพพันธุ์ข้าวทรงปรับปรุงสมบัติการไม่เชื้อน้ำของ
ผืนใย. วิทยานิพนธ์ปริญญาวิทยา. มหาวิทยาลัยเชียงใหม่. 123 หน.

สิรินุช ตางศรีจันทร์. 2540. การก่ออาชญากรรมของพืช. กรุงเทพฯ: ภาควิชาวิทยาการประดิษฐ์และ
ไฟฟ้า, คณะวิทยาศาสตร์, มหาวิทยาลัยเกษตรศาสตร์, น. 3 – 13, 44.

Ion beam induce deoxyribose nucleic acid transfer. Applied Physics Letters. 78, 16:
2393 – 2395.

Anuntalabchohai S., R. Chandej, B. Phanchaisiri, Yu L. D., S. Promtheep, S. Jarnjot and
T. Vilaithong. 2004. Mutation Induction In Thai purple Rice by Low-energy Ion
Beam. Proceeding of the Ninth Asia Pacific Conference (9th APPC), Hanoi, Vietnam.

ภาคผนวกก

สารคภ์

1. สารคภ์

1.1 สารคภ์ที่ใช้เตรียมผลและวัสดุเพื่อเรื่อง

-Tris (hydroxymethyl) aminomethane (Tris-base)
-Boric acid
-Ethylenediaminetetra acetic acid (EDTA)
-Agarose (Usb. USA)
-Agar
-Ethidium bromide
-Bromophenol blue
-Xylene cyanol
-Sucrose

1.2 Restriction enzyme

- Ndel
- HindIII
ภาคผนวก ข

การเตรียมสารละลาย

Plasmid extraction buffer

<table>
<thead>
<tr>
<th></th>
<th>stock</th>
<th>1 ml</th>
<th>10 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1</td>
<td>50 mM Tris-HCl</td>
<td>2 M</td>
<td>25 μl</td>
</tr>
<tr>
<td></td>
<td>10 mM EDTA</td>
<td>0.5 M</td>
<td>20 μl</td>
</tr>
<tr>
<td></td>
<td>dH₂O</td>
<td>-</td>
<td>0.95 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>stock</th>
<th>1 ml</th>
<th>10 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP2</td>
<td>200 mM NaOH</td>
<td>10 M</td>
<td>20 μl</td>
</tr>
<tr>
<td></td>
<td>1% SDS</td>
<td>20 %</td>
<td>50 μl</td>
</tr>
<tr>
<td></td>
<td>dH₂O</td>
<td>-</td>
<td>0.93 ml</td>
</tr>
</tbody>
</table>

BP3

3M Potassium acetate

DNA marker

Lambda DNA (ตัดด้วย PstI)

Ethidium bromide 10 mg/ml

ใช้ Ethidium bromide 1 แกรม นำไปละลายในน้ำเกลี้ย 100 มิลลิลิตร ความเข้ม น้ำตาลคลั่งกรด แล้วห่อachel เหล่าในขึ้น 10 มิลลิลิตร ใช้ได้กับวัสดุวัสดุในขึ้น 4 ของงานวิจัยชิ้นส่วนในขึ้นเรียกใช้ความเข้มข้นที่ชี้ทำงมาก โดยสามารถลดคือ 70-75 และอยู่ในขึ้นอยู่ของ Ethidium bromide เพื่อไม่ทำให้เกิด mutagen
TE buffer (Tris-EDTA buffer)

1. Tris-HCl 10 mM
2. EDTA 1 mM

ผสมสารละลายทั้งสองเข้าด้วยกัน gowน้ำไปเนื่องจากอีที่ 121 องศาเซลเซียส นาน 15 นาที แล้วเก็บไว้ที่อุณหภูมิ 4 องศาเซลเซียส

Loading buffer

1. Bromophenol blue 0.25% (w/v)
2. Xylene cyanol FF 0.25% (w/V)
3. Sucrose 40% (w/v)

ผสมสารละลายสามตัวเข้าด้วยกัน ปรับปริมาณสารด้วยน้ำกลั่นให้ได้ตามค่าการก่อนน้ำไปเนื่องจากอีที่ 121 องศาเซลเซียส นาน 15 นาที แล้วเก็บไว้ที่อุณหภูมิ 4 องศาเซลเซียส

10X Tris borate buffer (10X TBE buffer)

1. Tris base 108 กรัม
2. boric acid 55 กรัม
3. 0.5 มิลลิลิตร EDTA pH 8.0 40 มิลลิลิตร

ละลายสารในข้อ 1.1 และ 1.2 โดยน้ำกลั่นจากบานผสมสารทั้งสามชนิดเข้าด้วยกัน แล้วจึงปรับปริมาณสารด้วยน้ำกลั่นให้ได้วิมูล 100 มิลลิลิตร gowน้ำไปเนื่องจากอีที่ 121 องศาเซลเซียส นาน 15 นาที แล้วเก็บไว้ที่อุณหภูมิห้อง
ประวัติผู้วิจัย

ชื่อ-สกุล นามสกุล ใจชื่น
ถิ่นเมือง 29 เมษายน 2528
ประวัติการศึกษา พ.ศ. 2546 มัธยมศึกษาตอนปลาย โรงเรียนทำบ่อ
จังหวัดหนองคาย
พ.ศ. 2550 ปริญญาตรี มหาวิทยาลัยแม่โจ้
จังหวัดเชียงใหม่